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Abstract. Web browsers are indispensable applications in our daily
lives. Millions of users use web browsers for a wide range of activities
such as social media, online shopping, emails, or surfing the web. The
evolution of increasingly more complicated web applications relies on
browsers constantly adding and removing features. At the same time,
some of these web services use browser fingerprinting to track and pro-
file their users with clear disregard for their web privacy. In this paper, we
perform an empirical analysis of browser features evolution and aim to
evaluate browser fingerprintability. By analyzing 33 Google Chrome, 31
Mozilla Firefox, and 33 Opera major browser versions released through
2016 to 2020, we discover that all of these browsers have unique fea-
ture sets which makes them different from each other. By comparing
these features to the fingerprinting APIs presented in literature that
have appeared in this field, we conclude that all of these browser ver-
sions are uniquely fingerprintable. Our results show an alarming trend
that browsers are becoming more fingerprintable over time because newer
versions contain more fingerprintable APIs compared to older ones.
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1 Introduction

Web browsers have become indispensable in our daily lives. The majority of the
online activity of many Internet users comprises of using a browser to access
social media, online shopping, surfing the web, messaging, and accessing stored
information in the cloud. Unfortunately, many companies are interested in col-
lecting the private browser activities of end-users for marketing and sales pur-
poses. To achieve their data collection objectives, some web services use “browser
fingerprinting” to track and profile their users with clear disregard for their web
privacy.

As browsers increasingly supplant traditional operating systems as the ap-
plication publishing platforms of choice, many unique details of a user’s browser
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such as its hardware, operating system, browser configuration and preferences
can be exposed through the browser. An attacker who collects and sums these
outputs can create a unique “fingerprint” for tracking and identification pur-
poses. In addition, browsers have also been increasing in complexity as more
and more new features are being integrated into them, raising concerns that
the attack surface offered by this software “bloating” (i.e., the increase in the
number of components and code not needed by every user) is contributing to
making browsers more difficult to secure against attacks.

Browser fingerprinting has been determined to be an important problem
by previous research (e.g., [23,4,20,7]) as well as browser vendors themselves
(e.g., [8,28,22]). To date, however, no studies have looked at popular browsers
historically and have attempted to determine how their fingerprintability has
evolved over the years. Past work has demonstrated that the ability to sim-
ply fingerprint a browser’s precise version without relying on possibly spoofed
User-Agent strings can be useful to attackers [26]. In the further light of web pri-
vacy research showing the potential and/or real-world exploitation of novel APIs
for fingerprinting [24,6,15], we consider the raw volume of implemented APIs to
be a rough but useful proxy estimate of a browser’s potential fingerprintability.

In this paper, we perform an empirical analysis of a large number of browser
features that have been integrated or phased out of the popular Mozilla Fire-
fox, the Google Chrome, and the Opera browsers between the years 2016 and
2020. We consider browser features to be all functionality that is available to
attackers directly through JavaScript, since these are the root problem of most
web attacks. Our aim is to answer a number of research questions about the
fingerprintability and security of these browsers over this time period. We pro-
pose a new metric for quantifying the fingerprintability of browser versions that
rely on the number of browser features that are associated with fingerprinting.
This metric is based on previous research and current fingerprinting techniques
discovered in the wild (see Section 3.2 for more details). By analyzing 33 Google
Chrome, 31 Mozilla Firefox, and 33 Opera major browser versions, our results
suggest that these popular browsers have unique feature sets that make them
significantly different from each other. Hence, by comparing these features to the
fingerprinting APIs presented in literature, we conclude that all of these browser
versions are uniquely fingerprintable. Our results suggest the alarming trend
that browsers are becoming more fingerprintable over time as newer versions of
popular browsers have more fingerprintable APIs embedded in them.
This paper makes the following key contributions:

– We show that all major Mozilla Firefox, Google Chrome, and Opera browser
versions between 2016 until 2020 are uniquely fingerprintable based exclu-
sively on the presence or absence of browser features.

– We analyze Mozilla Firefox, Google Chrome, and Opera and report major
differences between feature introduction and removal trends. While Firefox
tends to keep a steady number of features in the browser (i.e., introducing
new features while removing older ones), Chrome, in contrast, is growing and
more features are kept as the browser evolves. Opera, similar to Chrome,
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seems to be adding lots of features and not interested in removing the older
ones.

– We show that although Google Chrome and Opera are both based upon
Chromium and share the same codebase, there are still differences in their
feature introduction and removal patterns. But this shared codebase makes
them very similar in our fingerprintability analysis.

– We provide all the source code and datasets that we have collected in our
experiments to the community.3

2 Research Questions

In this paper, by performing an automated analysis, we attempt to answer the
following research questions:

1. Are major versions of Firefox, Chrome, and Opera browsers fingerprint-
able? Our results suggest that the feature set for each browser version is
unique. There exist multiple APIs in every browser version that we have
analyzed that can be used for fingerprinting. By extracting all the features
supported by a browser and exposed via API calls, we can uniquely identify
each browser version.

2. Are Firefox, Chrome, and Opera becoming more fingerprintable over time?
One of the major conclusions of our study is that the number of APIs one can
use in the newer versions of Chrome, Opera, and Firefox is larger than the
older versions. Hence, newer browser versions are even more fingerprintable
than previous versions, and our findings suggest that this trend is likely to
continue. As a result, privacy might be an even more significant concern in
the future for browser users.

3. What “lifespan profiles” can we cluster browser features into? Are there
any“permanently removed” features? If so, how does their life cycle look
like? Our results suggest that we can categorize browser features based on
their lifespan into three main categories (i.e., persistent features, non persis-
tent features, and recurring features). We observe that most of the features
are added permanently, and are not removed over time – indicating that
browsers are indeed becoming more “bloated” as they evolve.

4. With respect to browser bloating, how does Firefox compare to Chrome and
Opera? In our study, we were able to map the number of unique features
for major versions of Firefox, Chrome, and Opera. The results suggest that
Chrome and Opera are introducing more features over time than Firefox,
but that all of these browser vendors have shown a significant increase in
the total number of features they support per version since 2016. Compared
to Firefox, Chrome and Opera tend to introduce more new features and keep
them around longer.

5. Could the incognito mode in Chrome and the private window mode in Fire-
fox and Opera reduce the possibility of being fingerprinted by websites? Our

3 https://github.com/sa-akhavani/browserprint
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analysis suggests that the incognito and private window modes have neg-
ligible impact on reducing fingerprinting. That is, almost all fingerprinting
APIs are accessible in these modes the same way that they are available in
non-private mode.

6. Although Opera and Chrome are both Chromium-based and share the same
codebase, is there any noticeable difference between these two browsers in case
of fingerprintability? In our analysis, we found out that Opera and Chrome
have very similar sets of fingerprintable APIs and there is not much differ-
ence between these two browsers in case of fingerprintability. But there exist
differences in some browser-specific features between these two browsers.
Additionally, Opera and Chrome follow almost the same pattern in feature
adding and removal as a result of their shared codebase. These browsers tend
to keep a majority of their features untouched.

3 Methodology

To be able to determine how fingerprintable a browser is, we need to determine
the features it supports when a webpage is visited by a user. Similarly, we need
to understand which features are supported by a specific version because at-
tackers typically target such features in attacks (e.g., a bug in the video access
functionality might be exploited). Hence, to answer the research questions we
pose in this study, we need to be able to figure out exactly what features are sup-
ported by each browser version under analysis. In this section, we describe the
methodology we followed in this work, and explain how we created the datasets
we used in our analyses.

3.1 Feature Gathering

In order to collect browser feature sets from Firefox, Opera, and Chrome, we
crafted a special JavaScript-instrumented webpage that analyzes the visiting
browser. We use the term feature to describe JavaScript objects, methods, and
property values built into the global namespace of the browser’s JavaScript
implementation (i.e., the window object). Clearly, this definition is JavaScript-
centric. However, it is unambiguous and naturally scalable, as we can automate
the collection of features from many different browser implementations using
standard scripting and crawling techniques. When our instrumented page is
loaded by the browser, our JavaScript is executed. This code probes and iterates
through the features supported by the browser. This is done by using JavaScript
to traverse the tree of non-cyclic JavaScript object references accessible from
a pristine (i.e., unmodified by polyfills or other prototype-chain modifications)
window object, and collecting the full feature names encountered during the
traversal. Each feature name comprises the sequence of property names leading
from the global object to a given built-in JavaScript value. The traversal code is
careful to not modify this object (which doubles as the global variable names-
pace) in any way, to avoid contaminating the resulting set of feature names.
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Captured feature sets are then stored in a database, tagged with identifying
metadata such as the browser’s User-Agent string.

We use the terms browser features, as defined in this section, and JavaScript
APIs interchangeably in our work.

3.2 Browser Fingerprinting APIs

We conduct an in-depth analysis in order to determine which browser features are
associated with fingerprinting. Our analysis generates a list of suspicious APIs
that we use in our measurements in Section 4 to quantify fingerprintability : the
ratio of browser features that are associated with fingerprinting techniques in a
browser version. We describe in the following how we determine which browser
features are related to browser fingerprinting.

Our list of suspicious browser fingerprinting APIs contains a total of 313
JavaScript APIs. These APIs are considered suspicious because the purpose of
using these API depends on the intent of the programmer who writes the code.
We call this list suspicious fingerprinting APIs in this paper. In Panopticlick’s
research [4], browser fingerprinting is achieved through a combination of APIs
that seem innocent, such as Navigator.plugins, Navigator.userAgent, and
Screen.colorDepth. These APIs provide functionality that matches their orig-
inal objectives. However, they can be abused by creating a unique fingerprint of
the client’s browser due to exposing information that narrows down the diversity
of visited users. We use two methods to assemble the list of fingerprinting APIs:
literature review and experimental analysis.

Literature Review The foundation of the API list is composed of four core
fingerprinting papers, Panopticlick [4], AmIUnique [1], Hiding in the Crowd [18],
and FPDetective [7]. This analysis results in approximately 10% of the list of
suspicious fingerprinting APIs. Some of the APIs are directly mentioned in these
papers and the others are chosen to match standard APIs4 with the same func-
tionality. The concepts of Canvas, WebGL, and Font fingerprinting are intro-
duced along with these APIs. These concepts lead to the next turn of investi-
gation of papers which are Cookieless Monster [23] and Pixel Perfect [20]. This
investigation does not bring more APIs but a direction to experimental analysis.

Experimental Analysis The experimental analysis consists of two stages,
collecting APIs by crawling websites and extracting suspicious APIs from the
crawling data. In terms of data collection, the workflow is the same as the one
in VisibleV8 [19]. A customized crawler was driven to visit all websites in the
Easylist [2] domain file that contains 13,241 domains. Then, the raw logs gener-
ated by VisibleV8 were gathered and the VisibleV8 post-processor was applied
to process the raw data. After removing duplicate and non-standard APIs, the
API usage of 8,682 domains with 56,828 origins was collected. Non-standard

4 https://developer.mozilla.org/en-US/docs/Web/API
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APIs indicate ones that are not listed in the WebIDL [5] data package. In other
words, VisibleV8 and its post-processor were adopted to aggregate and summa-
rize standard JS API usage of the target domains.

While collecting APIs from the wild, the API suspicious list was ex-
tended through crawling on panopticlick.eff.org, amiunique.org, and
browserleaks.com websites. These websites are explicitly marked as browser
fingerprinting websites. Therefore, augmenting suspicious fingerprinting APIs
among these websites is more efficient than a random walk on the enormous JS
API pool.

The next step is to perform a manual analysis to check every API utilized
by these three websites. First, we search for information and usage of an API on
Mozilla’s MDN Web Docs [21]. Then, we determine whether an API fingerprints
users based on the information the API conveys. That is to say, an API is
classified as a suspicious fingerprinting API if it can provide the information
to filter certain users out. For example, there are two users with distinct user
agents. By calling Navigator.userAgent, the programmer should be able to
distinguish between these two users. Navigator.userAgent can be recognized
as a fingerprinting API in this case. The majority of suspicious fingerprinting
APIs come from manual analysis and the idea of categorizing fingerprinting APIs
is incited by the browserleaks.com website.

The last step is to manually search for more fingerprinting APIs with the
keyword. Namely, in Canvas fingerprinting, most APIs include the “Canvas”
or “CanvasRendering”. A program was created to filtrate APIs that contain
“Canvas” or “CanvasRendering” among APIs of 8k crawled domains. The same
pattern also applies to BatteryManager, WebGLRenderingContext, and Speech-
Synthesis. Meanwhile, the fingerprint2.js [16] was reviewed to supplement the
suspicious fingerprinting API list.

There are limitations to the methods we used for constructing a suspicious
fingerprinting API list. First and foremost, this list only provides a partial view of
full fingerprinting APIs. To the best of our knowledge, there is no complete table
of fingerprinting APIs and more research is needed in this direction. The second
limitation is during the manual analysis. There could be misconceptions between
the API usage provided by the Mozilla API page and the way programmers
exploit them. Lastly, part of JS APIs is filtered out by the VisibleV8 post-
processor. This can be improved by using a larger set of WebIDL data or precisely
use the aggregated raw APIs.

As a service to the community, we have made our list of fingerprinting APIs
publicly available.

3.3 Browser Testing Platform

In this work, we target Google Chrome, Mozilla Firefox, and Opera browsers
as they are well-known, popular browsers that have millions of users. Firefox
possesses a distinct codebase unlike Chrome and Opera which are both based
on Chromium. We gathered a copy of every major Firefox, Chrome, and Opera

panopticlick.eff.org
amiunique.org
browserleaks.com
browserleaks.com
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version that was released during the March 2016 to April 2020 timeframe, i.e.,
Chrome versions 49–81, Firefox versions 45–75, and Opera versions 36–68.

To individually connect each browser version to our instrumented feature
gathering web application, we mainly used the BrowserStack web service [10].
BrowserStack is a cloud-based web and mobile testing platform that enables de-
velopers to test their websites and mobile applications across on a wide range of
browsers, operating systems, and real mobile devices. If a specific browser ver-
sion or configuration was not available on BrowserStack, we developed and used
automation scripts to instrument and run the browser instances on a desktop
computer running Windows 10.

4 Analysis

In this section, we describe the analysis we performed on the datasets that we
collected, and the insights that we distilled from the analysis. We leverage the
browser features dataset and the suspicious fingerprinting APIs dataset in our
analysis.

4.1 Analysis of the Browser Features

The first analysis we performed on the dataset we collected was to understand
how browser features have evolved over time. As we describe in Section 3, we con-
sider browser features all functionality exposed to JavaScript as objects, meth-
ods, and property values. This definition of browser features reflects on 1) how
attackers craft web attacks (i.e., creating a unique fingerprint using such fea-
tures, or exploiting vulnerabilities) and 2) a measurable metric across browser
versions. Understanding and gaining insights into how browsers are dealing with
new as well as older features is important to be able to distill conclusions about
how secure and fingerprintable browsers are becoming as they evolve. Hence,
our analysis looked at specific browser features that were introduced, what the
typical lifespan of features looks like.

After extracting feature information for all of the browsers under analysis,
we automatically parsed the generated reports and analyzed them to see if the
features in these browsers fall into specific categories. Our analysis suggested
that the features in Firefox, Opera, and Chrome can be categorized into three
main categories:

– Persistent Features: These are features that are added to a specific version,
and that continue to exist in every version that is released after the feature
was introduced. We consider a feature to be “persistent” if it appears in at
least two distinct browser versions.

– Non-Persistent Features: These are features that existed in older versions
of the browser, but were removed, and never appeared in newer versions of
the browser again. We consider a feature to be “non-persistent” if it is absent
in at least two distinct versions of the browser versions under analysis.
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– Recurring Features: These are features that are added and removed from
the browser from time to time. That is, they are introduced, they are re-
moved, and they might appear again at some point. Such features are typ-
ically being tested by the vendors, and it is not clear if they will become
persistent, or non-persistent.

Our analysis suggests that Chrome possesses 9,718 persistent, 711 non-
persistent, and 3,161 recurring features that it supports. Similarly, Opera con-
tains 9,674 persistent, 711 permanently removed, and 3,219 recurring features.
On the other hand, Firefox supports 6,274 persistent, 809 non-persistent, and
115 recurring features. Note that Firefox, overall, supports significantly fewer
features than Chrome and Opera. Also, our analysis suggests that Firefox, com-
pared to Chrome and Opera, is keeping fewer features (i.e., they are removing
more) over time. Figure 1 illustrates the feature categories for each browser ven-
dor. It can be seen that Opera and Chrome are having similar patterns since lots
of their features are related to Chromium which is their shared codebase. Be-
sides, Chrome and Opera have a greater portion of recurring features compared
to Firefox. This means that Chrome and Opera tend to do more experiments on
adding and removing specific features through time.

Fig. 1. Feature category distribution for browsers.

In this work, we also performed an analysis of the common features between
Firefox, Chrome, and Opera. Since 2016, the total number of features introduced
by these browsers is 15,945. Among all these features, there exist only 4,843
common features among Firefox and Chrome – which is approximately 30%
of the total number of features that these vendors support. This number is the
same between Firefox and Opera too, with 4,843 common features between them.
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On the other hand, Chrome and Opera have a bigger set of common features.
There exists 13,558 common features between Opera and Chrome – which is
approximately 85% of the total number of features that these vendors support.
The impact of this huge common features set on fingerprintability between two
browsers are analyzed in the next section.

We can conclude that Firefox does not have a high feature overlap with
Chrome and Opera. Note that although these browsers often offer very similar
functionality, unsurprisingly, their codebase might be very different from each
other. We are aware that Firefox’s codebase is very different from Chrome’s and
Opera’s. Hence the API names through which these features are available are
also often significantly different. To the contrary, Chrome and Opera share the
same codebase. This leads to having a bigger set of common features between
these two browsers.

Figures 2 and 3 show the feature addition and removal trends for Firefox
and Chrome. The data shows that Chrome is adding and removing many more
features than Firefox in each version that is released if one looks at the overall
numbers of features. However, Firefox seems to be more constant with respect to
the number of new features added, and older features removed. Hence, Firefox
seems to be more aggressive with respect to removing older features from the
browser, “debloating” this way the browser. Chrome and Opera share the same
trend, so we omit a separate figure for Opera and leave Figure 3 as a repre-
sentative visualization of feature introduction and removal for Chromium-based
browsers.

Fig. 2. Feature introduction and removal in Firefox.
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Fig. 3. Feature introduction and removal in Chrome.

By using the feature datasets we extracted from the Firefox, Opera, and
Chrome versions, we compared feature trends for these browsers. The trends are
depicted in Figure 4. The graph shows that the number of features supported by
Firefox seems to be quite steady (i.e., if new features are added, some older ones
are typically removed) while the number of features supported by Chrome and
Opera is growing over time. Hence, the data suggests that Chrome and Opera
are following differing browser feature development philosophies compared to
Firefox.

4.2 Browser Fingerprintability

Analyzing fingerprinting API presence in Chrome, Firefox, and Opera
Recall that one of the key research questions we asked at the beginning of this
paper was if popular browsers such as Firefox, Chrome, and Opera are generally
becoming more fingerprintable over time. In particular, we were also interested
in answering if every browser version is unique in a fingerprintability sense.

Using the fingerprinting APIs that we collected (and described in Section 3),
we aimed to determine how many of these APIs are available and active in specific
browser versions. That is, we iterated through all the major Firefox and Chrome
browser versions between 2016 and 2020, and tested their fingerprintability.

In Chrome 49 (i.e., the oldest Chrome version in our analysis), there exist
139 APIs from the suspicious fingerprinting APIs list. Which means they could
be used for fingerprinting. In Chrome 81 (the newest Chrome version in our
analysis), there exist 274 APIs from the suspicious fingerprinting APIs list. In
short, the number of APIs that could be used for fingerprinting Chrome versions
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Fig. 4. Feature trends in Firefox, Opera, and Chrome when compared to each other.

are increasing over time. That is, the data suggest that Chrome is becoming
easier to fingerprint as it evolves over time.

Compared to Chrome, Firefox 45 (i.e., the oldest version in our study) has
147 APIs from the suspicious fingerprinting APIs list. In contrast, Firefox 75
(which is the latest Firefox version in our study) has 271 fingerprinting APIs
from the suspicious fingerprinting APIs list. Interestingly, though, Firefox 71
has 276 APIs from the suspicious fingerprinting APIs list. Our data analysis
suggests that Firefox has become more fingerprintable over time, but that lately,
although more features are added to it, its fingerprintability might have started
to decline. In fact, Firefox has indeed started to take the fingerprinting problem
seriously and has been increasingly taking steps to prevent it (e.g., [22]).

In addition, Opera 36 (i.e., the oldest version in our study) contains 139
suspicious fingerprinting APIs. On the other hand, Opera 68 (the latest Opera
version in our measurement) is consist of 274 suspicious fingerprinting APIs. The
trend is very similar to Google Chrome but there are minor differences at some
points which could be seen in Figure 5.

Figure 5 depicts, in detail, the presence of fingerprinting APIs in Chrome,
Firefox, and Opera that we measured. Note that in January 2017, there is a
significant increase in the number of fingerprinting APIs that each browser sup-
ports. More than 100 fingerprinting APIs were added to both browsers. To de-
termine what caused this spike, we investigated and analyzed the release notes of
both Firefox 51 [17], Chrome 56 [13], and Opera 43 which is based on Chromium
56 [3].

The release notes indicate that HTML5 was enabled for all users by default in
Chrome 56. As of this version, Adobe Flash Player was disabled and only allowed
to run with specific user permissions. Chrome also enabled the WebGL 2.0 API
that provides a new rendering context, and supports objects for the HTML5
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Canvas elements. This context allows rendering using an API that conforms
closely to the OpenGL ES 3.0 API5. Similarly, in Firefox 51, we observed that the
browser had also added WebGL2 support during that time. The same happened
to Opera 43 since Chromium 56 added WebGL2 support to its codebase.

When we analyzed our fingerprinting API list, we saw that the 107 new
fingerprinting APIs that became possible as of this date were actually related
to WebGL2RenderingContext which was added to Firefox 51, Chrome 56, and
Opera 43. The straight-forward lesson to distill from our observation is that
browser vendors need to be extra careful when they implement and release new
features if they are interested in making their browsers more difficult to finger-
print.

Fig. 5. Presence of Fingerprinting APIs in Chrome, Firefox, and Opera.

As part of our experiments, we also collected the feature sets for Firefox’s
Private Window, Google Chrome’s Incognito, and Opera’s Private Window. We
measured the fingerprintability of the browsers in these modes. For Chrome, our
results show that there is a small difference between the total number of features
in regular mode versus the total number of features in incognito mode. For in-
stance, Chrome 80’s regular mode has 11,946 features while it has 11,936 features
available in Incognito mode. The results were similar for Firefox’s regular mode
versus its Private Window Mode. For example, Firefox 75’s regular mode has
6,370 total features while its Private Window Mode has 6,358 features available.
Besides, Opera’s private window had the same fingerprinting APIs compared to
the regular mode and had zero impact on reducing fingerprintability.

Hence, we conclude that the incognito and private window modes do not help
users against browser fingerprinting since every fingerprinting API that exists in

5 https://www.khronos.org/registry/webgl/specs/latest/2.0/

https://www.khronos.org/registry/webgl/specs/latest/2.0/
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a version’s normal mode also appears in the same browser version’s Incognito
(or Private Window) mode.

Unique Feature Set In our analyses, we automatically deduced a “feature
set” for each browser version that we analyzed. A feature set is a set of (i.e.,
the list of) browser features that exist in that specific browser version under
analysis. When we compared the features sets for each browser version to each
other (e.g., Firefox 54 versus 55), we observed that each feature set was unique
for all the browser versions that we tested. That is, there exist no two browsers
that possess the same feature set. Hence, from this observation, we can deduce
that all the browser versions that we analyzed are uniquely fingerprintable.

The reason why the feature sets are unique among different browser ver-
sions is that each browser, as we described before, have recurring as well as
non-persistent features. As a result, the fact that vendors continuously add, re-
move, and sometimes re-add features into their browsers also make them more
fingerprintable.

One interesting trend is that the differences between the feature sets of
Chrome, Firefox, and Opera in their newer versions is becoming smaller. That
is, we observed much more intersections with each other than in older versions.
Our data suggest that the feature sets for all Firefox, Chrome, and Opera are
converging towards homogeneity of browser features.

5 Related Work

Our work focuses on the intersection of browser evolution and browser finger-
printing.

Browser evolution The first web browser, WorldWideWeb [9], was devel-
oped in 1990 by Tim Berners-Lee. That browser did not have JavaScript, did
not support cookies and users could not adapt their browser with extensions.
All these features and thousands more were introduced in browsers over time,
matching the needs of the ever-evolving web.

Synder et al. [27] use a similar method to us to collect browser features by
using the web API and extracting different kinds of JavaScript functions. They
measure browser feature usage among Alexa’s popular websites and also how
many security vulnerabilities have been associated with related browser features.
However, they do not aim to measure fingerprintability of different browsers
which is one of the main goals of our paper. In another work by Snyder [29], a
cost-benefit approach to improving browser security was conducted. Our work
focuses on how browsers have become more fingerprintable over time based on
the features they introduce, taking a new perspective on the privacy and security
costs that the browser evolution brings.

Recent work has focused on methods to automatically reduce the functional-
ity of the browser at the binary level. Chenxiong et al. [12] propose a debloating
framework for the browser that removes unused features. Our work is comple-
mentary to debloating efforts of the browser, as we focus on which browser
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features affect the users’ privacy the most. Also, our work suggests that the de-
bloating of browsers might not really be necessary as there does not seem to
exist a correlation between the number of features added to the browsers over
time, and how insecure they become.

Browser fingerprinting There have been a number of studies on browser
fingerprinting and browser bloating. The first large-scale study on browser fin-
gerprinting was conducted by Eckersley [14]. Eckersley showed that a wide range
of properties in a user’s browser and the installed plugins can be combined to
form a unique fingerprint. His study made us eager to see what is happening
in the world of browser features, and to try to analyze the impact of different
browser features on creating unique user fingerprints.

Browser fingerprinting can be done by using different methods. Cao et al. [11]
created user fingerprints by using OS-level features from screen resolution to the
number of CPU cores. They also measure the uniqueness of different browser
types by analyzing its OS-level features.

Olejnik et al. [25] show that one way of fingerprinting a browser is using web
history. In this method, there is no need for a client-side state. However, note
that this method is no longer possible because browser vendors have fixed this
issue and (i.e., extracting user history is not possible as before).

Nikiforakis et al. [23] showed how tracking has moved from using cookies
(stateful) to browser fingerprinting (stateless) on the web. Mowery et al. [20]
demonstrated how the canvas HTML5 feature can be abused for browser finger-
printing based on the differences in rendering images on different GPUs. Starov
et al. [30] measured how bloated browser extensions are in terms of the arti-
facts that they inject in visited pages, and can be used to identify the presence
of the users’ installed extensions. Trickel et al. [31] proposed a defense mecha-
nism against identifying installed browser extensions in users’ browsers based on
artifacts that reveal their presence on the visited pages.

In light of the prior research on browser fingerprinting, our aim was to collect
data and analyze the trends, and to see whether we are becoming better at
managing browser fingerprinting (or if this privacy issue is becoming worse as
new features are being introduced in new browser versions).

6 Conclusion

The evolution of the web relies on browsers adding new features that drive
innovation in web applications. Yet, this innovation comes at a significant cost
to the end users’ privacy, since browser fingerprinting techniques abuse certain
browser features. In this paper, we analyzed the impact of browser features on
browser fingerprinting. We investigated more than 30 major browser versions for
Google Chrome, Mozilla Firefox, and Opera between 2016 and 2020.

First, we extracted every browser feature that existed in these browser ver-
sions using the browser APIs. Then, we analyzed the feature sets for these
browsers and compared them. One key observation was that the feature numbers
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are overall increasing in modern browsers, and they are indeed becoming more
“bloated” in general.

Next, we compared the feature reports for these browsers to the already
listed fingerprinting APIs in browsers that are presented in the literature. Our
findings suggested that each browser version between 2016 and 2020 was uniquely
fingerprintable, and that the fingerprintablity of the browsers has been increasing
over the years.

We envision our research to affect how browser vendors introduce new fea-
tures and take into consideration the effects that these have on browser finger-
printability. Our goal is to highlight the concerning trend of “bloating” in the
browser and encourage browser vendors to remove abused features in order to
improve privacy on the web.
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