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ABSTRACT
Despite active privacy research on sophisticated web tracking
techniques (e.g., fingerprinting, cache collusion, bounce tracking,
CNAME cloaking), most tracking on theweb is basic “stateful” track-
ing enabled by classical browser storage policies sharing per-site
storage across all HTTP contexts. Alternative, privacy-preserving
storage policies, especially for third-party contexts, have been pro-
posed and even deployed, but these can breakwebsites that presume
traditional, non-partitioned storage. Such breakage discourages
privacy-preserving experimentation, cementing the dismal status
quo. Our work measures the privacy vs. compatibility trade-offs
of representative third-party storage policies to enable design of
browsers that are both compatible and privacy respecting. Our
contributions include web-scale measurements of page behaviors
under multiple third-party storage policies inspired by production
browsers. We define metrics for measuring aggregate effects on
web privacy and compatibility, including a novel system for quan-
titatively estimating aggregate website breakage under different
policies. We find that making third-party storage partitioned by
first-party, and lifetimes by site-session achieves the best privacy
and compatibility trade-off. We provide complete measurement
datasets and storage policy implementations.

CCS CONCEPTS
• Security and privacy → Privacy protections; • Information
systems → Browsers; Web mining.

KEYWORDS
browsers, cookies, compatibility, breakage, tracking, privacy, mea-
surement, crawling
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1 INTRODUCTION
Web trackers use many techniques to track users and violate privacy
on the web. Typical tracker practice combines stateful tracking (i.e.,
storing and transmitting unique identifiers in the browser) and
stateless tracking, or fingerprinting (i.e., attempting to uniquely
identify a browser based on distinctive browser, operating system,
and hardware characteristics).

Though much recent privacy work has focused on stateless
tracking (i.e., fingerprinting) and novel emergent stateful track-
ing (e.g., collusion to abuse first-party cookies for third-party pur-
poses [13, 42], CNAME cloaking [11, 15])), there is cause to believe
that the majority of tracking is still done using traditional state-
ful methods. Supporting evidence includes the adtech uproar over
Google’s recent announcement [1] to stop sending cookies (only
one of many ways of storing identifiers) to third-parties in the fu-
ture, prior research demonstrating the popularity of storage-based
tracking [17, 19, 36, 37, 46, 50], and expert insight from browser
developers.

While the privacy community has had some success in designing
defenses to stateless tracking that protect users without breaking be-
nign, user-serving page functionality[26, 32], researchers, industry,
and activists have been less successful in designing practical, robust
defenses against web-scale stateful third-party tracking. Blocking
the transmission of cookies to third-parties for sub-resource re-
quests is a welcome emerging development, but it does not pro-
vide protection against intentional stateful third-party tracking by
JavaScript code with access to persistent cookies, localStorage[5],
indexDB[6], or other JavaScript accessible storage methods (collec-
tively, “DOM storage”).

Historical attempts at comprehensive stateful tracking protec-
tions have struggled to balance privacy with compatibility. Filter list
approaches which block third-party storage only for “known” track-
ers maintain good compatibility but cannot protect against new or
stealthy trackers. Aggressive global blocking of third-party storage
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provides excellent privacy protections but breaks an unacceptably
high amount of benign web content. Recent innovations in stateful
tracking protection, exemplified by the latest iterations of Safari ITP
and Brave Shields, suggest a possible emerging solution to the tra-
ditional privacy/compatibility dilemma: hybrid policies combining
partitioned organization and ephemeral lifetime of third-party stor-
age. However, evaluation of this approach’s effectiveness hinges on
web-scale measurement not only of privacy protections (fairly well
understood by now) but also estimated web breakage/compatibility
caused by storage policies (an open problem at scale).

This work directly addresses this evaluation question by imple-
menting multiple simplified, representative third-party storage poli-
cies in a heavily-instrumented browser (Brave PageGraph [14, 24]),
collecting comprehensive page-behavior metrics under each policy
during a parallel crawl across top sites, and evaluating key privacy
and novel compatibility/breakage indicators among compared poli-
cies. The policies tested include: permissive (third-party storage
allowed globally, best compatibility); blocking (third-party stor-
age blocked globally, worst compatibility), site-keyed (third-party
storage partitioned by first-party but persistent), and page-length
(third-party storage partitioned by and limited to the lifespan of
the top-level page/document). Our privacy evaluation considers
the comparative prevalence of potentially-identifying cookie val-
ues seen in storage and quantifies how many third-party domains
had the ability to track our browsers across different first-party
sites (cross-site trackability) and across repeat visits to the same
first-party site (cross-time trackability). Our novel compatibility
evaluation exploits the rich instrumentation of PageGraph to con-
struct “behavior sets” and to compare their similarity between each
alternate policy and the known-good baseline (no blocking). We
complement these automated experiments with qualitative manual
assessments of a random sample of visited pages to assess compati-
bility through human eyes.

Our privacy results confirm prior experience, and our compati-
bility results support the view that hybrid ephemeral third-party
storage is emerging as a potential solution to the stateful track-
ing problem. All non-permissive third-party storage policies pro-
vided significant cross-site tracking protection, and page-length
provided measurably better cross-time tracking protection than
site-keyed. Page-length and site-keyed performed very similarly on
our compatibility metrics, both showing much stronger behavioral
similarity to the permissive baseline than did blocking, the “known
worst-case” baseline. Our manual compatibility assessment showed
generally low rates of user-perceived breakage across all tested
policies, suggesting that the emergence of more effective stateful
tracking protections is prompting a shift away from dependence
on third-party storage for essential functionality.

This work makes the following concrete contributions:

(1) Open source, PageGraph-based, Puppeteer-driven instru-
mentation system [7] allowing automated privacy and compa-
tibility-estimate measurements across the web under multi-
ple third-party storage policy implementations representa-
tive of both deployed and proposed storage systems.

(2) Design and implementation of metrics to programmatically
evaluate the privacy and compatibility implications of pri-
vacy interventions, including a novel system for comparing,

in aggregate, the compatibility effects of different privacy
interventions.

(3) The results of a web-scale evaluation of how third-party stor-
age policies inspired by those deployed in popular browsers
compare in terms of privacy and compatibility benefit.

(4) A complementary manual, qualitative evaluation of the com-
patibility impacts of different privacy interventions.

2 BACKGROUND & MOTIVATION
2.1 Same-Origin Policy & Storage Basics
Browsers isolate storage (e.g., cookies, localStorage, indexDB)
according to the Same-Origin Policy (SOP) [4]. Though the SOP is
complex and inconsistent in practice [43], the SOP is relatively sim-
ple in regards to browser storage policies .The SOP says that scripts
can access cookies and DOM storage (e.g., localStorage) only
for their execution origin, and HTTP requests store and transmit
cookies only for their destination origin.

When loading a website, the first-party is the “site” portion of
the top level document. This is the eTLD+1 of the URL shown in the
navigation bar of the browser. Any sub-resources or sub-documents
included in the page are considered first-party if they’re fetched
from the same eTLD+1 as the top level document. Third-parties
are any site not equal to the top-level document.

The storage values a script can access is determined by the “site”
of the frame that script is executing in, not the site the script was
fetched from. For example, if a page from origin A includes a script
from origin B, the script is a third-party script, but has access to
the first-parties (i.e., site A’s) storage.

2.2 Online Tracking
We use the term “tracking” to refer to a third-party re-identifying
a visitor across multiple site visits which are otherwise unrelated
or associated. Such tracking can be cross-site (i.e., a third-party can
link a visitor’s activities across first-party sites) or cross-time (i.e., a
third-party can identify the same visitor returning to the same first-
party site across sessions).While many techniques for tracking have
been studied, we focus exclusively on stateful tracking techniques,
such as cookies. At root, these rely on a third-party site being
able to access persistent state in different contexts, and using the
persistently stored state to link (conceptually) unrelated behavior.
As we will discuss at length later, approaches for preventing stateful
tracking involve either preventing third-parties from storing values
at all, providing third-parties with different storage context when
embedded in different contexts, or combinations of the two.

2.3 Threat Model
Here we present a simple threat model defining the scope bound-
aries for our proposed storage policy improvements. It provides
useful criteria for evaluating both deployed and experimental policy
alternatives.

Actors. We exclusively consider threats originating from third-
party content providers engaged in user tracking. While we do
consider the possibility of first-party errors or carelessness ampli-
fying the threat posed by third-party actors, we consider active
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Figure 1: Third-party storage (a) fully allowed, (b) fully blocked, (c) partitioned by first-party context, and (d) scoped to hosting
page life time (our proposal). A, B, & T are distinct domains; T is embedded as a third-party within A & B.

collusion between third-parties and first-parties (e.g., the disturb-
ing new tactic of cloaking third-party content behind first-party
CNAME DNS records) to be out of scope.
Mechanisms. Our focus is on stateful tracking, though we con-
sider instances where stateless tracking mechanisms may be used
to bridge or synchronize stateful sessions. We consider the threat of
fully stateless tracking (i.e., a universal, per-user fingerprint need-
ing no state transfer) to be out of scope. This choice is deliberate:
we believe stateful tracking is where browsers are most lacking
practical, robust, compatible defenses. While significant research
has gone into building web-compatible defenses against stateless
tracking (e.g., [26, 32]), the existing techniques for preventing state-
ful third-party tracking are either incomplete (i.e., they still allow
significant privacy harm to occur) or incompatible (i.e., they break
a significant number of websites).
Threats. The primary threat considered is classic cross-site user
tracking as enabled by traditional unified, persistent third-party
storage. We do not believe it is controversial to consider such track-
ing, which amounts to disclosure of a user’s browsing history, to
be an undesirable breach of personal privacy. However, there exist
additional subtle cross-time tracking concerns raised by persistent
third-party storage evenwhen it is partitioned by first-party context
(a relatively common proposed defense mechanism; see Figure 1
and Section 2.4). Such third-party tracking of return-visit activity
within a single first-party context can enable or amplify attacks
like session linking or cookie syncing.

By cookie syncing we refer not to cross-vendor syncing [36]
but to the possibility of cross-site syncing enabled by browser
implementation flaws. E.g., consider a scenario in which a first-
party site embeds a third-party frame. One week later, that frame
gains the ability to cookie sync (e.g., a new browser feature adds
enough entropy to fingerprint). But the next day, that ability is
lost (e.g., a high-priority browser update removes the privacy leak).
Effectively, this disaster scenario temporarily neuters any attempt
to partition third-party stored state by first-party context. The
impact on privacy is determined by how much longitudinal data
is available in third-party storage to by synced across first-party
boundaries. In the example scenario, it is one week of browsing
data with stable third-party storage and one day of data with only
ephemeral storage.Whatwe are considering a threat, then, is not the
possibility of cookie-syncing itself, but rather the scale of damage it

could cause. Our concern is defense in depth, just as cryptographers
implementing perfect forward secrecy do so not because they expect
frequent key exposure but because they wish to mitigate the impact
of its hopefully unlikely occurrence.

By session linking we mean third-parties exploiting any flaw that
allows inference of first-party login state to link two or more login
identities that the user intended to keep disassociated. Robust SOP
enforcement should prevent such inference, but loopholes (e.g.,
Referer leaks, postMessage mishandling) have been and probably
will continue to be found and exploited in the wild. If such a vulner-
ability is ever found in a sensitive first-party site (e.g., a web mail or
personal finance portal), the persistence of third-party state across
first-party session boundaries opens up the possibility of a session
linking attack [41, 47] by any third-party content embedded in that
site.

Finally, we consider breakage of essential web content to be a
threat, too. Availability has always been a critical component of
information security. If a storage policy prevents all cross-site and
cross-time third-party tracking perfectly but breaks any significant
amount of the web in the process, users will not tolerate the break-
age and will revert to policies that are vulnerable to one or more of
the other threats described above.

2.4 Deployed Stateful Tracking Defenses
With the exception of Google Chrome, all of today’s major web
browsers implement proactive user tracking defenses. These de-
fenses illustrate a range of possible trade-offs between privacy and
compatibility. All of them provide some degree of cross-site pro-
tection, preventing third-parties from using stored identifiers to
link browsing behavior across first-party sites. More aggressive de-
fenses also attempt cross-time protection, preventing third-parties
from using stored identifiers to link browsing behavior across visits
to the same first-party site. Note that these summaries do not cover
tracking defenses unrelated to third-party storage (e.g., third-party
content blocking, first-party storage lifetime restrictions, “bounce”
tracking defenses, fingerprinting defenses, etc.).

User tracking defenses can be decomposed into two indepen-
dent aspects: mechanism (i.e., how storage access is affected) and
policy (i.e., for what actors, under what conditions). Mechanisms
include altering the lifetime of third-party storage, partitioning it
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by first-party site context, or even blocking it entirely. Such de-
fense mechanisms can be applied to all third-party storage or to
a restricted subset of storage mechanisms (e.g., cookies vs. local
storage, HTTP Cookie headers vs. JS code). Defense policies may be
global, for all third-party domains; or selective, for third-party do-
mains classified as trackers based on a priori filter lists or dynamic
behavior analysis and scoring.

Microsoft Edge and classic Mozilla Firefox defenses have selec-
tively blocked third-party storage using Disconnect [3] to identify
known trackers, resulting in cross-site and -time protection only as
complete as the filter lists used. Firefox has since introduced1 a strict
“Total Cookie Protection” opt-in mode that partitions third-party
storage by first-party site context globally, providing comprehen-
sive cross-site protection.

Brave traditionally blocked all third-party storage globally, pro-
viding excellent cross-site and -time protection at the cost of re-
duced compatibility. Typical incompatibility issues for classic Brave
Shields were failures of stateful third-party widgets (e.g., a stock
history graph, or an interactive programming language interpreter
window) to load properly without third-party session cookies or
similar being accessible. Recently, Brave hasmoved to an ephemeral-
storage mechanism in which third-party storage is partitioned by
and prevented from outliving individual browsing sessions; this
approach retains most of the cross-site and -time protections of
blocking with improved compatibility.

Apple Safari’s “Intelligent Tracking Prevention” (ITP) defenses
have evolved significantly over time, shifting from selective enforce-
ment policy guided by local machine-learning of tracker identities
to global enforcement of a hybrid blocking/partitioning/lifespan-
shortening mechanism. While cross-site protection with good com-
patibility appears to be Apple’s principle goal, ITP’s most recent
iterations (e.g., flushing what little partitioned third-party storage
is allowed every browser restart) provides a good measure of cross-
time protection as well.

3 METHODOLOGY
We evaluate the privacy vs compatibility trade-offs illustrated by
four real or representative third-party storage policies by comparing
their tracking and compatibility performance during automated,
stateful crawls of popular web sites.

3.1 Stateful Crawl Methodology
3.1.1 Target URLs. We generated a seed list of URLs to visit in
parallel using a stateless pilot crawl of the Tranco 1k sites [38]. To
achieve depth and representative sampling of web content, we must
explore more than just the “landing page” of each site. But each of
our 8 parallel crawls must visit the same sequence of page URLs
to produce comparable results. Coordinating the link spidering
and selection process across parallel crawls introduces needless
engineering complexity. Our solution was to perform a stateless
pilot crawl using stock Chromium to visit the Tranco 1k sites’
landing pages and spider three links deep into the site structure.
This approach, using the 2020-08-13 Tranco list snapshot, produced
3,419 total deduplicated page URLs to visit.

1https://hacks.mozilla.org/2021/02/introducing-state-partitioning/

3.1.2 Policy Variants. We collect data using four distinct policy
variants.

Permissive: Allows all forms of third-party storage, as per Fig-
ure 1a. Stock Chrome behavior. Presumed to cause no breakage.
Blocking: Blocks all forms of third-party storage, as per Figure 1b.
Treats access as no-op. Known to cause some site breakage in the
wild; e.g., when third-party frames are unable to maintain session
state across multiple requests.
Site-keyed: Partitions persistent third-party storage by first-party
eTLD+1, as per Figure 1c. Similar to elements of classic Safari ITP
and Firefox’s newly-announced Total Cookie Protection. Expected
to match compatibility and cross-site tracking of page-length. In-
cluded to estimate residual potential for cross-time tracking under
partitioned storage within a given time window of persistence (in
our case, for the entire experiment).
Page-length: Isolates third-party storage in ephemeral partitions,
as per Figure 1d. Similar to recent Brave and Safari ITP policies.
Expected to show compatibility scores in line with the permissive
baseline and tracking protection scores in line with blocking.

It should be stressed that these experimental policies, despite deriva-
tion from and obvious relation to deployed real-world policies, are
intended as comparison points between archetypal approaches, not
between specific browser implementations.

3.1.3 Crawl Execution. We deployed two instances of each tested
policy to verify behavioral consistency and provide similarity-score
baselines (see Section 3.2.2). The crawlers maintained independent,
persistent user profiles for each policy instance to maintain state
across all sequential page visits. The main crawl was repeated once
(two iterations total) to provide data on cross-time tracking across
return visits. All crawls were performed in parallel and simulta-
neously from a single network vantage point. Each page visit was
performed in a freshly launched, non-headless (i.e., rendering to the
Xvfb headless display server) browser instance. Navigation was al-
lowed to time out after 30 seconds. Assuming no navigation timeout,
our crawlers waited for 30 seconds after the DOMcontentloaded
event (i.e., main document fetched and parsed but subresources
not fully loaded yet) before tearing down the browser instance. No
simulated user interactions were attempted.

3.1.4 PageGraph Instrumentation. We use PageGraph, an instru-
mentation system built into an experimental branch of Brave, to
record internal page behaviors. PageGraph patches the V8 JS engine
and the Blink HTML rendering engine to capture and annotate a
graph of eachHTML document’s DOM structure and the events that
constructed and modified it. Nodes represent entities such as DOM
elements, scripts, HTTP resources, storage mechanisms, and a se-
lective subset of builtin and DOM-provided JavaScript APIs. Edges
represent relationships between nodes such as DOM structures and
script interactions with DOM elements, DOM events, JavaScript
APIs, and HTTP requests. The set of non-structural edges in each
of these graphs constitute the dynamic behaviors of the originating
page. Behavioral-edge-set similarity can be quantified using Jaccard
index scores to provide a useful proxy for behavioral compatibility
among compared storage policies.

https://hacks.mozilla.org/2021/02/introducing-state-partitioning/
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3.2 Primary Evaluation Methodology
We evaluate our policies’ privacy and compatibility performance us-
ing full-scale quantitative stateful trackingmetrics, full-scale quanti-
tative site behavior similarity metrics, and randomly-sampled quali-
tative assessment of site breakage. All quantitative metrics analysis
focuses on third-party frames not flagged as advertising content.
First-party frames are loaded from the same eTLD+1 as the main
page URL (per the Public Suffix List [8]); all other frames are third-
party. Classification of ads relies on the community-maintained
EasyList [2]. The exclusion of first-party and advertising content
eliminates noise from our evaluation: first-party storage is not af-
fected by our experimental policy changes, and advertising content
is known to change frequently.

3.2.1 Quantitative Privacy Assessments.

Tracking Potential. The central metric we use to quantify poten-
tial for stateful cross-site and cross-time tracking by third-parties
is the potentially identifying cookie flow (PICF). A cookie flow is the
combination of an HTTP cookie and a third-party eTLD+1 receiving
that cookie. We consider cookie flows potentially identifying when
the values are at least eight (8) characters long and are globally
unique to a single browser profile during our stateful crawls. There
are other forms of third-party storage available (e.g., local storage),
and other channels by which identifying tokens can be transmitted
to third-parties (e.g., custom HTTP headers, query string parame-
ters). But we use cookies as our representative measure of stateful
tracking because they are unambiguous in structure, ubiquitous
as tracking IDs, and essentially unrestricted by stock Chrome, our
baseline. (Both our page-length storage and site-keyed implementa-
tions apply their storage policies to all forms of third-party storage,
not just cookies.)

Cross-Site Tracking. Identical PICFs seen across multiple distinct
top-level sites visited represent potential for cross-site tracking by
the associated third-party domain. We aggregate cross-site PICFs to
count the total number of top-level sites across which each distinct
third-party domain seen could have tracked our crawler profiles,
giving us summary scores of “cross-site trackability” by which to
compare all our storage policies. These scores can be visualized
using cumulative sum curves, as shown in Section 4.2.

Cross-Time Tracking. PICFs seen on a given top-level site across
multiple pages/crawls represent potential for cross-time, or visit-
to-visit, tracking by a given third-party domain. We aggregate
cross-time PICFs to count the total number of third-party domains
which could have tracked our crawler profiles for each distinct top-
level site domain visited, giving us summary scores of “cross-time
trackability” by which to compare all our storage policies. These
scores can be visualized using cumulative sum curves, as shown in
Section 4.3.

3.2.2 Quantitative Compatibility Assessment.
We assess site compatibility across storage policies using a quan-
tifiable proxy measure: similarity of internal page behaviors as
reported by PageGraph. Our insight is to presume no storage-based
breakage for permissive profiles and some unknown (but non-zero)
amount of breakage on blocking profiles. If alternative policy (e.g.,

page-length storage) profiles produce content behaviors more simi-
lar to the permissive baseline than do the blocking profiles, then
the alternate policy is less likely than blocking to cause breakage.

We model and compare content behaviors using the set of non-
structural (i.e., action or event) edges in PageGraph representations
of relevant frames. Similarity between edge sets can be measured
using the Jaccard index: 𝐽 (𝐴, 𝐵) = |𝐴∩𝐵 |

|𝐴∪𝐵 | . Index scores range from
0 (no intersection) to 1 (equality). We consider the score undefined
when both sets are empty.

We compare content behaviors across identical frames loaded
on identical pages across all tested policies. Frames and pages are
identified and matched by full URL. The similarity score of the two
permissive profiles provides the compatibility baseline: the pre-
sumed best-possible similarity score for that frame/page instance.
The other profiles are each compared with a single permissive pro-
file to provide similarity scores to compare against the baseline.
The cumulative sum of all frame/page instance similarity scores for
each profile can be visualized to show which policies track closest
to the baseline across all visited pages (see Section 4.4).

We optimized the set of PageGraph node types included in our
behavioral sets to maximize the distance between blocking pol-
icy scores and the permissive baseline score. Our intuition is that
the baseline score provides a threshold of “reasonable” behavioral
differences between two different instances of the same content
loaded in different browsers at about the same time. The farther
away from this baseline a policy scores, the greater the likelihood
of unreasonable, or breaking, differences in behavior.

We identified 11 PageGraph node types relevant to behavioral
analysis, a set small enough to be amenable to brute force optimiza-
tion across its power set. Optimization relied on a random sample
of 100 frame/site instances extracted from a preliminary full-scale
crawl dataset, whose unoptimized similarity curves matched those
of the entire data set, indicating a representative sampling. On this
data subset we tested the blocking separation from the permissive
baseline for every subset of relevant PageGraph node types. The re-
sults confirmed our intuition that the least helpful node types were
structural elements like HTML elements and DOM text blocks; less
intuitively, they also showed that PageGraph’s set of instrumented
DOM manipulation JavaScript APIs was similarly unhelpful. The
final optimal node type set comprised scripts and PageGraph’s se-
lected JavaScript builtin APIs (e.g., date functions), HTTP resources,
frame structures (DOM roots and frame-owning elements), and stor-
age mechanisms (cookie jars, local and session storage buckets).
Only edges (i.e., behaviors) linking these node types are included
in the behavior similarity results presented in Section 4.4.

3.2.3 Qualitative Compatibility Assessment.
We further augment our quantitative assessment of site compatibil-
ity with blindedmulti-grader manual analysis for website breakages
within a random sample of sites loading popular third-party content.
To select the URLs for this, we sorted third-party, non-ad-blocked
frame URLs within our crawl dataset by the harmonic mean of the
number of pages embedding that frame and the number of third-
party cookies set for the frame’s eTLD+1. This metric is higher for
frames which appear on a large number of sites and have access
to a large number of cookies. We selected the top 10 frame URLs
with distinct eTLD+1s while filtering out frames appearing only
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on non-English sites, and frames without a content type of HTML
or JavaScript. We randomly selected 10 candidate page URLs for
each frame URL from the prior step, resulting in a total of 100
candidate URLs. We adopted a holistic approach to evaluate break-
age rather than simply observing the behavior of the target frame,
since a number of frames did not have real-estate presence on the
webpage.

Our grading methodology is derived from a similar experiment
by Snyder et al. [45]. We had two graders evaluate the policy vari-
ants in Section 3.1.2 for each candidate URL. We recruited a pool of
five graders, each with background in web security. This resulted
in each grader being assigned two blocks of 20 URLS, with no block
pair graded by the same grader pair. The graders would visit a URL
first with a permissive profile, the Chrome default. This visit is
our control visit, followed by a visit to the same URL with each of
the site-keyed, page-length, and blocking profiles. Every visit was
with a fresh browser profile to ensure stateless browsing between
tests/visits. Subsequent visits to the candidate URL after the control
visit were randomly coded to eliminate grader bias. Graders were
further instructed grade no more than 10 URLs in a single session
to avoid fatigue.

In our holistic approach, each grader performed as many inter-
active actions on the URL within one minute, the average dwelling
time for a typical web-user on a website [29]. Each grader followed
a checklist of tasks to perform on the site (Appendix B).

After the visit to the URL, graders scored each coded profile visit
a score of 1 if the visit did not have any perceptible deviations
from the control; 2 if there were some deviations from the control
visit, but without any hindrance to their visiting experience or
the tasks attempted on the site; and 3 if the visit had significant
deviations from the control, preventing the graders from replicating
their control visit activities.

Due to the highly subjective nature of the evaluation scheme,
our graders evaluated the candidate URLs independently, unaware
of the other grader’s scores. Our graders had a high agreement
percentage (94.67%). We also computed the Cohen’s Kappa inter-
rater reliability statistic [22] as 0.64, showing statistically substantial
agreement between our graders [31]. We present the results of our
manual evaluation in Section 4.5.

4 RESULTS
4.1 Stateful Crawl Statistics
Our stateful web crawls ran from September 12-16 2020 on a single
Linux virtual machine (40 VCPUs, 100GiB RAM). Combined, the
crawls visited 27,352 total pages using 8 user profiles and produced
280,219 PageGraph files (405 GB).

Error rates (Appendix A, Figure 5) were acceptable if somewhat
amplified by PageGraph internal consistency assertion failures. Er-
rors in this case refer not to page breakage but to hard failures
of the crawl itself, such as a network timeout or browser crash.
PageGraph’s instrumentation is expansive and tracks complex in-
teractions between JavaScript execution, DOM manipulation, and
network traffic. Whenever unexpected corner cases (or bugs) pre-
vent it from establishing unambiguous context for an event or ac-
tivity, PageGraph logs the issue and terminates the browser rather
than recording unreliable data.
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Figure 2: Of our tested policies, all but permissive essentially
eliminated stateful cross-site tracking potential.
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Figure 3: Our page-length policy significantly outperforms
both permissive and site-keyed policies at reducing cross-
time tracking potential.

4.2 Privacy: Cross-Site Tracking Potential
Page-length storage eliminates stateful cross-site tracking as ef-
fectively as does blocking, as seen in Figure 2. The cumulative
sum curves show the aggregate counts of sites across which third-
parties could track users under different policies, calculated using
the tracking-potential heuristics described in Section 3.2.1. Page-
length, site-keyed, and blocking policies are roughly equal at pre-
venting stateful cross-site tracking. This result is logical and unsur-
prising: if third-party storage is not available (or is partitioned by
first-party site, or is strictly ephemeral), it cannot be used to pass
identifying state across site boundaries.
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Figure 4: Our page-length policy produces page behaviors
within third-party frames much closer to the permissive
baseline than does the breakage-prone blocking policy.

4.3 Privacy: Cross-Time Tracking Potential
Page-length storage also eliminates stateful cross-time tracking
as effectively as does full third-party storage blocking, a signifi-
cant improvement over site-keyed storage (Figure 3). These curves
show cumulative counts of third-parties which could longitudinally
track return visitors across the Tranco 1k sites, as described in
Section 3.2.1. Unsurprisingly, permissive policy allows the most
cross-time tracking, as cross-site tracking ability implies cross-time
tracking ability. If persistent third-party storage, even when parti-
tioned by first-party site context, is still accessible on repeat visits,
cross-time tracking is possible. Thus, page-length and blocking
policies both provide stronger cross-time tracking protection than
site-keyed policy can.

We additionally considered local storage as a medium for stateful
cross-time trackability, to better consider the cross-time tracking
vulnerability of defenses which block third-party cookies but al-
low partitioned third-party local storage. Here we apply our PICF
extraction workflow to values written-to and read-from local stor-
age in third-party frame context, dubbed potentially identifying
token sources (PITS). We found that local storage PITS are signif-
icantly less frequent than PICFs across our dataset globally, but
they are about equally common under site-keyed as they are under
permissive, given an experiment-long time window of partitioned
storage persistence (Appendix A, Figure 6). We conclude that strong
constraints even on partitioned third-party storage lifetime (i.e.,
page-length rather than browser-lifetime length) are a good first-
principle approach for eliminating cross-time tracking.

4.4 Compatibility: Quantitative Assessment
Page-length storage produces page behaviors much closer to the
permissive policy baseline than does full third-party storage block-
ing, as shown in Figure 4. These curves show cumulative sums of
similarity scores between one of our permissive crawl profiles and
all other profiles, normalized to show 1.0 as the maximum possible

Profile Total
Deviations

Severe
Deviations

Site-keyed 7 1
Page-length 8 1
Blocking 10 2

Table 1: Candidate URL deviations as assesses by holistic
manual grading (n=100)

score (perfect similarity on all instances). The curve showing the
similarity scores between the two permissive profiles provides a
baseline (i.e., the best scores observed). All pairs of same-policy
curves show extremely high consistency. While even the baseline
falls short of perfect similarity, there is a clear signal in the group-
ing of policies. The blocking policies produced the curves farthest
from the baseline, as expected, well isolated from all the other poli-
cies. The non-blocking policies (site-keyed and page-length) both
produced curves much closer to the baseline than to blocking. The
stark separation of curves strongly suggests that the non-blocking
policies induce significantly less overall deviation from “normal”
behavior (and thus less breakage) than does blocking.

4.5 Compatibility: Qualitative Assessment
Our evaluation showed that, concerning qualitative end-user expe-
rience, the page-length profile performed reliably better than the
blocking profile. As described in Section 3.2.3, we had two distinct
graders independently perform manual evaluation for each of the
three profiles: site-keyed, page-length, and blocking to assess each
policy’s potential for breaking sites on the 100 candidate URLs. The
graders independently graded each candidate site on a scale of 1
to 3 for each of the three profiles to find any deviations from our
control profile, permissive (the Chrome default). We conservatively
considered deviation from the control visit as a form of breakage,
resulting in a score > 1. We summarize the instances of graded
breakage for each profile in Table 1.

Of the 10 deviations observed for the blocking profile, the page-
length profile either scored a similar (6 cases) or improved (4 cases)
raw score. For the 7 deviations for site-keyed profile, the page-
length profile scored equal (4 cases) or better (3 cases). We tried
to reproduce the reported deviations on subsequent visits later on
by ourselves and could not do so. When we further explored for
severe deviations (cases where graders scored a 3) there was a single
case where the grader reported severe deviation on the website
for blocking profile, and both page-length and site-keyed scores
indicated no deviations. All other severe deviations were reported
on a single URL across all three profiles due to a webpage crash,
which after further debugging we concluded that it did not stem
from our changes within the browser and did not overlap with the
cookie-policy.

5 DISCUSSION
Limitations. Our quantitative assessments of tracking and com-
patibility are subject to the limitations and risks of automated web
crawls.While the scale of our crawl is modest, we believe the Tranco
1k provides a realistic sample of popular, mainstream web content
and thus meets our evaluation needs. Spidering 3 links deep past
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landing pages likewise provides reasonable sampling of site content
without exhausting our time and space budget, as PageGraph can
generate large volumes of data per page. All our crawlers were
stateful and non-headless, giving them a fair chance at evading the
most trivial forms of bot detection. More sophisticated bot detec-
tion depending on “human” interactions with page content should
treat all profiles identically. We thus believe that whatever impact
bot detection had on our crawlers, it would have affected all our
profiles similarly and not significantly skewed our results.
Implications. While all of our non-baseline policies did well at
blocking potential cross-site tracking, page-length was clearly the
winner at blocking cross-time tracking as well. Though cross-time
tracking presents a subtler threat than cross-site tracking, we note
that the latest Safari ITP and Brave Shields take an aggressive
stance at limiting the time for which third-party storage is retained
(if allowed in the first place). This convergence is not accidental:
limiting the lifespan, not just the cross-site accessibility, of third-
party storage appears essential to preserving user privacy.

We saw that page-length performed about as well as site-keyed
on our quantitative compatibility estimates, suggesting that the
availability of functional storage is more important to user-facing
compatibility than its longevity. In part this may be necessity: after
all, third-party widgets have to work the first time the user visits a
page, not just when they return.

Our manual, qualitative compatibility evaluation, while limited
in scope by the labor-intensive nature of the work, produced some
suggestive results. We saw generally low rates of reported break-
age, with correlation to policy fairly inconclusive. To some extent
this inconclusive correlation may simply reflect the intersection
of a small sample with limited interactions (e.g., no logins) and
inevitable human inconsistencies. It surely also reflects a key differ-
ence between our quantitative and qualitative methodologies: the
human graders were explicitly looking for unambiguous “break-
age” as a user-visible phenomenon, while our quantitative metrics
were instead measuring behavioral deviations from a known-good
baseline to provide a heuristic upper-bound for possible breakage.
But it may also reflect an evolution of third-party web publishers
practices away from simply assuming that third-party storage (per-
sistent or not!) is available. The fact that our manual assessment
was performed some months after the initial data collection, after
several browser vendors had announced new and improved stateful
tracking protections, lends some credence to this hopeful view.

6 RELATEDWORK

Stateful User Tracking. Storage-based (“stateful”, cookie-based)
user tracking has been extensively studied since seminal work by
Mayer andMitchell [30] and Roesner et al. [40]. In subsequent years,
large-scale, high-impact measurement studies of third-party track-
ing reported emerging threats like cookie syncing [9], quantified
the breadth of cookie tracking across popular sites [28], and in-
troduced widely used measurement frameworks adopted by much
subsequent work [17]. Recent work continues to identify evolv-
ing and emerging stateful tracking threats in the areas of mobile
web tracking [48], pixel tracking [19], and cross-device tracking
correlation [50].

Cookie Syncing & Other State Transfers. Third-parties can
collude to share stored user tracking identifiers and expand their
tracking scope via cookie syncing, first measured in depth by Olejnik
et al. [34] and more recently studied by Papadopoulos et al. [36, 37].
Our definition of potentially identifying cookie flows shares sim-
ilarities with Falahrastegar et al.’s methods for measuring dis-
tinctive personal identifiers and the entities sharing them across
the web [18]. Tracking identifiers can be passed across first-party
domains using means other than stored state, as illustrated by
Stopczynski et al.’s study of attempts to subvert Safari ITP in the
wild [46].
Browser Fingerprinting. Measurements of and defenses against
stateless tracking via “fingerprinting” have constituted a major
category of web privacy research in the years since the seminal
Panoptoclick project [16]. Fingerprinting was found to be more
common in the wild than first thought [10] and often enabled by
new, emerging technologies [27, 33]. More recent works [20, 39]
have made conflicting claims about the efficacy of Panoptoclick-
style fingerprinting in the wild, leaving its current threat status
somewhat ambiguous.
Content Blocking. As most ad and tracker blocking currently
depends by filter lists, filter list assessments, improvements, and
alternatives are a popular research area [21] in which the Page-
Graph instrumentation system has been used effectively [14, 24, 44].
Alternatives to blocking content, such as isolatedmulti-account con-
tainers, have also been proposed and compared against traditional
ad blockers [23].
Browser Policies & Mechanisms. Potential use (and evasion) of
third-party storage blocking was discussed [25] before the era of
modern tracking research. Subsequent work has included sophisti-
cated policy enforcement prototype systems [12, 35] and practical
fingerprinting countermeasures [26, 32]. Yu et al. described an ele-
gantly generalized approach to tracking prevention at the data flow
level using 𝑘-Anonymity, deployed in the privacy-focused Cliqz
browser [49]. Our approach to quantifying tracking potential is
loosely inspired by this data flow approach to defining privacy.

7 CONCLUSION
The days of the lose-lose dilemma presented to browser developers
by third-party storage—maintain the status quo and enable mass
user tracking, or block storage access and break a significant part
of the useful web—may be numbered. The combination of cross-
site partitioning and cross-time limiting or purging of third-party
storage data appears to be effective, both at protecting user privacy
(both cross-site and cross-time) and at maintaining compatibility
with benign legacy content. We share our contributions with the
browser research and development community: the design of our
metrics for comparing the privacy and compatibility impact of stor-
age policy changes; our instrumentation platform, made available
as open source patches to Chromium (atop Brave’s PageGraph),
our automated and manual results presented in this work, and the
complete automated crawl dataset.
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Appendices

A SUPPLEMENTARY FIGURES
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Figure 5: Crawl success rate varied modestly across policies
but was always reasonably high.
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Figure 6: Potential use of local storage state for cross-time
tracking is much lower than use of cookies, but nearly as
frequent under persistent partitioning as under permissive.

B GRADER TASK CHECKLIST FOR MANUAL
EVALUATION
• Scroll the page, are there any obvious portions that did not
load and/or break?

• Are ads loaded, can you click on them? Do they behave as
expected (redirect to the ad source/provider?)

• Is there an embedded video? Can you play/stream it?

• Is there any embedded social media (Facebook, twitter, Insta-
gram, TikTok) content? Can you click them? Do they take
you to the source site?

• Is this a news or media portal site? Then ...
– Can you search for articles using the search box (if present)?
– Are there social media share buttons? Do they work as
expected?

– Are there newsletter sign-up forms/pop-ups? Can you
submit them (do not use personal info)?

• Is this a e-commerce site? Then ...
– Can you search for a product using the search box (if any)?
– Can you add product to your cart and initiate checkout
(do not use personal info)?
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