
JSHint: Revealing API Usage to Improve
Detection of Malicious JavaScript

Shaown Sarker1[0009−0000−6700−5824], Kasimir Schulz1[0009−0007−6039−5883],
Aleksandr Nahapetyan1[0009−0001−3759−993X], Anupam

Das1[0000−0002−8961−9963], and
Alexandros Kapravelos1[0000−0002−8839−8521]

North Carolina State University, Raleigh NC 27695, USA
{ssarker,krschulz,anahape,anupam.das,akaprav}@ncsu.edu

Abstract. In the modern web, JavaScript (JS) provides dynamic behav-
ior and, at the same time, is often used by malicious actors for a wide
range of attacks such as drive-by-downloads, malicious payload delivery,
ransomware, cryptojacking, and phishing. Malicious actors leverage JS
obfuscation to obscure the original intention of the source code by hiding
the API usages and evading existing detection systems. In this paper, we
present a subtree evaluation-based system named JSHint, that focuses
on the recovery of API usage in obfuscated JS scripts. We demonstrate
that introducing obfuscation using off-the-shelf tools to JS source code
significantly hides the standard API usage, and after being restored by
JSHint almost complete recovery of API usages is achieved, with averages
as high as 95.06%. We further demonstrate that introducing obfuscation
to malicious JS source code makes them evasive - by generating false
negatives as high as 9.30%. Through API usage restoration by JSHint,
we can defeat these evasions significantly - up to 94.97% of the false
negatives are converted back into true positives.

1 Introduction

JavaScript (JS) is the most popular scripting language in the current web ecosys-
tem and provides dynamic behaviors to complement and augment the static
nature of HTML & CSS. JavaScript obfuscation is the process of making a JS
source code unintelligible while keeping the functionality of the source intact.
Because of JavaScript’s widespread popularity and dynamic nature, it is also the
choice of malicious actors for carrying out attacks on the web at scale. To increase
the efficacy of their attacks, malicious actors further combine JS obfuscation to
their JS-based malware to evade detection systems. A recent malicious JS injec-
tion [28] attack, which employed obfuscation, was discovered on 51k websites,
many of which belong to the Tranco 1 top domain list, where the attacker redi-
rects victims to malicious content such as adware and scam pages by inserting
obfuscated malicious JS in multiple stages.
1 https://tranco-list.eu/

https://tranco-list.eu/

Due to its capabilities for obscuring the original intention of the JS source
code, malicious actors have long used JS obfuscation for various malicious web
activities [19,14,21]. Researchers have treated JS obfuscation as a footprint of
malicious activity and attempted to detect JS-based malware with JS obfus-
cation instead of removing it [21,6,18,35,12,2,23,20,7,13]. Previous research has
shown that, even with the negative connotation of obfuscation, it is widely used
across the web - almost 96% of the top Alexa 2 100k domains contain at least
one JS script with some form of obfuscation [33,34]. The hiding of the original
intention of the source is achieved through transforming the logic of the orig-
inal source and/or hiding the standard API usage, which makes it harder to
understand the effect of the source on the underlying system.

Despite the fact that JS code obfuscation is a common practice on the modern
web [33,34], and many tools [15,36,30,3,9,17] are available for applying obfus-
cation to JS code, there is a scarcity of effective JS systems that can remove
obfuscation, specifically from the API usages. JSDES [1] attempted to deobfus-
cate automatically by first identifying a set of obfuscated functions in the JS
source code manually and then tracing the functions capable of generating code
dynamically within the previously collected obfuscated functions set and simu-
lating their execution to have deobfuscated code. This approach is limited by
the manual collection of obfuscated functions set and can only be applied to ob-
fuscation present at the function level. Lu et al. proposed a semantic approach
for automated simplification of JS obfuscated code that relies on dynamic anal-
ysis followed by program slicing [25]. However, due to the reliance on expensive
dynamic analysis for obfuscation removal, their system is not able to perform
obfuscation removal statically. Similarly, there were attempts made to create a
rule-based deobfuscator to rewrite obfuscated JS source code, such as Maude [5],
but such systems are also not feasible due to the limitations of the said obfus-
cation rules and not being able to handle more complex obfuscation techniques
readily available today.

To bridge this gap between the availability of readily accessible obfuscation
tools that obscure standard API usages and the scarcity of usable deobfuscation
systems that can uncover them properly, we present JSHint, a deobfuscation
system specifically focuses on API usage recovery. JSHint is built using existing
tools, does not rely on complex dynamic analysis, or requires previously curated
data. The main principle of JSHint is to find the most minimal subtree in the
JS source code’s abstract syntax tree (AST), which we can evaluate successfully
to a primitive type to remove the obfuscation and subsequently propagate that
evaluation throughout the rest of the tree. We iterate this evaluation process
over multiple passes to achieve the maximum obfuscation removal and API usage
recovery.

We achieve this by extending the current AST-based scope management sys-
tem to include precise scope tracking, taint analysis, and object modification
tracking. This enables us to perform partial safe evaluations of the AST sub-
trees, including complex expressions such as function calls, runtime array access

2 https://aws.amazon.com/alexa-top-sites/

2

https://aws.amazon.com/alexa-top-sites/

expressions, and object member expressions, and propagate the results of a suc-
cessful evaluation throughout successive evaluations. We maintain a dynamic
scope that we update throughout the evaluation pass over the subtrees to reflect
the current state of the source code at each node and a persistent scope in be-
tween evaluation passes. This meticulous scope tracking enables us to perform
safe evaluations without resulting in an inconsistent state during our deobfus-
cation process. Thus, we restore the original intention of the script by removing
obfuscation from standard API usage.

To evaluate JSHint, we introduce obfuscation to a curated set of JS samples
using a readily available JS obfuscation tool with three gradually complex obfus-
cation profiles and then processing the obfuscated code through JSHint. Using
a standard API usage recovery metric, we demonstrate that application of ob-
fuscation from this off-the-shelf obfuscation tool results in only 34.77%, 31.04%,
and 31.34% of original standard API usages being recoverable from the obfus-
cated code for the three profiles, whereas JSHint can restore the standard API
usages almost perfectly with averages of 95.06%, 93.92%, and 94.38% for the
same three obfuscation profiles. Additionally, we compare JSHint against two
existing deobfuscation systems and demonstrate that JSHint performs better
when it comes to removing obfuscation from API usages.

Furthermore, we display the evasive power of JS obfuscation by introduc-
ing obfuscation to a collected set of malicious JS samples and classifying them
through a state-of-the-art malicious JS classifier trained on the original ver-
sions of the malicious scripts. Our results show that the obfuscated scripts can
achieve evasion rates as high as 9.30%. After performing API usage recovery
using JSHint, we can classify up to 94.97% of these evasions correctly, again
defeating the evasion introduced through obfuscation. We list the major contri-
butions of this paper as follows:

– We present JSHint, an efficient system for recovering API usage by updat-
ing the Abstract Syntax Tree (AST) through subtree evaluation to primitive
literal types. We plan to eventually make JSHint available to the research
community (either by open-sourcing it, or by making it available as a ser-
vice).

– We demonstrate the power of obfuscation by applying obfuscation on a set of
JS samples, which significantly obscures the standard API usage. JSHint re-
stored almost all standard API usage in the original script. We also compare
JSHint against existing off-the-shelf deobfuscation systems and display that
our system outperforms the competitors in terms of restoring API usage in
the scripts.

– We further display that introducing obfuscation to malicious JS can make
them evasive to a state-of-the-art AST-based malicious JS classifier trained
on the original versions of the JS samples, resulting in evasions through false
negative rates as high as 9.30%. Finally, JSHint is capable of defeating up
to 94.97% of these evasions after restoring the API usages in the obfuscated
scripts.

3

2 Background

Besides protecting code, JS obfuscation is used to evade detection [6,7,13,18],
and researchers consider JS script obfuscation as an indicator of malicious-
ness [2,12,20,23,35]. With the readily available off-the-shelf JS obfuscation tools,
it is even easier for malicious actors to use JS obfuscation for evasive maneuvers.
In this section, we present a brief overview of JS obfuscation techniques and the
available off-the-shelf obfuscation tools.

2.1 Obfuscation Techniques

Based on prior research into JS obfuscation techniques and available JS obfus-
cation tools [27], we can categorize JS obfuscation techniques into four major
categories.
Identifier & whitespace Randomization. Randomization can be applied to
identifiers (renaming variables and function names randomly) as well as white-
space in source code (random white-space insertions/deletions). This preserves
the semantics and logical flow of the source code and makes it harder to debug
and comprehend the intention.
String manipulation. Obscuring the readable strings can be greatly evasive.
The techniques used for this include splitting a string into multiple sub-strings,
concocting a string from char codes, and encoding a string to non-readable forms.
Structural transformation techniques. This includes two major types: string
array manipulation and control-flow flattening. The string array manipulation
involves invoking all function calls and member expressions in the script source
indirectly through a lookup table and/or an accessor function [33]. In control
flow flattening, it takes all the basic blocks in the code, which include function
declarations, iterative expressions, and conditional branches, and pushes these
blocks inside a global single infinite iterative block with a switch statement which
determines the execution flow of the program. Unlike randomization, structural
transformation often modifies the entire source structure significantly in an ir-
reversible manner.
Code protection techniques. Code protection includes injection code that
disables the debugger and the console from the runtime environment and injects
dead code never executed during runtime. Although code protection techniques
introduce new source code, unlike structural transformation techniques, these
do not necessarily modify the code in a unidirectional manner.

2.2 Obfuscation Tools

We conducted a small survey of readily available obfuscation tools and their
obfuscation techniques in Table 1. We considered five off-the-shelf JS obfus-
cation tools: obfuscator.io [15], javascript-obfuscator [17], gnirts [3], jfogs [36],
jsobfu [30] in our survey. Among these, obfuscator.io [15], gnirts [3], jfogs [36]
are available as npm packages, jsobfu [30] is ruby-based and available as a gem

4

Table 1. Survey of off-the-shelf obfuscation tools available online with their capabilities

Obfuscation
Techniques ob

fu
sc
at
or
.io

ja
va
sc
rip

t-o
bf
us
ca
to
r

gn
irt
s

jfo
gs

jso
bf
u

Split strings 3 7 3 7 7

Concatenate strings 7 7 3 7 3

Encode strings 3 3 3 7 3

String array 3 7 7 3 7

Identifier renaming 3 3 7 3 3

Control flow flattening 3 7 7 7 7

Anti-debugger code injection 3 7 7 7 7

Dead code injection 3 7 7 7 7

Disable console code injection 3 7 7 7 7

package, and javascript-obfuscator [17] is available as a MS Windows ap-
plication and a web portal. We excluded obsolete tools like daft-logic [9] from
the survey 3. Given the popularity 4 and feature richness of obfuscator.io, we
used this tool for our purposes in this paper.

2.3 Limitations of Deobfuscation Tools

Although JS obfuscation tools are easily available, JS deobfuscation tools are
however considerably rare. In JSDES [1] manually finds suspect obfuscation func-
tions and then deobfuscates by simulating their execution behavior. This requires
manual effort and is limited to function-level obfuscation only. Lu et al. [25] used
dynamic analysis and program slicing techniques to simplify JS source code and
remove obfuscation. However, such approaches require expensive dynamic anal-
ysis (the authors used Mozilla’s SpiderMonkey interpreter) and suffer from very
low code coverage. Rule-based JS transformers such as Maude [5] are limited by
the set of rules they depend on and are not capable of handling the more complex
obfuscation techniques mentioned above.

3 Deobfuscating API Usages

In this section, we present JSHint, a subtree evaluation-based system that recov-
ers JS API usages without depending on any predefined set of rules or function
evaluations. Our system’s goal is to recover obfuscated primitive literal type in-
formation (string, number, boolean, or null) and thus also restore standard API
usages.
3 The daft-logic obfuscator was last updated in 2009
4 The obfuscator.io npm package weekly downloads exceed 100k

5

3.1 Design Principle

The goal of JSHint is to find the most minimal subtree in the Abstract Syntax
Tree (AST) of the JS source code that we can evaluate successfully to a prim-
itive type. We begin by extracting the AST from the JS source code and then
extracting the scope information from the AST. We begin our multiple passes
over the AST with a subtree evaluation pass starting at the root. We traverse the
AST in a top-down manner. At each node, we attempt to evaluate the subtree
rooted at the node using a concocted evaluation environment. We replace the
original subtree with the evaluation result upon a successful evaluation. After
all evaluation passes are complete or there are no more updates to be done, we
generate the deobfuscated version of the original from the updated AST.

3.2 Code Evaluation

We used MetaES [26] for our lightweight JS code evaluation purposes. MetaES is
a meta-circular interpreter since it is in the same language it interprets, which
supports ECMAScript5.1+ and both JS code snippets and AST. See Listing 1.1
and 1.2, for examples of evaluation of a simple JS snippet in both source and
AST form.

1 let res;
2 let environment = { values: { a: 2 } };
3 metaesEval("a*2",
4 val => {res = val},
5 console.error,
6 environment);

Listing 1.1. MetaES evaluation of snippet, res contains 4

1 let res;
2 let environment = { values: { a: 2 } };
3 metaesEval(
4 {
5 type: "BinaryExpression",
6 operator: "*",
7 left: {
8 type: "Identifier",
9 name: a,

10 raw: "2"
11 },
12 right: {
13 type: "Literal",
14 value: 2,
15 raw: "2"
16 }
17 },
18 val => {res = val},
19 console.error,

6

20 environment);

Listing 1.2. MetaES evaluation of AST, res contains 4

3.3 Extending escope

Code evaluation requires a scope containing the required variable and function
values. We selected the widely used scope analyzer tool escope [11] part of the
estools toolchain5 for this purpose. However, escope has three major limitations.
First, escope lacks of any tracing for passed-in parameter values or arguments
in a function call expression. Second, escope has very little taint tracking ca-
pabilities, specifically in cases for variable reassignment and declaration using
another variable. Finally, escope does not track modifications to an object in the
current scope through function calls or member expression assignments. We ex-
tended escope with the following additional features for these three limitations
and named it kscope, which is fully compatible with existing escope code.
Precise scope tracking. escope lacks any tracing for passed-in parameter
values or arguments in a function call expression. In kscopewe solve this by
extracting and categorizing all possible scopes into four types in order of their
hierarchy - global, function, iteration, and block. The global scope nests all other
scopes and all nested scopes inherit from the global scope. A function scope
begins with a function declaration (named functions) or a function expression
(anonymous functions). Iteration scopes are initialized with an iterative node
(for, for...in, for...of, while, and do...while statements), and includes
the variables initialized and incremented (if any) in the iteration statements.
Finally, block scope is initiated when we encounter other statement blocks that
maintain their own lexical scope through variable declarators - let and const.
All scopes are aware of the parent scope and inherit from it. However, we had
to take extra caution for a variable declared through var. Since such variables
are part of the global scope despite being declared inside a non-global scope,
we propagate such variables through the parent scopes till we reach the global
scope in kscope.
Taint analysis. escope has very little variable taint tracking capabilities. Since
we require the most updated current values within our scope, kscope includes
taint analysis for both variables and function names. kscope simply achieves this
by marking variables and function names as tainted upon being declared again
or being assigned to a new value within the scope of the original. kscope further
propagates the taint flag when a variable or function name is assigned a value
and then reassigned to another variable or function name by marking the latter
variable or function name as tainted.
Object modification tracking. escopedoes not include any ability to track
modifications to a scoped object modified through function calls or member
expression assignments. kscope tracks whether an object has potentially been

5 https://github.com/estools

7

https://github.com/estools

changed through a function call (a reference of the object passed to a func-
tion and then modified within the function body) and/or a member expression
invocation or assignment (e.g., calling push on an array object).

3.4 Implementating JSHint

With MetaES and kscope, we start the subtree evaluation process as detailed
in 3.1. Given an (obfuscated) script, we extract the AST of the source code using
esprima, and gather scope information from the AST using kscope. We then
make a predetermined number of evaluation passes beginning with the AST root.
We traverse the AST using estraverse during each pass. We perform several
scope management tasks during this traversal and attempt subtree evaluations
whenever applicable. After each successful evaluation, we extract the evaluation
result’s AST and replace the evaluated subtree’s original node with this AST.
After all the passes are completed or no more updates are possible, we generate
the resultant code from the modified AST using escodegen.

3.5 Deobfuscation Case Study

Listing 1.3 displays a piece of malicious code snippet that initiates an XHR
request for a malware payload, which upon delivery executes on the page using
the notorious eval function.

1 var xhr = new XMLHttpRequest();
2 xhr.open('GET', '//onongo.info/?XXwIxqOa=AVZBQQd'+
3 // Removed for brevity
4 'Ak8AG1wKGjNnTUk=');
5 xhr.withCredentials = true;
6 xhr.onload = function() {
7 var ref = document.referrer;
8 eval(xhr.responseText);
9 };

10 xhr.send();

Listing 1.3. Malicious JS script executing payload

Using the obfuscator.io tool, we introduced identifier randomizing, unicode
escape sequences, and structural manipulation. The obfuscated source is shown
in listing 1.4. This obfuscates all standard API usages on the XMLHttpRequest
object including the malicious payload URL.

1 function _0x3ee3() {
2 var _0x3eb75e = [
3 'open', 'nfo/?XXwIx', 'ddFQBSFk0G', 'ElcEGwVQRQ' /* Removed for

↪→ brevity */];
4 _0x3ee3 = function() {
5 return _0x3eb75e;
6 };
7 return _0x3ee3();

8

8 }
9 var _0x4a01dc = _0x5a7b,

10 xhr = new XMLHttpRequest();
11

12 function _0x5a7b(_0x5a0000, _0xae3f87) {
13 var _0x8213bb = _0x3ee3();
14 return _0x5a7b = function(_0x29901f, _0x559179) {
15 // Removed for brevity
16 }, _0x5a7b(_0x5a0000, _0xae3f87);
17 }
18 xhr[_0x4a01dc(0x0)]('GET',
19 '//onongo.i' + _0x4a01dc(0x1) + 'qOa=AVZBQQ' /* Removed for brevity*/] =

↪→ !![],
20 xhr[_0x4a01dc(0xa)] = function() {
21 var _0x574bfa = _0x4a01dc,
22 _0xae3f87 = document[_0x574bfa(0xb)];
23 eval(xhr[_0x574bfa(0xc) + 'xt']);
24 }, xhr['send']();

Listing 1.4. Previous sample obfuscated with identifier randomization, unicode escape
sequence, and string array techniques by the obfuscator.io tool

We applied our system to the obfuscated script with five evaluation passes.
The resultant script in listing 1.5 has all standard API usages restored on the
xhr object and the malicious payload URL.

1 // Redacting redundant dead structures for brevity
2 xhr['open']('GET', '//onongo.info/?'+ /* Removed for brevity

↪→ */'FpJAk8AG1wKGjNnTUk='),
3 xhr['withCredentials'] = !![],
4 xhr['onload'] = function () {
5 var _0x574bfa = _0x4a01dc,
6 _0xae3f87 = document['referrer'];
7 eval(xhr['responseText']);
8 }, xhr['send']();

Listing 1.5. After removing obfuscation through the subtree deobfuscator

4 Evaluation

We evaluate JSHint from two perspectives: correctness of the resultant script and
restoration of API usages. Since we focus on evasive JS malware, we constructed
a set of malicious JS samples and introduced obfuscation using an off-the-shelf
tool. Then we applied JSHint on the obfuscated scripts and measured both the
syntax correctness and the API restoration capabilities.

We compiled a set of total 3,755 malicious JS samples consisting of 3,563 sam-
ples from VirusTotal 6 and 192 samples from the GitHub repository from HynekPe-
6 https://www.virustotal.com/

9

https://www.virustotal.com/

Table 2. Obfuscation profiles and their corresponding obfuscation techniques

Obfuscation technique Profile-1 Profile-2 Profile-3

Renaming variables (hexadecimal) 3 3 3

Unicode escape sequence 3 3 3

Split strings to arrays 7 3 3

Rotate string arrays 7 3 3

Control flow flattening 7 7 3

trak [16]. We filtered out obsolete (before 2019) scripts, duplicates, and scripts
that did not follow ECMAScript 5 standards[10].

We decided to use the popular obfuscator.io [15] tool from 2 to obfuscate
our set of JS samples. We used three obfuscation profiles, each increasing the
obfuscation than the previous, as shown in Table 2. We applied these obfuscation
profiles on our JS scripts set, followed by applying our system on the resultant
obfuscated scripts with five passes and a timeout of eight minutes. We retrieved
3,121, 2,745, and 2,669 scripts with a success rate of 83.12%, 73.11%, and 71.09%
for the three profiles respectively. 47, 58, and 47 scripts caused our system to
throw error for the profiles in order, the rest of the failures were due to timeouts.

4.1 Correctness of Output Scripts

A major concern of any code transformation is to produce code with correct
syntax. Since JSHint applies on a single script basis, we used esvalidate - an
ECMAScript standard validation tool [29] to check for syntax errors in our set
of output scripts for each of the three profiles.

After applying esvalidate, we found that 2 (0.0007%), 5 (0.0019%), and
9 (0.0035%) output scripts had syntax breakages for profiles in order. The 2 cases
is due to the evaluation of functions on the prototype of JS native objects in
MetaES rather than by our system. As the obfuscation profiles are incremental,
these syntax errors also cascade to the outputs of the other profiles. The other
syntax breakage cases on profiles two and three stem from an identifier node
replacement in for-in expressions which resulted from kscope due to stack
limit reached and can be fixed in future iterations of kscope. Given our complex
and incremental obfuscation profiles that perform a unidirectional transforma-
tion, JSHint produces output with extremely rare cases of syntax breakages
(<0.001%).

4.2 API Usage Recovery

Sarker et al. demonstrated that JS obfuscation could be identified in any JS script
through the presence of statically hidden JavaScript standard API usages [33].
We extrapolate on this and propose a standard API usage recovery metric based
on the overlap of standard JavaScript API calls and property accesses between
the original script, the obfuscated versions, and the output of JSHint versions.

We extracted 5,465 standard API calls and property names in the topmost
object and member identifier format, e.g., Document.createElement, similar

10

No. of scripts: 2246
0

20

40

60

80

100

Profile 1

No. of scripts: 1805

Profile 2

No. of scripts: 1775

Profile 3

Scripts ordered by API usage in their original form

AP
I u

sa
ge

 re
co

ve
ry

 p
er

ce
nt

ag
e

Obfuscated JSHint

Fig. 1. Comparison of standard API recovery rates between original and obfuscated
code vs between original and obfuscated code processed by JSHint versions for the
obfuscation profiles (higher is better).

to [33], from Chromium major version 112. To determine all statically visible
API usage from the script, we extracted the AST of the script and traversed
it to find matches against all function calls (such as Document.createElement
and member expressions (such as Document["createElement"].

We extracted the set of statically visible API usages from the original script,
as well as the corresponding obfuscated versions and our system’s output ver-
sions, for all three obfuscation profiles. To evaluate the API usage recovery,
we computed the API usage recovery percentage metric between each pair of
JavaScript scripts as follows:

API recovery = |O ∩ T |
|O|

× 100%

where O and T are the set of API usages in the original and transformed version
respectively.

In figure 1, we display this API recovery percentage metric for each of the
profiles for between the original and the obfuscated versions, and between the
original and the obfuscated code processed by JSHint versions of the scripts,
excluding the cases with no API usage in the original versions. Each point on
the x-axis represents a single script ordered by their standard API usage count
in their original version. From the figure, we can see that our obfuscation profiles
significantly obscure the API usages (50% to 80%) in the obfuscated script, and
JSHint does restore almost completely all observed standard API usage in the
original. This is further evident from figure 2, where we similarly display the
distribution of the API recovery metric for each of the three profiles. While
the mean API recovery rate between the original and the obfuscated versions
are 34.77%, 31.04%, and 31.34%, obfuscated code processed by JSHint versions

11

Pr
of

ile
 1

n = 2246

Pr
of

ile
 2

n = 1805

0 20 40 60 80 100

Pr
of

ile
 3

n = 1775

API usage recovery percentage

Obfuscated JSHint

Fig. 2. Distribution of standard API recovery percentage between original and obfus-
cated code vs between original and obfuscated code processed by JSHint versions for
the obfuscation profiles (blue triangle indicates mean).

result in a mean API recovery rate of 95.06%, 93.92%, and 94.38% for the three
profiles in order.

4.3 Comparison against Deobfuscation Systems

In this section, we compare the efficacy of restoring API usage of our system
against two other readily available deobfuscation systems in terms of API usage
recovery.
JSNice. JSNice [31] is a JS deobfuscation tool based on the Nice2Predict frame-
work [4]. JSNice uses predictive learning from large open-source code bases to
recover identifier names and annotation types in obfuscated code. We used the
updated version of JSNice that supports ECMAScript 6, packer detection and
JavaScript code prettifier.
Synchrony. We selected Synchrony [32] particularly because it is a bespoke
rule-based JS deobfuscation system targeted at the specific tool we used to in-
troduce obfuscation [15]. We used the npm package version of Synchrony for our
comparison 7.

From our run with Synchrony, we received 1,129 (30.07%), 1,144 (30.46%),
and 1,128 (30.04%) output scripts for the three profiles in order. Synchrony
resulted in success for only less than one-third of the scripts, which is significantly
less than the success rate of JSHint. On the other hand, JSNice does not throw
any errors due to its reliance on a predictive learning framework and static
transformation process.

We applied our obfuscation profiles on 3,480 benign samples and measured
the delta time it took the different systems to process successfully. Jshint time
7 https://www.npmjs.com/package/deobfuscator

12

https://www.npmjs.com/package/deobfuscator

No. of scripts: 2246
0

20

40

60

80

100

Profile 1

No. of scripts: 1805

Profile 2

No. of scripts: 1775

Profile 3

Scripts ordered by API usage in their original form

AP
I u

sa
ge

 re
co

ve
ry

 p
er

ce
nt

ag
e

JSNice JSHint

Fig. 3. Standard API recovery percentage between original and deobfuscated scripts
by JSNice vs between original and obfuscated code processed by JSHint versions for
the obfuscation profiles (higher is better).

averages were 3.1 ± 0.6, 3.6 ± 0.4, 4.2 ± 0.4 seconds for the three profiles, re-
spectively. Synchrony averages were much higher with 35.6 ± 54.2, 62.5 ± 53.4,
44.8± 53.9 seconds.

We display the API recovery percentage metric for both between the original
and the JSNice deobfuscated scripts, and between the original and the output
of JSHint on obfuscated code for the three obfuscation profiles in Figure 3, and
corresponding distribution in Figure 4. It is evident from the figure that JSNice
performed very little obfuscation removal, and barely restored any API usage
from the obfuscated versions of the script.

Figure 5 shows the API recovery percentage metric for both between the
original and the Synchrony deobfuscated scripts and between the original and
the output of JSHint on obfuscated code for the three obfuscation profiles, with
the distributions displayed in Figure 6. From the figure, it can be seen again
our system restores almost completely all observed standard API usage in the
original, whereas although Synchrony manages to restore the standard API us-
age significantly better than JSNice, the restoration is visibly lower compared
to JSHint. The Synchrony deobfuscated scripts results in a mean standard API
recovery rate of 78.24%, 76.28%, and 78.63% for three profiles, where the recov-
ery rate for JSHint for the three profiles are much higher at 96.51%, 93.31%,
and 96.15%.
webcrack. We also evaluated JSHint against webcrack 8, the successor of Syn-
chrony. Webcrack took a mean time of 3.0± 32.9/4.3± 32.6/3.4± 33.3 seconds
respectively to process our input sample set for the three profiles respectively.
Both JSHint and webcrack outperform Synchrony, while JSHint had better suc-
cess rates. For the API recovery metric, webcrack had a mean recovery rate of
92.18%, 89.88%, and 96.22% respectively. Although, webcrack outperforms Syn-
8 https://github.com/j4k0xb/webcrack

13

Pr
of

ile
 1

n = 2246

Pr
of

ile
 2

n = 1805

0 20 40 60 80 100

Pr
of

ile
 3

n = 1775

API usage recovery percentage

JSNice JSHint

Fig. 4. Distribution of standard API recovery percentage between original and deob-
fuscated scripts by JSNice vs between original and obfuscated code processed by JSHint
versions for the obfuscation profiles (blue triangle indicates mean).

chrony, and performs very close to JSHint, it is a bespoke system that specifically
targets the obfuscation tool used in this paper, while JSHint performance is ag-
nostic of the underlying obfuscation tool.

5 Obfuscation as Evasion

The primary motivation for using obfuscation in malicious JS scripts is to evade
detection systems [23,20,2,18,12]. A successful evasion for a malicious JS script
results in a false negative (FN) from a malicious JS detection system. A trans-
formation defeats an evasion when the detection system can detect the script as
a true positive (TP) from a previous FN. In this section, we study the effect of
obfuscation on improving evasion and the effect of restoring API usages in the
obfuscated malicious JS scripts on improving detection.

For this purpose, we used the collected malicious JS scripts from 4 and intro-
duced obfuscation using the obfuscation profiles from Table 2, and passed the
obfuscated scripts through a detection system. We measure the false negatives as
evasions. Subsequently, we apply JSHint to the obfuscated scripts to restore the
standard API usages and classify the scripts again using our detection system.
We measure if any previously generated false negatives become true positives
and categorize them as defeating evasion.

5.1 Detection System

For our study, we used JaSt, which is a state-of-the-art fully syntactic malicious
JS script detector [12], as our detection system. JaSt uses a random forest clas-

14

No. of scripts: 808
0

20

40

60

80

100
Profile 1

No. of scripts: 820

Profile 2

No. of scripts: 805

Profile 3

Scripts ordered by API usage in their original form

AP
I u

sa
ge

 re
co

ve
ry

 p
er

ce
nt

ag
e

Synchrony JSHint

Fig. 5. Standard API recovery percentage between original and deobfuscated scripts
by Synchrony compared between original and obfuscated code processed by JSHint
versions for the obfuscation profiles (higher is better).

sifier on the pattern features extracted from the AST with high accuracy and a
very low false negative rate 9

To train JaSt, we required both a malicious and a benign JS script set. How-
ever, to prevent JaSt from learning obfuscation as maliciousness, we needed to
filter out already obfuscated JS scripts from our malicious scripts. To detect
obfuscation in our malicious set, we used previous research that defines JS ob-
fuscation in terms of API usage where obfuscation can be determined in JS
scripts through finding statically obscure JS API usages [33].

To filter our malicious JS script set, we applied JSHint on the 3,755 malicious
JS scripts. This resulted in 3,407 scripts in the output set that was successfully
processed through our system. We then extracted and compared the set of stan-
dard API usages in the similar manner from section 4.2, from both the original
malicious scripts and their corresponding output from our system. If we detected
any standard API usages discovered in the output version of a malicious script
that was not present in the original version, we marked the script as obfuscated
and filtered these out from our JaSt training set. After this process, we ended
up with 2,889 malicious JS scripts in our training set. For the benign set, we
retrieved 3,500 scripts from cdnjs 10, a popular open-source content delivery
network system hosting widely used JS libraries. Using this training data, we
trained the open-source version of JaSt 11 with default options for malicious JS
classification, and from the 5-fold cross-validation, JaSt achieved 99.7% accuracy
on the training data.

9 We initially reached out to VirusTotal for this purpose. VirusTotal, however, denied
our request, stating our experiment conflicted with their end-user licence agreement,
and revoked our API key.

10 https://cdnjs.com/
11 https://github.com/Aurore54F/JaSt

15

https://cdnjs.com/
https://github.com/Aurore54F/JaSt

Pr
of

ile
 1

n = 808

Pr
of

ile
 2

n = 820

20 40 60 80 100

Pr
of

ile
 3

n = 805

API usage recovery percentage

Synchrony JSHint

Fig. 6. Distribution of standard API recovery percentage between original and deob-
fuscated scripts by Synchrony compared to the between original and obfuscated code
processed by JSHint versions for the obfuscation profiles (blue triangle indicates mean).
Table 3. JaSt detection evasions after introducing obfuscation and after performing
API recovery.

Evasions after
Obfuscation

Evasions after
API Usage Recovery

Profile Scripts Percentage Improvements No Changes
#1 239 9.30% 227 12
#2 193 9.03% 171 22
#3 171 8.09% 118 53

5.2 Measuring Evasions
We applied the three obfuscation profiles described previously (see Table 2) on
the set of filtered malicious JS scripts used for training JaSt, followed by applying
JSHint on the obfuscated scripts. We received 2,570, 2,138, and 2,113 scripts for
profiles 1, 2, and 3, respectively, without any errors and timeouts (a success rate
of 88.96%, 74.00%, and 73.14% respectively).

We applied our trained JaStmodel on each obfuscated script and the corre-
sponding output version from JSHint for all three profiles. As mentioned before,
we mark an evasion when a malicious script with obfuscation results in a false
negative from JaSt, meaning JaSt fails to classify the script as malicious despite
being trained on the original version of the script. After applying JSHint, we
consider an evasion to be improved if JaSt successfully classifies it as malicious,
while the obfuscated version results in an FN. If JaSt considers the obfuscated
and JSHint-generated version benign, we label it a “no-change” case.

Table 3 displays the evasions from JaSt detection in our obfuscated malicious
scripts and their status after applying JSHint on the obfuscated versions. Intro-
ducing obfuscation results in 9.30%, 9.03%, and 8.09% evasions for the three

16

profiles in order. However, after passing through JSHint, we were able to defeat
94.97%, 88.06%, and 69.00% of these evasions for the three profiles, respectively.
4.18%, 11.39%, and 30.40% of the evasions persisted through the transforma-
tion by JSHint. We had only a few cases (1, 1, and 5, respectively, for the three
profiles) where JaSt detection degraded from a true positive to a false negative
after applying JSHint.

We demonstrate that introducing obfuscation can enable JS-based malware
to evade a highly trained detection system, even one that was already trained
on the regular version of the script. We also observed that recovering the API
usages through JSHint improved the detection rate. While more complex obfus-
cation does not necessarily result in better evasions, our gradually decreasing
improvement rates and increasing persistent evasion rates suggest a potential
threat.

6 Discussion & Future Work

Due to the dynamic nature of JavaScript, it is possible to have comples and
bespoke obfuscation techniques. This technique can target JaSt like tools to
avoid detection, make the source code more challenging to read for humans and
LLMs, or introduce convoluted control flows to increase the complexity for static
tools. We demonstrate a common side effect of these transformations is hiding the
standard API usage, which obscures the effect and actions of the JS source code
on the system. In our work, we demonstrate the sub-tree evaluation can uncover
the hidden API usage introduced by obfuscation, which allows state-of-the-art
detectors to perform better when evaluating potentially malicious javascript.

There are, however, limitations to JSHint, most specifically along the lines
of optimization and latency. Most of the unsuccessful transformations were due
to timeouts, which can be further lowered by optimizing kscope, our scope
management tool to have better resource utilization. We should also be able to
address the syntax breakages in output from JSHint by handling the edge cases
that we observed from our sample set. We hope to include these updates to the
next iteration of kscope and JSHint.

A natural extension of our work in the future is to extract IOCs from the JS
source code processed by JSHint in the form of regex, YARA rules, and so on.
We can leverage from using tools such as ioc-extractor 12), followed by verifying
the extracted IOCs. We consider this as an future enhancement of our work in
this paper.

7 Related Work

There is extensive research for detecting obfuscated JS malware. JaSt [12] clas-
sifies malicious JS code through a random forest classifier on the AST patterns.
12 https://github.com/ninoseki/ioc-extractor

17

Revolver [18] detected obfuscated evasive malware on the web. There are nu-
merous examples of detection systems that use the presence of JS obfuscation
as a feature in their detection system [2,20,23,35,8]. However, unlike these sys-
tems, we study the evasive effect of obfuscation on malicious JS, and prove that
restoring API usages can result in better detection rate.

Notable attempts at removing obfuscation include static rule-based semantic
JS rewriter such as Maude [5], automated simplification of JS obfuscation system
presented by Lu et al. [25], and JSDES [1]. In contrast, our subtree evaluation-
based system does not require expensive dynamic analysis and instead focuses
on revealing API usages.

Deobfuscation systems for other scripting languages include PSDEM [24] for
PowerShell and the lightweight deobfuscation system for PowerShell from Li et
al. [22]. Unlike these approaches, we do not require obfuscation detection in our
JS source code, and our API usage recovery can work beyond a predetermined
set of obfuscation techniques.

8 Conclusion

Obfuscation that obscures API usages is widespread on the web and can easily be
applied through off-the-shelf tools to achieve potent evasive malware. In this pa-
per, we introduce a subtree evaluation-based JS standard API recovery system
named JSHint. We demonstrate that our system can reveal almost all obfus-
cated standard API usages. Additionally, we demonstrate that simply applying
JS obfuscation can prevent malicious JS scripts from being detected. Finally,
we prove that restoring the API usages through JSHint can help the detection
system defeat evasive, obfuscated JS code.

Acknowledgement

We thank the anonymous reviewers for their helpful feedback. This work was sup-
ported by the National Science Foundation (NSF) under grants CNS-2138138
and CNS-2047260. Any opinions, findings, conclusions, or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect
the views of the NSF.

References

1. Moataz AbdelKhalek and Ahmed Shosha. JSDES: An Automated De-Obfuscation
System for Malicious JavaScript. In Proceedings of the 12th International Confer-
ence on Availability, Reliability and Security - ARES, 2017.

2. I.A. Al-Taharwa, C.H. Mao, H.K. Pao, K.P. Wu, C. Faloutsos, H.M. Lee, S.M.
Chen, and A.B. Jeng. Obfuscated malicious javascript detection by causal relations
finding. In Advanced Communication Technology (ICACT), 2011.

3. anseki. gnirts: Obfuscate string literals in JavaScript code. https://github.com/
anseki/gnirts. Accessed: 03-14-2023.

18

https://github.com/anseki/gnirts
https://github.com/anseki/gnirts

4. Pavol Bielik, Veselin Raychev, and Martin Vechev. Programming with" big code":
Lessons, techniques and applications. In 1st Summit on Advances in Program-
ming Languages (SNAPL 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2015.

5. G Blanc, R Ando, and Y Kadobayashi. Term-Rewriting Deobfuscation for Static
Client-Side Scripting Malware Detection. In Mobility and Security (NTMS), 2011.

6. Davide Canali, Marco Cova, Giovanni Vigna, and Christopher Kruegel. Prophiler
: A Fast Filter for the Large-Scale Detection of Malicious Web Pages Categories
and Subject Descriptors. In Proceedings of the International World Wide Web
Conference (WWW), 2011.

7. Marco Cova, Christopher Kruegel, and Giovanni Vigna. Detection and analysis of
drive-by-download attacks and malicious JavaScript code. In Proceedings of the
International World Wide Web Conference (WWW), 2010.

8. Charlie Curtsinger, Benjamin Livshits, Benjamin Zorn, and Christian Seifert. ZOZ-
ZLE: Fast and precise In-Browser JavaScript malware detection. In 20th USENIX
Security Symposium (USENIX Security 11), San Francisco, CA, August 2011.
USENIX Association.

9. daftlogic.com. daft-logic: JavaScript Obfuscator. https://www.daftlogic.com/
projects-online-javascript-obfuscator.htm. Accessed: 03-14-2023.

10. ECMA International. Ecmascript language specification. Standard ECMA-262,
June 2011.

11. estools. Escope (escope) is ECMAScript scope analyzer extracted from esmangle
project. https://github.com/estools/escope. Accessed: 03-14-2023.

12. Aurore Fass, Robert P Krawczyk, Michael Backes, and Ben Stock. Jast: Fully
syntactic detection of malicious (obfuscated) javascript. In Detection of Intru-
sions and Malware, and Vulnerability Assessment: 15th International Conference,
DIMVA 2018, Saclay, France, June 28–29, 2018, Proceedings 15, 2018.

13. Ben Feinstein and Daniel Peck. Caffeine monkey: Automated collection, detection
and analysis of malicious javascript. In Black Hat USA, 2007.

14. F. Howard. Malware with your Mocha? Obfuscation and antiemulation tricks in
malicious JavaScript. In Sophos Technical Papers (2010), 2010.

15. https://github.com/javascript-obfuscator/javascript-obfuscator. JavaScript Ob-
fuscator. https://obfuscator.io/. Accessed: 03-14-2023.

16. HynekPetrak. HynekPetrak - JavaScript malware collection. https://github.
com/HynekPetrak/javascript-malware-collection. Accessed: 03-14-2023.

17. javascriptobfuscator.com. javascript-obfuscator: The Most Secure Way to Protect
JavaScript Code. https://javascriptobfuscator.com/. Accessed: 03-14-2023.

18. Alexandros Kapravelos, Yan Shoshitaishvili, Marco Cova, Christopher Kruegel,
and Giovanni Vigna. Revolver: An automated approach to the detection of evasive
web-based malware. In Proceedings of the USENIX Security Symposium, 2013.

19. Kaspersky. Chrome 0-day exploit cve-2019-13720 used
in operation wizardopium. https://securelist.com/
chrome-0-day-exploit-cve-2019-13720-used-in-operation-wizardopium/
94866/. Accessed: 11-11-2022.

20. Byung-Ik Kim, Chae-Tae Im, and Hyun-Chul Jung. Suspicious malicious web
site detection with strength analysis of a javascript obfuscation. In International
Journal of Advanced Science and Technology, 2011.

21. Clemens Kolbitsch, Benjamin Livshits, Benjamin Zorn, and Christian Seifert. Roz-
zle: De-cloaking internet malware. In Proceedings of the IEEE Symposium on Se-
curity and Privacy, 2012.

19

https://www.daftlogic.com/projects-online-javascript-obfuscator.htm
https://www.daftlogic.com/projects-online-javascript-obfuscator.htm
https://github.com/estools/escope
https://obfuscator.io/
https://github.com/HynekPetrak/javascript-malware-collection
https://github.com/HynekPetrak/javascript-malware-collection
https://javascriptobfuscator.com/
https://securelist.com/chrome-0-day-exploit-cve-2019-13720-used-in-operation-wizardopium/94866/
https://securelist.com/chrome-0-day-exploit-cve-2019-13720-used-in-operation-wizardopium/94866/
https://securelist.com/chrome-0-day-exploit-cve-2019-13720-used-in-operation-wizardopium/94866/

22. Zhenyuan Li, Qi Alfred Chen, Chunlin Xiong, Yan Chen, Tiantian Zhu, and Hai
Yang. Effective and light-weight deobfuscation and semantic-aware attack detec-
tion for powershell scripts. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2019.

23. Peter Likarish, Eunjin Jung, and Insoon Jo. Obfuscated malicious javascript de-
tection using classification techniques. In 2009 4th International Conference on
Malicious and Unwanted Software (MALWARE), 2009.

24. Chao Liu, Bin Xia, Min Yu, and Yunzheng Liu. Psdem: A feasible de-obfuscation
method for malicious powershell detection. In 2018 IEEE Symposium on Comput-
ers and Communications (ISCC), 2018.

25. Gen Lu and Saumya Debray. Automatic Simplification of Obfuscated JavaScript
Code: A Semantics-Based Approach. In 2012 IEEE Sixth International Conference
on Software Security and Reliability, 2012.

26. metaes.org. MetaES: JavaScript metacircular interpreter. https://github.com/
metaes/metaes. Accessed: 03-14-2023.

27. Marvin Moog, Markus Demmel, Michael Backes, and Aurore Fass. Statically de-
tecting javascript obfuscation and minification techniques in the wild. In 2021
51st Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), 2021.

28. Palo Alto Networks. Malicious javascript injection campaign infects 51k websites.
https://unit42.paloaltonetworks.com/malicious-javascript-injection/.
Accessed: 11-11-2022.

29. npmjs.com. esvalidate - ecmascript validator. https://www.npmjs.com/package/
esvalidate. Accessed: 03-14-2023.

30. rapid7. jsobfu: ruby-based JavaScript obfuscator. https://github.com/rapid7/
jsobfu. Accessed: 03-14-2023.

31. Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program prop-
erties from" big code". ACM SIGPLAN Notices, 2015.

32. relative. Syncrhony - JavaScript cleaner & deobfuscator. https://github.com/
relative/synchrony. Accessed: 03-14-2023.

33. Shaown Sarker, Jordan Jueckstock, and Alexandros Kapravelos. Hiding in plain
site: Detecting javascript obfuscation through concealed browser api usage. In
acm-imc, 2020.

34. Philippe Skolka, Cristian-Alexandru Staicu, and Michael Pradel. Anything to
hide? studying minified and obfuscated code in the web. In Proceedings of the
International World Wide Web Conference (WWW), 2019.

35. Wei Xu, Fangfang Zhang, and Sencun Zhu. Jstill: Mostly static detection of ob-
fuscated malicious javascript code. In Proceedings of the third ACM conference on
Data and application security and privacy - CODASPY, 2013.

36. zswang. jfogs: Javascript code obfuscator. https://github.com/zswang/jfogs.
Accessed: 03-14-2023.

20

https://github.com/metaes/metaes
https://github.com/metaes/metaes
https://unit42.paloaltonetworks.com/malicious-javascript-injection/
https://www.npmjs.com/package/esvalidate
https://www.npmjs.com/package/esvalidate
https://github.com/rapid7/jsobfu
https://github.com/rapid7/jsobfu
https://github.com/relative/synchrony
https://github.com/relative/synchrony
https://github.com/zswang/jfogs

	JSHint: Revealing API Usage to Improve Detection of Malicious JavaScript

