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ABSTRACT
JavaScript is used by web developers to enhance the inter-
activity of their sites, offload work to the users’ browsers
and improve their sites’ responsiveness and user-friendliness,
making web pages feel and behave like traditional desk-
top applications. An important feature of JavaScript, is
the ability to combine multiple libraries from local and re-
mote sources into the same page, under the same namespace.
While this enables the creation of more advanced web ap-
plications, it also allows for a malicious JavaScript provider
to steal data from other scripts and from the page itself.
Today, when developers include remote JavaScript libraries,
they trust that the remote providers will not abuse the power
bestowed upon them.

In this paper, we report on a large-scale crawl of more than
three million pages of the top 10,000 Alexa sites, and iden-
tify the trust relationships of these sites with their library
providers. We show the evolution of JavaScript inclusions
over time and develop a set of metrics in order to assess the
maintenance-quality of each JavaScript provider, showing
that in some cases, top Internet sites trust remote providers
that could be successfully compromised by determined at-
tackers and subsequently serve malicious JavaScript. In this
process, we identify four, previously unknown, types of vul-
nerabilities that attackers could use to attack popular web
sites. Lastly, we review some proposed ways of protecting a
web application from malicious remote scripts and show that
some of them may not be as effective as previously thought.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized access;
H.3.5 [Online Information Services]: Web-based ser-
vices; K.4.4 [Electronic Commerce]: Security
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1. INTRODUCTION
The web has evolved from static web pages to web appli-

cations that dynamically render interactive content tailored
to their users. The vast majority of these web applications,
such as Facebook and Reddit, also rely on client-side lan-
guages to deliver this interactivity. JavaScript has emerged
as the de facto standard client-side language, and it is sup-
ported by every modern browser.

Modern web applications use JavaScript to extend func-
tionality and enrich user experience. These improvements
include tracking statistics (e.g., Google Analytics), interface
enhancements (e.g., jQuery), and social integration (e.g.,
Facebook Connect). Developers can include these exter-
nal libraries in their web applications in two ways: either
(1) by downloading a copy of the library from a third-party
vendor and uploading it to their own web server, or (2) by
instructing the users’ browsers to fetch the code directly
from a server operated by a third party (usually the vendor).
The safest choice is the former, because the developer has
complete control over the code that is served to the users’
browsers and can inspect it to verify its proper functionality.
However, this choice comes with a higher maintenance cost,
as the library must be updated manually. Another down-
side is that by not including remote code from popular Con-
tent Distribution Networks, the developer forces the users’
browsers to download scripts from his own servers even if
they are identical with scripts that are already available in
the browsers’ cache. Moreover, this method is ineffective
when the library loads additional, remotely-hosted, code at
run time (e.g., like Google Analytics does). A developer
might avoid these drawbacks by choosing the second option,
but this comes at the cost of trusting the provider of the
code. In particular, the provider has complete control over
the content that is served to the user of the web application.
For example, a malicious or compromised provider might
deface the site or steal the user’s credentials through DOM
manipulation or by accessing the application’s cookies. This
makes the provider of the library an interesting target for
cyber-criminals: after compromising the provider, attackers
can exploit the trust that the web application is granting
to the provider’s code to obtain some control over the web
application, which might be harder to attack directly. For
example, on the 8th of December 2011 the domain distribut-
ing qTip2, a popular jQuery plugin, was compromised [2]



through a WordPress vulnerability. The qTip2 library was
modified, and the malicious version was distributed for 33
days.

It is generally known that developers should include Ja-
vaScript only from trustworthy vendors, though it is fright-
ening to imagine the damage attackers could do when com-
promising a JavaScript vendor such as Google or Facebook.
However, there has been no large-scale, in-depth study of
how well the most popular web applications implement this
policy. In this paper, we study this problem for the 10,000
most popular web sites and web applications (according to
Alexa), outlining the trust relationships between these do-
mains and their JavaScript code providers. We assess the
maintenance-quality of each provider, i.e., how easy it would
be for a determined attacker to compromise the trusted re-
mote host due to its poor security-related maintenance, and
we identify weak links that might be targeted to compromise
these top domains. We also identify new types of vulnerabil-
ities. The most notable is called “Typosquatting Cross-site
Scripting” (TXSS), which occurs when a developer mistypes
the address of a library inclusion, allowing an attacker to reg-
ister the mistyped domain and easily compromise the script-
including site. We found several popular domains that are
vulnerable to this attack. To demonstrate the impact of this
attack, we registered some domain names on which popular
sites incorrectly bestowed trust, and recorded the number of
users that were exposed to this attack.

The main contributions of this paper are the following:

• We present a detailed analysis of the trust relationships
of the top 10,000 Internet domains and their remote
JavaScript code providers

• We evaluate the security perimeter of top Internet do-
mains that include code from third-party providers.

• We identify four new attack vectors to which several
high traffic web sites are currently vulnerable.

• We study how the top domains have changed their
inclusions over the last decade.

The rest of this paper is structured as follows. Section 2
presents the setup and results of our large-scale crawling ex-
periment for the discovery of remote JavaScript inclusions.
Section 3 presents the evolution of JavaScript inclusions of
popular web sites and our metric for assessing the quality of
maintenance of a given JavaScript provider. In Section 4 we
introduce four new types of vulnerabilities discovered dur-
ing our crawl. Section 5 reviews some techniques that web
applications can utilize to protect themselves against mali-
cious third-party JavaScript libraries. Section 6 explores the
related work and Section 7 concludes.

2. DATA COLLECTION
In this section, we describe the setup and results of our

large-scale crawling experiment of the Alexa top 10,000 web
sites.

2.1 Discovering remote JavaScript inclusions
We performed a large web crawl in order to gather a large

data set of web sites and the remote scripts that they in-
clude. Starting with Alexa’s list of the top 10,000 Internet
web sites [5], we requested and analyzed up to 500 pages

from each site. Each set of pages was obtained by query-
ing the Bing search engine for popular pages within each
domain. For instance, the search for “site:google.com” will
return pages hosted on Google’s main domain as well as sub-
domains. In total, our crawler visited over 3,300,000 pages
of top web sites in search for remote JavaScript inclusions.
The set of visited pages was smaller than five million since a
portion of sites had less than 500 different crawlable pages.

From our preliminary experiments, we realized that sim-
ply requesting each page with a simple command-line tool
that performs an HTTP request was not sufficient, since
in-line JavaScript code can be used to create new, possi-
bly remote, script inclusions. For example, in the following
piece of code, the inline JavaScript will create, upon execu-
tion, a new remote script inclusion for the popular Google-
Analytics JavaScript file:� �
var ishttps = "https:" == document.location.protocol;
var gaJsHost = (ishttps )?

"https ://ssl." : "http ://www .");
var rscript = "";
rscript += "\%3 Cscript src=’" + gaJsHost;
rscript += "google -analytics.com/ga.js’ type =";
rscript += "’text/javascript ’\%3E\%3C/script \%3E";

document.write(unescape(rscript ));� �
To account for dynamically generated scripts, we crawled

each page utilizing HtmlUnit, a headless browser 1, which in
our experiments pretended to be Mozilla Firefox 3.6. This
approach allowed us to fully execute the inline JavaScript
code of each page, and thus accurately process all remote
script inclusion requests, exactly as they would be processed
by a normal Web browser. At the same time, if any of the
visited pages, included more remote scripts based on specific
non-Firefox user-agents, these inclusions would be missed by
our crawler. While in our experiments we did not account
for such behaviour, such a crawler could be implemented ei-
ther by fetching and executing each page with multiple user-
agents and JavaScript environments, or using a system like
Rozzle [14] which explores multiple execution paths within
a single execution in order to uncover environment-specific
malware.

2.2 Crawling Results

2.2.1 Number of remote inclusions
The results of our large-scale crawling of the top 10,000

Internet web sites are the following: From 3,300,000 pages,
we extracted 8,439,799 inclusions. These inclusions map to
301,968 unique URLs of remote JavaScript files. This num-
ber does not include requests for external JavaScript files
located on the same domain as the page requesting them.
88.45% of the Alexa top 10,000 web sites included at least
one remote JavaScript library. The inclusions were request-
ing JavaScript from a total of 20,225 uniquely-addressed re-
mote hosts (fully qualified domain names and IP addresses),
with an average of 417 inclusions per remote host. Figure 1
shows the number of unique remote hosts that the top Inter-
net sites trust for remote script inclusions. While the ma-
jority of sites trusts only a small number of remote hosts,
the long-tailed graph shows that there are sites in the top

1HtmlUnit-http://htmlunit.sourceforge.net



Offered service JavaScript file % Top Alexa
Web analytics www.google-analytics.com/ga.js 68.37%
Dynamic Ads pagead2.googlesyndication.com/pagead/show_ads.js 23.87%
Web analytics www.google-analytics.com/urchin.js 17.32%
Social Networking connect.facebook.net/en_us/all.js 16.82%
Social Networking platform.twitter.com/widgets.js 13.87%
Social Networking & Web analytics s7.addthis.com/js/250/addthis_widget.js 12.68%
Web analytics & Tracking edge.quantserve.com/quant.js 11.98%
Market Research b.scorecardresearch.com/beacon.js 10.45%
Google Helper Functions www.google.com/jsapi 10.14%
Web analytics ssl.google-analytics.com/ga.js 10.12%

Table 1: The ten most popular remotely-included files by the Alexa top 10,000 Internet web-sites
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Figure 1: Relative frequency distribution of the per-
centage of top Alexa sites and the number of unique
remote hosts from which they request JavaScript
code

Alexa list that trust up to 295 remote hosts. Since a sin-
gle compromised remote host is sufficient for the injection of
malicious JavaScript code, the fact that some popular sites
trust hundreds of different remote servers for JavaScript is
worrisome.

2.2.2 Remote IP address Inclusions
From the total of 8,439,799 inclusions, we discovered that

23,063 (0.27%) were requests for a JavaScript script, where
the URL did not contain a domain name but directly a re-
mote IP address. These requests were addressing a total of
324 unique IP addresses. The number of requesting domains
was 299 (2.99% percent of the Alexa top 10,000) revealing
that the practice of addressing a remote host by its IP ad-
dress is not widespread among popular Internet sites.

By geolocating the set of unique IP addresses, we discov-
ered that they were located in 35 different countries. The
country with most of these IP addresses is China (35.18%).
In addition, by geolocating each domain that included Ja-
vaScript from a remote IP address, we recorded only 65
unique cases of cross-country inclusions, where the Java-
Script provider and the web application were situated on
different countries. This shows that if a web application re-
quests a script directly from a remote host through its IP
address, the remote host will most likely be in the same
country as itself.

In general, IP-address-based script inclusion can be prob-
lematic if the IP addresses of the remote hosts are not stat-
ically allocated, forcing the script-including pages to keep
track of the remote servers and constantly update their links
instead of relying on the DNS protocol.

2.2.3 Popular JavaScript libraries
Table 1 presents the ten most included remote JavaScript

files along with the services offered by each script and the
percentage of the top 10,000 Alexa sites that utilize them.
There are several observations that can be made based on
this data. First, by grouping JavaScript inclusions by the
party that benefits from them, one can observe that 60%
of the top JavaScript inclusions do not directly benefit the
user. These are JavaScript libraries that offer Web analyt-
ics, Market Research, User tracking and Dynamic Ads, none
of which has any observable effect in a page’s useful content.
Inclusions that obviously benefit the user are the ones incor-
porating social-networking functionality.

At the same time, it is evident that a single company,
Google, is responsible for half of the top remotely-included
JavaScript files of the Internet. While a complete compro-
mise of this company is improbable, history has shown that
it is not impossible [31].

3. CHARACTERIZATION OF JAVASCRIPT
PROVIDERS AND INCLUDERS

In this section, we show how the problem of remote Ja-
vaScript library inclusion is widespread and underplayed,
even by the most popular web applications. First, we ob-
serve how the remote inclusions of top Internet sites change
over time, seeking to understand whether these sites become
more or less exposed to a potential attack that leverages
this problem. Then, we study how well library providers
are maintaining their hosts, inquiring whether the develop-
ers of popular web applications prefer to include JavaScript
libraries from well-maintained providers, which should have
a lower chance of being compromised, or whether they are
not concerned about this issue.

3.1 Evolution of remote JavaScript Inclusions
In the previous section, we examined how popular web

sites depend on remote JavaScript resources to enrich their
functionality. In this section, we examine the remote Java-
Script inclusions from the same web sites in another dimen-
sion: time. We have crawled archive.org [4] to study how



Figure 2: Evolution of remote JavaScript inclusions
for domains ranked in the top 10,000 from Alexa.

Year
No

data
Same

inclusions
New

inclusions
% New

inclusions
2001 8,256 1,317 427 24.48%
2002 7,952 1,397 651 31.79%
2003 7,576 1,687 737 30.40%
2004 7,100 2,037 863 29.76%
2005 6,672 2,367 961 28.88%
2006 6,073 2,679 1,248 31.78%
2007 5,074 3,136 1,790 36.34%
2008 3,977 3,491 2,532 42.04%
2009 3,111 3,855 3,034 44.04%
2010 1,920 4,407 3,673 45.46%

Table 2: Evolution of the number of domains with
same and new remote JavaScript inclusions for the
Alexa top 10,000

JavaScript inclusions have evolved through time in terms of
new remote dependencies and if these increase or decrease
over time.

To better understand how JavaScript is included and how
the inclusions change over time, we examine each page from
different snapshots that span across several years. For the
same pages that we crawled in Section 2, we have queried
archive.org to obtain their versions for past years (if avail-
able). For each domain, we choose one representative page
that has the most remote inclusions and the highest avail-
ability since 2000. For every chosen page we downloaded
one snapshot per year from 2000 to 2010. Every snapshot
was compared with the previous one in order to compute
the inclusion changes.

In Figure 2, one can see the evolution of remote JavaScript
inclusions for domains ranked in the top 10,000 from Alexa.
For every year, we show how the inclusions from the pre-
vious available snapshot changed with the addition of new
inclusions or if they remained the same. A new inclusion
means that the examined domain introduced at least one
new remote script inclusion since the last year. If the page’s
inclusions were the same as the previous year, we consider
those as same inclusion. Unfortunately, archive.org does not

Year
Unique
domains

Total remote
inclusions

Average # of
new domains

2001 428 1,447 1.41
2002 680 2,392 1.57
2003 759 2,732 1.67
2004 894 3,258 1.67
2005 941 3,576 1.64
2006 974 3,943 1.61
2007 1,168 5,765 1.67
2008 1,513 8,816 1.75
2009 1,728 11,439 1.86
2010 2,249 16,901 2.10

Table 3: Number of new domains that are intro-
duced every year in remote inclusions.

cover all the pages we examined completely, and thus we
have cases where no data could be retrieved for a specific
domain for all of the requested years. Also, many popular
web sites did not exist 10 years ago. There were 892 domains
for which we did not find a single URL that we previously
crawled in archive.org. A domain might not be found on
archive.org because of one of the following reasons: the web-
site restricts crawling from its robots.txt file (182 domains),
the domain was never chosen to be crawled (320 domains) or
the domain was crawled, but not the specific pages that we
chose during our first crawl (390 domains). In Table 2, we
show how many domains introduced new inclusions in abso-
lute numbers. In our experiment, we find (not surprisingly)
that as we get closer in time to the present, archive.org has
available versions for more of the URLs that we query for
and thus we can examine more inclusions. We discovered
that every year, a significant amount of inclusions change.
Every year there are additional URLs involved in the inclu-
sions of a website compared to the previous years and there
is a clear trend of including even more. Back in 2001, 24.48%
of the studied domains had at least one new remote inclu-
sion. But as the web evolves and becomes more dynamic,
more web sites extend their functionality by including more
JavaScript code. In 2010, 45.46% of the examined web sites
introduced a new JavaScript inclusion since the last year.
This means that almost half of the top 10,000 Alexa do-
mains had at least one new remote JavaScript inclusion in
2010, when compared to 2009.

But introducing a new JavaScript inclusion does not au-
tomatically translate to a new dependency from a remote
provider. In Table 3, we examine whether more inclusions
translate to more top-level remote domains. We calculate
the unique domains involved in the inclusions and the to-
tal number of remote inclusions. For every page examined,
we keep the unique domains involved in its new inclusions,
and we provide the average of that number for all avail-
able pages per year. There is a clear trend in Table 3 that
more inclusions result into more external dependencies from
new domains. In fact in 2010 we observed that on average
each page expanded their inclusions by including JavaScript
from 2.1 new domains on average compared to 2009. This
trend shows that the circle of trust for each page is expand-
ing every year and that the surface of attack against them
increases.



3.2 Quality of Maintenance Metric
Whenever developers of a web application decide to in-

clude a library from a third-party provider, they allow the
latter to execute code with the same level of privilege as
their own code. Effectively, they are adding the third-party
host to the security perimeter of the web application, that
is the set of the hosts whose exploitation leads to control-
ling the code running on that web application. Attacking the
third-party, and then using that foothold to compromise the
web application, might be easier than a direct attack of the
latter. The aforementioned incident of the malicious mod-
ification of the qTip2 plugin [2], shows that cybercriminals
are aware of this and have already used indirect exploitation
to infect more hosts and hosts with more secure perimeters.

To better understand how many web applications are ex-
posed to this kind of indirect attack, we aim to identify
third-party providers that could be a weak link in the se-
curity of popular web applications. To do so, we design
a metric that evaluates how well a website is being main-
tained, and apply it to the web applications running on the
hosts of library providers (that is co-located with the Java-
Script library that is being remotely included). We indicate
the low-scoring as potential weak links, on the assumption
that unkempt websites seem easier targets to attackers, and
therefore are attacked more often.

Note that this metric aims at characterizing how well web-
sites are maintained, and how security-conscious are their
developers and administrators. It is not meant to investi-
gate if a URL could lead to malicious content (a la Google
Safebrowsing, for example). Also, we designed this metric
to look for the signs of low maintenance that an attacker,
scouting for the weakest host to attack, might look for. We
recognize that a white-box approach, where we have access
to the host under scrutiny, would provide a much more pre-
cise metric, but this would require a level of access that at-
tackers usually do not have. We identified the closest prior
work in establishing such a metric in SSL Labs’s SSL/TLS
survey [3] and have included their findings in our metric.

Our Quality of Maintenance (QoM) metric is based on
the following features:

• Availability: If the host has a DNS record associated
with it, we check that its registration is not expired.
Also, we resolve the host’s IP address, and we verify
that it is not in the ranges reserved for private networks
(e.g., 192.168.0.0/16). Both of these features are crit-
ical, because an attacker could impersonate a domain
by either registering the domain name or claiming its
IP address. By impersonating a domain, an attacker
gains the trust of any web application that includes
code hosted on the domain.

• Cookies: We check the presence of at least one cookie
set as HttpOnly and, if SSL/TLS is available, at least
one cookie set as Secure. Also, we check that at least
one cookie has its Path and Expiration attributes
set. All these attributes improve the privacy of ses-
sion cookies, so they are a good indication that the
domain administrators are concerned about security.

• Anti-XSS and Anti-Clickjacking protocols: We
check for the presence of the X-XSS-Protection proto-
col, which was introduced with Internet Explorer 8 [24]
to prevent some categories of Cross-site Scripting (XSS)

attacks [18]. Also, we check for the presence of Mozilla’s
Content Security Policy protocol, which prevents some
XSS and Clickjacking attacks [6] in Firefox. Finally,
we check for the presence of the X-Frame-Options pro-
tocol, which aims at preventing ClickJacking attacks
and is supported by all major browsers.

• Cache control: If SSL/TLS is present, we check if
some content is served with the headers Cache-Control:
private and Pragma:no-cache. These headers indi-
cate that the content is sensitive and should not be
cached by the browser, so that local attacks are pre-
vented.

• SSL/TLS implementation: For a thorough evalu-
ation of the SSL/TLS implementation, we rely on the
study conducted by SSL Labs in April 2011. In partic-
ular, we check that the domain’s certificate is valid (un-
revoked, current, unexpired, and matches the domain
name) and that it is trusted by all major browsers.
Also, we verify that current protocols (e.g, TLS 1.2,
SSL 3.0) are implemented, that older ones (e.g., SSL
2.0) are not used, and if the protocols allow weak ci-
phers. In addition, we check if the implementation
is PCI-DSS compliant [12], which is a security stan-
dard to which organizations that handle credit card
information must comply, and adherence to it is cer-
tified yearly by the Payment Card Industry. Also, we
check if the domain is vulnerable to the SSL insecure-
renegotiation attack. We check if the key is weak due
to a small key size, or the Debian OpenSSL flaw. Fi-
nally, we check if the site offers Strict Transport Secu-
rity, which forces a browser to use secure connections
only, like HTTPS.

SSL Labs collected the features described in the previ-
ous paragraph nine months before we collected all the
remaining features. We believe that this is acceptable,
as certificates usually have a lifespan of a few years,
and the Payment Card Industry checks PCI-DSS com-
pliance yearly. Also, since these features have been
collected in the same period for all the hosts, they do
not give unfair advantages to some of them.

• Outdated web servers: Attackers can exploit known
vulnerabilities in web servers to execute arbitrary code
or access sensitive configuration files. For this reason,
an obsolete web server is a weak link in the security of
a domain. To establish which server versions (in the
HTTP Server header) should be considered obsolete,
we collected these HTTP Server header strings during
our crawl and, after clustering them, we selected the
most popular web servers and their versions. Consult-
ing change-logs and CVE reports, we compiled a list of
stable and up-to-date versions, which is shown in Ta-
ble 4. While it is technically possible for a web server
to report an arbitrary version number, we assume that
if the version is modified it will be modified to pretend
that the web server is more up-to-date rather than less,
since the latter would attract more attacks. This fea-
ture is not consulted in the cases where a web server
does not send a Server header or specifies it in a generic
way (e.g., “Apache”).

The next step in building our QoM metric is to weigh
these features. We cannot approach this problem from a su-



Web server Up-to-date version(s)
Apache 1.3.42, 2.0.65, 2.2.22
NGINX 1.1.10, 1.0.9, 0.8.55, 0.7.69, 0.6.39, 0.5.38
IIS 7.5, 7.0
Lighttpd 1.5 , 1.4.29
Zeus 4.3
Cherokee 1.2
CWS 3.0
LiteSpeed 4.1.3
0w 0.8d

Table 4: Up-to-date versions of popular web servers,
at the time of our experiment

pervised learning angle because we have no training set: We
are not aware of any study that quantifies the QoM of do-
mains on a large scale. Thus, while an automated approach
through supervised learning would have been more precise,
we had to assign the weights manually. Even so, we can ver-
ify that our QoM metric is realistic. To do so, we evaluated
with our metric the websites in the following four datasets
of domains in the Alexa Top 10, 000:

• XSSed domains: This dataset contains 1,702 do-
mains that have been exploited through cross-site script-
ing in the past. That is, an attacker injected malicious
JavaScript on at least one page of each domain. Us-
ing an XSS exploit, an attacker can steal the cook-
ies or password as it is typed into a login form [18].
Recently, the Apache Foundation disclosed that their
servers were attacked via an XSS vulnerability, and
the attacker obtained administrative access to several
servers [1]. To build this dataset, we used XSSed [29],
a publicly available database of over 45, 000 reported
XSS attacks.

• Defaced domains: This dataset contains 888 do-
mains that have been defaced in the past. That is, an
attacker changed the content of one or more pages on
the domain. To build this dataset, we employed the
Zone-H database [32]. This database contains more
than six million reports of defacements, however, only
888 out of the 10,000 top Alexa domains have suffered
a defacement.

• Bank domains: This dataset contains 141 domains
belonging to banking institutions (online and brick and
mortar) in the US.

• Random domains: This dataset contains 4,500 do-
mains, randomly picked, that do not belong to the
previous categories.

The cumulative distribution function of the metric on
these datasets is shown in Figure 3. At score 60, we have
506 defaced domains, 698 XSSed domains, 765 domains be-
longing to the random set, and only 5 banks. At score 120,
we have all the defaced and XSSed domains, 4,409 domains
from the random set, and all but 5 of the banking sites. The
maximum score recorded is 160, held by paypal.com. Ac-
cording to the metric, sites that have been defaced or XSSed
in the past appear to be maintained less than our dataset of
random domains. On the other hand, the majority of bank-
ing institutions are very concerned with the maintenance of

Figure 3: Cumulative distribution function of the
maintenance metric, for different datasets

their domains. These findings are reasonable, and empiri-
cally demonstrate that our metric is a good indicator of the
quality of maintenance of a particular host. This is espe-
cially valid also because we will use this metric to classify
hosts into three wide categories: high maintenance (metric
greater than 150), medium, and low maintenance (metric
lower than 70).

3.3 Risk of Including Third-Party Providers
We applied our QoM metric to the top 10,000 domains

in Alexa and the domains providing their JavaScript inclu-
sions. The top-ranking domain is paypal.com, which has
also always been very concerned with security (e.g., it was
one of the proposers of HTTP Strict Transport Security).
The worst score goes to cafemom.com, because its SSL cer-
tificate is not valid for that domain (its CommonName is set to
mom.com), and it is setting cookies non-HTTPOnly, and not
Secure. Interestingly, it is possible to login to the site both
in HTTPS, and in plain-text HTTP.

In Figure 4, we show the cumulative distribution func-
tion for the inclusions we recorded. We can see that low-
maintenance domains often include JavaScript libraries from
low-maintenance providers. High-maintenance domains, in-
stead, tend to prefer high-maintenance providers, showing
that they are indeed concerned about the providers they in-
clude. For instance, we can see that the JavaScript libraries
provided by sites with the worst maintenance scores, are in-
cluded by over 60% of the population of low-maintenance
sites, versus less than 12% of the population of sites with
high-maintenance scores. While this percentage is five times
smaller than the one of low-maintenance sites, still, about
one out of four of their inclusions come from providers with
a low maintenance score, which are potential “‘weak spots”’
in their security perimeter. For example, criteo.com is an
advertising platform that is remotely included in 117 of the
top 10,000 Alexa domains, including ebay.de and sisal.it,
the society that holds the state monopoly on bets and lot-
tery in Italy. criteo.com has an implementation of SSL that
supports weak ciphers, and a weak Diffie-Hellman ephemeral
key exchange of 512 bits. Another example is levexis.com,
a marketing platform, which is included in 15 of the top



Figure 4: Risk of including third-party providers,
included in high and low maintenance web applica-
tions.

10,000 Alexa websites, including lastminute.com, and has
an invalid SSL certificate.

4. ATTACKS
In this section, we describe four types of vulnerabilities

that are related to unsafe third-party inclusion practices,
which we encountered in the analysis of the top 10,000 Alexa
sites. Given the right conditions, these vulnerabilities enable
an attacker to take over popular web sites and web applica-
tions.

4.1 Cross-user and Cross-network Scripting
In the set of remote script inclusions resulting from our

large-scale crawling experiment, we discovered 133 script
inclusions where the “src” attribute of the script tag was
requesting a JavaScript file from localhost or from the
127.0.0.1 IP address. Since JavaScript is a client-side lan-
guage, when a user’s browser encounters such a script tag, it
will request the JavaScript file from the user’s machine. In-
terestingly, 131 out of the 133 localhost inclusions specified
a port (e.g., localhost:12345), which was always greater
than 1024 (i.e., a non-privileged port number). This means
that, in a multiuser environment, a malicious user can set
up a web server, let it listen to high port numbers, and
serve malicious JavaScript whenever a script is requested
from localhost. The high port number is important be-
cause it allows a user to attack other users without requiring
administrator-level privileges.

In addition to connections to localhost, we found several
instances where the source of a script tag was pointing to a
private IP address (e.g., 192.168.2.2). If a user visits a site
with such a script inclusion, then her browser will search
for the JavaScript file on the user’s local network. If an
attacker manages to get the referenced IP address assigned
to his machine, he will be able to serve malicious JavaScript
to the victim user.

We believe that both vulnerabilities result from a devel-
oper’s erroneous understanding of the way in which Java-
Script is fetched and executed. The error introduced is not

immediately apparent because, often times, these scripts are
developed and tested on the developer’s local machine (or
network), which also hosts the web server.

The set of domains hosting pages vulnerable to cross-user
and cross-network scripting, included popular domains such
as virginmobileusa.com, akamai.com, callofduty.com and
gc.ca.

4.2 Stale Domain-name-based Inclusions
Whenever a domain name expires, its owner may choose

not to renew it without necessarily broadcasting this deci-
sion to the site’s user-base. This becomes problematic when
such a site is providing remote JavaScript scripts to sites reg-
istered under different domains. If the administrators of the
including sites do not routinely check their sites for errors,
they will not realize that the script-providing site stopped
responding. We call these inclusions “stale inclusions”. Stale
inclusions are a security vulnerability for a site, since an at-
tacker can register the newly-available domain and start pro-
viding all stale JavaScript inclusion requests with malicious
JavaScript. Since the vulnerable pages already contain the
stale script inclusions, an attacker does not need to interact
with the victims or convince them to visit a specific page,
making the attack equivalent to a stored XSS.

To quantify the existence of stale JavaScript inclusions, we
first compiled a list of all JavaScript-providing domains that
were discovered through our large-scale crawling experiment.
From that list, we first excluded all domains that were part
of Alexa’s top one million web sites list. The remaining 4,225
domains were queried for their IP address and the ones that
did not resolve to an address were recorded. The recorded
ones were then queried in an online WHOIS database. When
results for a domain were not available, we attempted to
register it on a popular domain-name registrar.

The final result of this process was the identification of
56 domain names, used for inclusion in 47 of the top 10,000
Internet web sites, that were, at the time of our experiments,
available for registration. By manually reviewing these 56
domain names, we realized that in 6 cases, the developers
mistyped the JavaScript-providing domain. These form an
interesting security issue, which we consider separately in
Section 4.4.

Attackers could register these domains to steal credentials
or to serve malware to a large number of users, exploiting
the trust that the target web application puts in the hi-
jacked domain. To demonstrate how easy and effective this
attack is, we registered two domains that appear as stale
inclusions in popular web sites, and make them resolve to
our server. We recorded the Referer, source IP address,
and requested URL for every HTTP request received for
15 days. We minimized the inconvenience that our study
might have caused by always replying to HTTP requests
with a HTML-only 404 Not Found error page, with a brief
explanation of our experiment and how to contact us. Since
our interaction with the users is limited to logging the three
aforementioned pieces of data, we believe there are no ethi-
cal implications in this experiment. In particular, we regis-
tered blogtools.us, a domain included on goldprice.org,
which is a web application that monitors the price of gold
and that ranks 4,779th in the US (according to Alexa). Pre-
viously, blogtools.us was part of a platform to create RSS
feeds. We also registered hbotapadmin.com, included in a
low-traffic page on hbo.com, which is an American cable tele-



blogtools.us hbotapadmin.com

Visits 80,466 4,615
Including domains 24 4

Including pages 84 41

Table 5: Results from our experiment on expired
remotely-included domains

vision network, ranking 1,411th in the US. hbotapadmin.com
was once owned by the same company, and its registration
expired in July 2010. The results of our experiment are
shown in Table 5. While hbotapadmin.com is being included
exclusively by HBO-owned domains, it is interesting to no-
tice that blogtools.us is still included by several lower-
ranking domains, such as happysurfer.com, even though
the service is not available anymore.

4.3 Stale IP-address-based Inclusions
As described in Section 2, some administrators choose to

include remote scripts by addressing the remote hosts, not
through a domain name but directly through an IP address.
While at first this decision seems suboptimal, it is as safe as
a domain-name-based inclusion, as long as the IP address
of the remote machine is static or the including page is au-
tomatically updated whenever the IP address of the remote
server changes.

To assess whether one of these two conditions hold, we
manually visited all 299 pages performing an IP address-
based inclusion, three months after our initial crawl. In the
majority of cases, we recorded one of the following three sce-
narios: a) the same scripts were included, but the host was
now addressed through a domain name, b) the IP addresses
had changed or the inclusions were removed or c) the IP
addresses remained static. Unfortunately, in the last cate-
gory, we found a total of 39 IP addresses (13.04%) that had
not changed since our original crawl but at the same time,
were not providing any JavaScript files to the requests. Even
worse, for 35 of them (89.74%) we recorded a “Connection
Timeout,” attesting to the fact that there was not even a
Web server available on the remote hosts. This fact reveals
that the remote host providing the original scripts either
became unavailable or changed its IP address, without an
equivalent change in the including pages.

As in domain-name-based stale inclusions, these inclusions
can be exploited by an attacker who manages to obtain the
appropriate IP address. While this is definitely harder than
registering a domain-name, it is still a vulnerability that
could be exploited given an appropriate network configura-
tion and possibly the use of the address as part of a DHCP
address pool.

4.4 Typosquatting Cross-site Scripting (TXSS)
Typosquatting [17, 28] is the practice of registering do-

main names that are slight variations of the domains asso-
ciated with popular web sites. For instance, an individual
could register wikiepdia.org with the intent of capturing a
part of the traffic originally meant to go toward the popu-
lar Wikipedia website. The user that mistypes Wikipedia,
instead of getting a “Server not found” error, will now get a
page that is under the control of the owner of the mistyped
domain. The resulting page could be used for advertising,

Intended domain Actual domain

googlesyndication.com googlesyndicatio.com

purdue.edu purude.edu

worldofwarcraft.com worldofwaircraft.com

lesechos.fr lessechos.fr

onegrp.com onegrp.nl

Table 6: Examples of mistyped domains found in
remote JavaScript inclusion tags

brand wars, phishing credentials, or triggering a drive-by
download exploit against a vulnerable browser.

Traditionally, typosquatting always refers to a user mistyp-
ing a URL in her browser’s address bar. However, web de-
velopers are also humans and can thus mistype a URL when
typing it into their HTML pages or JavaScript code. Un-
fortunately, the damage of these mistakes is much greater
than in the previous case, since every user visiting the page
containing the typo will be exposed to data originating from
the mistyped domain. In Table 6, we provide five examples
of mistyped URLs found during our experiment for which
we could identify the intended domain.

As in the case of stale domain-names, an attacker can sim-
ply register these sites and provide malicious JavaScript to
all unintended requests. We observed this attack in the wild:
according to Google’s Safe Browsing, worldofwaircraft.

com has spread malware in January 2012. To prove the ef-
ficacy of this attack, we registered googlesyndicatio.com

(mistyped googlesyndication.com), and logged the incom-
ing traffic. We found this domain because it is included
in leonardo.it, an Italian online newspaper (Alexa global
rank: 1,883, Italian rank: 56). Over the course of 15 days,
we recorded 163,188 unique visitors. Interestingly, we dis-
covered that this misspelling is widespread: we had visitors
incoming from 1,185 different domains, for a total of 21,830
pages including this domain. 552 of the domains that in-
clude ours belong to blogs hosted on *.blogspot.com.br,
and come from the same snippet of code: It seems that
bloggers copied that code from one another. This mistype
is also long living: We located a page containing the error,
http://www.oocities.org/br/dicas.html/, that is a mir-
ror of a Brazilian Geocities site made in October 2009.

5. COUNTERMEASURES
In this section, we review two techniques that a web appli-

cation can utilize to protect itself from malicious remotely-
included scripts. Specifically, we examine the effectiveness
of using a coarse-grained JavaScript sandboxing system and
the option of creating local copies of remote JavaScript li-
braries.

5.1 Sandboxing remote scripts
Recognizing the danger of including a remote script, re-

searchers have proposed a plethora of client-side and server-
side systems that aim to limit the functionality of remotely-
included JavaScript libraries (see Section 6). The majority
of these countermeasures apply the principle of least privi-
lege to remotely-included JavaScript code. More precisely,
these systems attempt to limit the actions that can be per-
formed by a remotely-included script to the bare minimum.

The least-privilege technique requires, for each remotely-



JS Action # of Top scripts
Reading Cookies 41
document.write() 36
Writing Cookies 30
eval() 28
XHR 14
Accessing LocalStorage 3
Accessing SessionStorage 0
Geolocation 0

Table 7: JavaScript functionality used by the 100
most popularly included remote JavaScript files

included JavaScript file, a profile describing which function-
ality is needed when the script is executed. This profile can
be generated either through manual code inspection or by
first allowing the included script to execute and then record-
ing all functions and properties of the Document Object
Model (DOM) and Browser Object Model (BOM) that the
script accessed. Depending on the sandboxing mechanism,
these profiles can be either coarse-grained or fine-grained.

In a coarse-grained sandboxing system, the profile-writer
instructs the sandbox to either forbid or give full access
to any given resource, such as forbidding a script to use
eval. Constrastingly, in a fine-grained sandboxing system,
the profile-writer is able to instruct the sandbox to give ac-
cess to only parts of resources to a remotely included script.
For instance, using ConScript [16], a profile-writer can allow
the dynamic creation of all types of elements except iframes,
or allow the use of eval but only for the unpacking of JSON
data. While this approach provides significantly more con-
trol over each script than a coarse-grained profile, it also
requires more effort to describe correct and exact profiles.
Moreover, each profile would need to be updated, every time
that a remote script legitimately changes in a way that af-
fects its current profile.

Static and dynamic analysis have been proposed as ways
of automatically constructing profiles for sandboxing sys-
tems, however, they both have limitations in the coverage
and correctness of the profiles that they can create. Static
analysis cannot account for dynamically-loaded content, and
dynamic analysis cannot account for code paths that were
not followed in the training phase of the analysis. More-
over, even assuming a perfect code-coverage during training,
it is non-trivial to automatically identify the particular use
of each requested resource in order to transit from coarse-
grained sandboxing to fine-grained.

Given this complex, error-prone and time-consuming na-
ture of constructing fine-grained profiles, we wanted to assess
whether coarse-grained profiles would sufficiently constrain
popular scripts. To this end, we automatically generated
profiles for the 100 most included JavaScript files, discovered
through our crawl. If the privileges/resources required by le-
gitimate scripts include everything that an attacker needs to
launch an attack, then a coarse-grained sandboxing mecha-
nism would not be an effective solution.

The actions performed by an included JavaScript file were
discovered using the following setup: A proxy was placed in
between a browser and the Internet. All traffic from the
web browser was routed through the web proxy [11], which
we modified to intercept HTTP traffic and inject instru-

mentation code into the passing HTML pages. This instru-
mentation code uses JavaScript’s setters and getters to
add wrappers to certain sensitive JavaScript functions and
DOM/BOM properties, allowing us to monitor their use.
The browser-provided on-demand stack-tracing functional-
ity, allowed us to determine, at the time of execution of our
wrappers, the chain of function calls that resulted in a spe-
cific access of a monitored resource. If a function, executed
by a remote script, was part of this chain, then we safely de-
duce that the script was responsible for the activity, either
by directly accessing our monitored resources or by assisting
the access of other scripts.

For instance, suppose that a web page loads a.js and
b.js as follows:� �

/* a.js */
function myalert(msg) {

window.alert(msg);
}� �� �
/* b.js */
myalert ("hello ");� �� �
/* stack trace */
b.js:1: myalert (...)
a.js:2: window.alert (...)� �

In a.js, a function myalert is defined, which passes its ar-
guments to the window.alert() function. Suppose b.js

then calls myalert(). At the time this function is executed,
the wrapped window.alert() function is executed. At this
point, the stack trace contains both a.js and b.js, indi-
cating that both are involved in the call to window.alert()

(a potentially-sensitive function) and thus both can be held
responsible. These accesses can be straightforwardly trans-
formed into profiles, which can then be utilized by coarse-
grained sandboxing systems.

Using the aforementioned setup, we visited web pages
that included the top 100 most-included JavaScript files
and monitored the access to sensitive JavaScript methods,
DOM/BOM properties. The results of this experiment, pre-
sented in Table 7, indicate that the bulk of the most included
JavaScript files read and write cookies, make calls to docu-

ment.write(), and dynamically evaluate code from strings.
Newer APIs on the other hand, like localStorage, session-
Storage and Geolocation, are hardly ever used, most likely
due to their relatively recent implementation in modern web
browsers.

The results show that, for a large part of the included
scripts, it would be impossible for a coarse-grained sand-
boxing system to differentiate between benign and malicious
scripts solely on their usage of cookie functionality. For in-
stance, a remotely-included benign script that needs to ac-
cess cookies to read and write identifiers for user-tracking
can be substituted for a malicious script that leaks the in-
cluding site’s session identifiers. Both of these scripts access
the same set of resources, yet the second one has the pos-
sibility of fully compromising the script-including site. It
is also important to note that, due to the use of dynamic
analysis and the fact that some code-paths of the executed
scripts may not have been followed, our results are lower
bounds of the scripts’ access to resources, i.e., the tracked
scripts may need access to more resources to fully execute.



Overall, our results highlight the fact that even in the
presence of a coarse-grained sandboxing system that forbids
unexpected accesses to JavaScript and browser resources, an
attacker could still abuse the access already white-listed in
the attacked script’s profile. This means that regardless of
their complexity, fine-grained profiles would be required in
the majority of cases. We believe that this result motivates
further research in fine-grained sandboxing and specifically
in the automatic generation of correct script profiles.

5.2 Using local copies
Another way that web sites can avoid the risk of mali-

cious script inclusions is by simply not including any remote
scripts. To this end, a site needs to create local copies of re-
mote JavaScript resources and then use these copies in their
script inclusions. The creation of a local copy separates the
security of the remote site from the script-including one, al-
lowing the latter to be unaffected by a future compromise of
the former. At the same time, however, this shifts the bur-
den of updates to the developer of the script-including site
who must verify and create a new local copy of the remote
JavaScript library whenever a new version is made available.

To quantify the overhead of this manual procedure on the
developer of a script-including web application, we decided
to track the updates of the top 1,000 most-included scripts
over the period of one week. This experiment was conducted
four months after our large-scale crawling experiment, thus
some URLs were no longer pointing to valid scripts. More
precisely, from the top 1,000 scripts we were able to suc-
cessfully download 803. We started by downloading this set
three consecutive times within the same hour and comparing
the three versions of each script. If a downloaded script was
different all three times then we assume that the changes are
not due to actual updates of the library, such as bug fixes or
the addition of new functionality, but due to the embedding
of constantly-changing data, such as random tokens, dates,
and execution times. From this experiment, we found that
3.99% of our set of JavaScript scripts, seem to embed such
data and thus appear to be constantly modified. For the
rest of the experiment, we stopped tracking these scripts
and focused on the ones that were identical all three times.

Over a period of one week, 10.21% of the monitored scripts
were modified. From the modified scripts, 6.97% were modi-
fied once, 1.86% were modified twice, and 1.36% were modi-
fied three or more times. This shows that while some scripts
undergo modifications more than once a week, 96.76% are
modified at most once. We believe that the weekly man-
ual inspection of a script’s modified code is an acceptable
tradeoff between increased maintenance time and increased
security of the script-including web application. At the
same time, a developer who currently utilizes frequently-
modified remote JavaScript libraries, might consider substi-
tuting these libraries for others of comparable functionality
and less frequent modifications.

6. RELATED WORK

Measurement Studies.
To the best of our knowledge, there has been no study of re-
mote JavaScript inclusions and their implications that is of
comparable breadth to our work. Yue and Wang conducted
the first measurement study of insecure JavaScript practices
on the web [30]. Using a set of 6,805 homepages of popular

sites, they counted the sites that include remote JavaScript
files, use the eval function, and add more information to
the DOM of a page using document.write. Contrastingly,
in our study, we crawled more than 3 million pages of the
top 10,000 popular web sites, allowing us to capture five hun-
dred times more inclusions and record behavior that is not
necessarily present on a site’s homepage. Moreover, instead
of treating all remote inclusions as uniformly dangerous, we
attempt to characterize the quality of their providers so that
more trustworthy JavaScript providers can be utilized when
a remote inclusion is unavoidable.

Richards et al. [23] and Ratanaworabhan et al. [20] study
the dynamic behavior of popular JavaScript libraries and
compare their findings with common usage assumptions of
the JavaScript language and the functionality tested by com-
mon benchmarks. However, this is done without particular
focus on the security features of the language. Richarts et
al. [22] have also separately studied the use of eval in pop-
ular web sites.

Ocariza et al. [13] performed an empirical study of Java-
Script errors in the top 100 Alexa sites. Seeking to quantify
the reliability of JavaScript code in popular web applica-
tions, they recorded errors falling into four categories: “Per-
mission Denied,”“Null Exception,”“Undefined Symbol” and
“Syntax Error.” Additionally, the authors showed that in
some cases the errors were non-deterministic and depended
on factors such as the speed of a user’s interaction with the
web application. The authors did not encounter any of the
new types of vulnerabilities we described in Section 4, prob-
ably due to the limited size of their study.

Limiting available JavaScript functionality.
Based on the characterization of used functionality, included
JavaScript files could be executed in a restricted environ-
ment that only offers the required subset of functionality.
As we showed in Section 5.1, a fine-grained sandboxing sys-
tem is necessary because of the inability of coarse-grained
sandboxes to differentiate between legitimate and malicious
access to resources.

BrowserShield [21] is a server-side rewriting technique that
replaces certain JavaScript functions to use safe equivalents.
These safe equivalents are implemented in the “bshield” ob-
ject that is introduced through the BrowserShield JavaScript
libraries and injected into each page. BrowserShield makes
use of a proxy to inject its code into a web page. Self-
protecting JavaScript [19, 15] is a client-side wrapping tech-
nique that applies wrappers around JavaScript functions,
without requiring any browser modifications. The wrapping
code and policies are provided by the server and are executed
first, ensuring a clean environment to start from.

ConScript [16] allows the enforcement of fine-grained secu-
rity policies for JavaScript in the browser. The approach is
similar to self-protecting JavaScript, except that ConScript
modifies the browser to ensure that an attacker cannot abuse
the browser-specific DOM implementation to find an unpro-
tected access path. WebJail [27] is a client-side security
architecture that enforces secure composition policies speci-
fied by a web-mashup integrator on third-party web-mashup
components. Inspired by ConScript, WebJail modifies the
Mozilla Firefox browser and JavaScript engine, to enforce
these secure composition policies inside the browser. The
new“sandbox”attribute of the iframe element in HTML5 [10]
provides a way to limit JavaScript functionality, but it is



very coarse-grained. It only supports limited restrictions,
and as far as JavaScript APIs are concerned, it only sup-
ports to completely enable or disable JavaScript.

ADJail [26] is geared toward securely isolating ads from
a hosting page for confidentiality and integrity purposes,
while maintaining usability. The ad is loaded on a shadow
page that contains only those elements of the hosting page
to which the web developer wishes the ad to have access.
Changes to the shadow page are replicated to the hosting
page if those changes conform to the specified policy. Like-
wise, user actions on the hosting page are mimicked to the
shadow page if allowed by the policy.

FlowFox [7] uses the related technique of secure multi-
execution [8] to execute arbitrary included scripts with strong
guarantees that these scripts can not break a specified con-
fidentiality policy.

Content Security Policy (CSP) [25] is a mechanism that
allows web application developers to specify from which lo-
cations their web application is allowed to load additional
resources. Using CSP, a web application could be limited to
only load JavaScript files from a specific set of third-party
locations. In the case of typos in the URL, a CSP policy
not containing that same typo will prevent a JavaScript file
from being loaded from that mistyped URL. Cases where a
JavaScript-hosting site has been compromised and is serving
malicious JavaScript however, will not be stopped by CSP.

AdSentry [9] is a confinement solution for JavaScript-based
advertisement scripts. It consists of a shadow JavaScript
engine which is used to execute untrusted JavaScript ad-
vertisements. Instead of having direct access to the DOM
and sensitive functions, access from the shadow JavaScript
engine is mediated by an access control policy enforcement
subsystem.

7. CONCLUSION
Web sites that include JavaScript from remote sources

in different administrative domains open themselves to at-
tacks in which malicious JavaScript is sent to unsuspecting
users, possibly with severe consequences. In this paper, we
extensively evaluated the JavaScript remote inclusion phe-
nomenon, analyzing it from different points of view. We
first determined how common it is to include remote Java-
Script code among the most popular web sites on the In-
ternet. We then provided an empirical evaluation of the
quality-of-maintenance of these “code providers,” according
to a number of indicators. The results of our experiments
show that indeed there is a considerable number of high-
profile web sites that include JavaScript code from external
sources that are not taking all the necessary security-related
precautions and thus could be compromised by a determined
attacker. As a by-product of our experiments, we identified
several attacks that can be carried out by exploiting failures
in the configuration and provision of JavaScript code inclu-
sions. Our findings shed some light into the JavaScript code
provider infrastructure and the risks associated with trust-
ing external parties in implementing web applications.
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