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ABSTRACT

In this paper, we perform a large-scale measurement study of
JavaScript obfuscation of browser APIs in the wild. We rely on
a simple, but powerful observation: if dynamic analysis of a script’s
behavior (specifically, how it interacts with browser APIs) reveals
browser API feature usage that cannot be reconciled with static
analysis of the script’s source code, then that behavior is obfus-
cated. To quantify and test this observation, we create a hybrid
analysis platform using instrumented Chromium to log all browser
API accesses by the scripts executed when a user visits a page. We
filter the API access traces from our dynamic analysis through a
static analysis tool that we developed in order to quantify how
much and what kind of functionality is hidden on the web. When
applying this methodology across the Alexa top 100k domains, we
discover that 95.90% of the domains we successfully visited contain
at least one script which invokes APIs that cannot be resolved from
static analysis. We observe that eval is no longer the prominent
obfuscation method on the web and we uncover families of novel
obfuscation techniques that no longer rely on the use of eval.
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1 INTRODUCTION

Source code obfuscation can be defined as making a program un-
intelligible while maintaining its functionality intact [5]. In case
of JavaScript (JS), source code is considered obfuscated if the logic
and meaning is transformed in a way intended to make it difficult
for a human to understand or reverse-engineer [43]. Obfuscated
JS is used not only for malicious purposes, like to deliver zero-day
browser exploits [35], but also to hide the logic of legitimate web
applications as part of software protection [11].

As the web becomes ever ubiquitous, there has been a consid-
erable amount of increase in both client-side [27, 50], and server-
side [49] JS-based attacks, along with vast amounts of intellectual
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property moving to the browser’s client-side. Both of these in-
creasingly involve JS obfuscation as a method to either evade and
obstruct detection [27, 38], or to protect the intellectual property
from being pirated [11]. Unfortunately, we currently lack the tools
to automatically analyze the web and identify new obfuscation
techniques, and this affects our ability to accurately measure and
detect web threats.

Despite the prevalence of JS obfuscation, it is addressed briefly as
a side-effect in a number of prior research work investigating mali-
cious JS-based attacks [9, 13, 17, 34]. A number of studies explored
JS obfuscation in combination with identifying JS maliciousness,
the underlying implication being malicious JS should possess ob-
fuscation properties [2, 16, 36, 40, 58]. There also exist studies that
discriminate between JS obfuscation in benign and malicious source
codes [14, 33].

Unfortunately, little research has been conducted into the topic
of identifying JS obfuscation as a technique itself without the intent
of it [3, 10, 30, 31, 33, 51, 53]. However, all of these prior studies
almost exclusively depended on creating a model first (either with
static or dynamic analysis), and used a small set of JS dataset for
the purpose of training and validation - thus limiting their result
for being used in a real world scenario.

It is notable that prior research into JS obfuscation as a transport
mechanism explored dynamic code execution, mainly through eval,
to the point that obfuscation of browser client-side code has become
synonymous with eval, and the built-in function has garnered
notoriety. However, with the advancement of both the web and
along with it JS, we increasingly see obfuscated scripts that mangle
the source code to conceal the browser API calls to hide the true
motivation of the source code. Intuitively, this holds true as any JS
source attempting to interact with the browser and/or the user’s
ecosystem has to pass through the browser APL

In this paper, we investigate the nature of JS obfuscation through
its concealing effect of JS browser API features. We specifically fo-
cus on quantifying obfuscation that is tied to hiding the interactions
of the script with the browser. Our approach does not cover all types
of obfuscation, as there can exist obfuscated JS scripts in the wild
that do not use any browser APIs. We argue that these scripts would
be extremely limited, as any script with malicious intend or com-
plex behavior, such as drive-by downloads, fingerprinting/tracking
scripts, crypto-currency mining scripts, malicious advertisements,
have to use several browser APIs to perform its tasks and achieve
the goal of the attacker. Additionally, JS scripts that do not use any
browser features are by definition not interesting due to their very
limited capabilities.

Our proposed analysis system combines the runtime footprint
of JS with the static analysis of its source code to identify JS obfus-
cation, which requires no ground truth for training purposes. We
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apply our system on pages collected over the Alexa top 100k do-
mains to conduct a large-scale measurement study of JS obfuscation
on the web ecosystem - including measuring traces of JS feature
concealing obfuscation on the web, the origin of such obfuscated
scripts throughout the web, most frequently obfuscated JS features
through concealing, and state of the art obfuscation techniques
used by real-world JS scripts that do not rely on eval. In summary,
our main contributions include:

e We propose a novel approach of identifying JS obfuscation
through feature concealing based on the intuition that the
runtime behavior of code should be evident by static analysis
on source code.

e We present results from a large-scale analysis of the JS fea-
ture obfuscation effect in the wild. We crawled the Alexa top
100k domains and quantified this obfuscation, pinpointed
the sources of obfuscation, and measured the hidden func-
tionality that lies behind such obfuscated API function calls
and JS property accesses.

o We identify prominent new obfuscation techniques through
a data-driven approach and present case studies that no
longer rely on the notorious eval function.

2 DEFINING OBFUSCATION

Barak et al. defined program obfuscation as "The goal of program
obfuscation is to make a program unintelligible while preserving its
functionality" [5]. Extrapolating from this definition, JS obfuscation,
in its simplest form, can be defined as when the intentional behavior
of a script cannot be fully realized until execution.

Our hypothesis is that if the interactions of code with its underlying
system cannot be deduced from static analysis of its source code, then
the code is concealing these interactions and thus can be considered
obfuscated.

Our goal with this new definition of obfuscation is to express
the level of difficulty that static analysis tools and human analysts
will have when analyzing code. Notice that our definition of obfus-
cation is more relaxed and can include unintended concealing of
functionality, for example through heavy modification of source
code via minification (i.e., rewriting the source code to be more
compact without changing its functionality). However, dynamic
analysis is dependent on the execution flow and thus is not exhaus-
tive when it comes to reveal all the capabilities of the code. This
can be alleviated through techniques such as force execution [37],
which is out of scope for this paper.

In this work, we focus on obfuscation on the web where the code
is JavaScript and the system is the browser. Interactions between
the code (JS) and the system (browser) are defined as invocations
of browser API features (property accesses or function calls). For
the rest of the paper, when we refer to JS obfuscation, it is in terms
of this hypothesis and this behavior of concealing browser API
features.

We describe our data collection system architecture and the sub-
sequent analysis to detect this obfuscation in §3 and §4 respectively,
followed by a validation of our detection system in §5. We then ap-
ply our detection system to collect and identify obfuscation traces
from the Alexa top 100K in §6 and present our findings in §7 and

§8.
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3 DATA COLLECTION ARCHITECTURE

To detect JS obfuscation traces in accordance with our definition,
we implemented an automated web crawling system capable of
collecting JS script execution traces as depicted in Figure 1 and a
subsequent post-processing system for the collected traces.

3.1 Web Crawler

Our data collection worker from Figure 1 is a Dockerized container
consisting of a web crawler and a log consumer. The web crawler,
described in this section, uses a custom build of Chromium pro-
ducing JS execution traces in the form of log files (§3.2). The log
consumer is a Go-based tool to compress the trace logs and archive
them after a page visit is completed (§3.3).

The web crawler is based on the Node]JS library Puppeteer [23],
which automates the Chromium browser and communicates with
the browser over the Chrome DevTools protocol [26]. The data
collection worker pulls a job with a domain from a Redis queue and
proceeds to visit the domain’s webpage. For each domain, using
Puppeteer, our crawler launches an instance of our custom build
of Chromium in headless mode, opens a tab, and navigates to the
URL concocted by prepending the domain with http://, while
monitoring the progress of the visit. We set a fixed 15 second time
limit for navigating to the page, and upon finishing navigation, we
remain on the page for an additional amount of time to let the page
load any resources as needed. In our system, both the navigation
and the subsequent loitering on the page are also limited to a total of
30 seconds beginning from the start of the navigation, after which
we tear down the page and the tab, followed by the closing of the
browser instance.

During the visit, we collect a number of auxiliary information for
each visit - including all network requests made, the headers and
bodies of all HTTP resources downloaded, and all script sources
parsed through the debugger using standard DevTools protocol com-
mands and event handlers over Puppeteer. All of this information
are stored into a MongoDB document storage in an asynchronous
manner (as encountered) during the visit of the page.

3.2 Instrumented Browser

Based on our hypothesis, to identify the presence of obfuscation
concealing browser API features in JS source code, we need to
perform dynamic analysis to trace the runtime behavior of a JS
script and compare that behavior to a static analysis of the source
text. We use VisibleV8 [32], a custom, open-source variant of the
V8 ]S engine powering the Chromium browser, to capture browser
APT accesses. Much like the Linux strace tool logs Linux system
calls made by native applications, VisibleV8 (VV8) logs browser
API function calls and property accesses made by JS applications.
VV8’s in-browser architecture provides significant coverage and
robustness advantages over alternative approaches to JS instru-
mentation that rely on JS script injection, prototype patching, or
browser extensions. Furthermore, the fact that VV8’s instrumenta-
tion is embedded invisibly inside the JS engine itself provides more
intrinsic stealth than generic prototype patching. JS performance
under VV8 can be significantly lower than that of stock Chromium,
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Figure 1: Data collection pipeline for detecting JS obfuscation

especially on micro-benchmarks[32], but general browsing perfor-
mance of JS-intensive applications remained comfortably usable
and scalable for our experiments.

VV8’s instrumentation of browser APIs (e.g., Window and Document)

to the exclusion of builtin APIs [44] (e.g., Math and Date) fits well
with our hypothesis. Browser APIs constitute the interface between
untrusted JS code and native browser functionality, in much the
same way that operating system (OS) system calls constitute the
interface between untrusted user applications and the trusted OS
kernel. Since JS code cannot do anything “interesting” (e.g., any
input or output of private user data or any other interaction with
the user) without invoking browser APIs, they furthermore pro-
vide a “layer of truth” at which at least fragments of the script’s
intent becomes apparent regardless of how contorted its internal
logic may be. To get the exact number of available browser API fea-
tures, we analyzed and processed the WebIDL specification of the
Chromium browser, identifying 6,997 unique API features for our
analysis. We refer to the browser API features from this point on in
the paper simply as “API features” or “JS features” interchangeably
for brevity.

While VV8 has traditionally been used in stock Chromium, we
embedded it into a custom build of the Chromium-based Brave [7]
browser to take advantage of Brave’s promising PageGraph tech-
nology. Still under heavy development, PageGraph is an open
source [8] derivative of the technology behind Brave’s AdGraph [28],
which involves pervasive instrumentation of both V8 and the Blink
rendering engine at the heart of Chromium. In our system, Page-
Graph complements VV8’s low-level tracing of all browser API ac-
cesses with high level tracking of script provenance (§7), including
via complicated DOM interactions and dynamic script injections.

Since both the VV8 and PageGraph instrumentation is built into
a production browser (i.e., the Chromium-based Brave), data collec-
tion can be performed via standard browser automation. Automated

browser visits to selected websites results in VV8 trace logs con-
taining context information such as effective security origin URL,
source code location of API accesses, names of the API function
or property, and any data being passed into or written to logged
functions or properties. PageGraph data can be extracted through
an API exposed via the Chrome DevTools interface in Brave.

3.3 Log Consumer

The log consumer is a Go-based tool which has two responsibilities
in our system. The first, as shown in Figure 1, is to compress and
archive the trace logs produced by VV8 during our page visit into
MongoDB. The log consumer is independent of the crawler so that
the crawler can tear down the browser instance and the tab without
it interfering.

Secondly, the log consumer is invoked once again as part of the
post-processing of the VV8 trace logs. VV8 records the complete
JS source code of every script processed through it via the trace
logs and this record is kept exactly once per log for brevity. The
post-processing extracts and archives all such scripts with a unique
identifier of script hash into a PostgreSQL system for further anal-
ysis. The script hash serves as an identifier for the script in the
database and it is derived by computing the SHA256 hash of the
entire textual source of the script.

Additionally, the post-processing also extracts and records an
API feature usage tuple consisting of a distinct combination of the
following information:

e Visit Domain: the domain being visited by the page itself

o Security Origin: the runtime evaluation of window.origin
which could differ from the visited domain based on whether
the execution context was from an iframe

o Active Script: identified by its script hash

o Feature Offset: the character offset within the source for
the API feature usage
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Figure 2: Static analysis steps for detecting JS obfuscation

o Feature Usage Mode: how the feature was used (i.e., a prop-
erty get/set or a function call)

e Feature Name: a combination of the type of the native JS
object and the accessed member (the property or the method
name) of that object (eg. Document . createElement)

We commonly refer to the combination of feature name, feature
offset, and feature usage mode on a particular script as a feature
site of the script.

4 DETECTING OBFUSCATION

With our web crawling and subsequent post-processing of the VV8
trace logs providing us with feature usage information, we proceed
to analyze the API feature sites as described in §3.3. We want to
examine these feature sites within the scripts’ source code and
check whether these can be identified with a static analysis of the
source. If any of the feature sites cannot be identified through this
static analysis, we mark them as a trace of obfuscation concealing
an API feature usage, since the usage cannot be deduced from the
static analysis by itself without the trace information.

For our analysis, we conduct a two-step static analysis over the
feature sites data as shown in Figure 2. We describe each step and
the corresponding analysis in detail in the following sections.

4.1 Filtering Pass

The initial filtering pass over the feature site data is based on the
intuition that the majority of the feature usages are not obfuscated
and thus can be resolved simply through character offset exami-
nation in the textual script source. The intention of this pass is to
filter out obvious non-obfuscated feature sites very quickly and
mark the feature sites suspected of containing traces of obfuscation
for further static analysis.

To achieve this, for each feature site (feature name, character
offset, and usage) of a script, we extract the token at the character
offset with the same length of the accessed member part of the
feature name from the script’s source, and then compare this token
with the accessed member part. For example, if our feature site tuple
has a feature name of Document . write with character offset of 100,
we extract a token of length 5, starting from the textual source at
character offset 100 and ending at offset 104. If this extracted token
matches with the accessed member (write in case of our example)
part of the feature name, we mark this feature site as a direct site.
The underlying assumption here is that to use a native JS API
feature (via call or property access) without any obfuscation of the
source, one would have been likely to refer to the function call or
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property access by the accessed member part of the usage tuple
in the source. In the case of a mismatch, we mark the feature site
as an indirect site and as a candidate that requires more involved
static analysis.

4.2 Abstract Syntax Tree Analysis

We subject the indirect feature sites from the filtering pass to a
custom heuristic-based static analysis tool. This tool makes a best-
effort attempt to resolve these sites through the analysis of Abstract
Syntax Tree (AST) of the scripts’ textual sources, combined with
the variable scope information. The aim of this analysis tool is
to identify certain basic human intelligible patterns in the script
source through which these indirect feature usages could have been
made. A successful resolve attempt indicates either no obfuscation
at all or minor indirection that provides weak obfuscation at best,
which can be understood through manual inspection by a human
examiner. Failure to resolve indicates a certain level of obfuscation,
whether deliberate (e.g., packed or mangled code) or accidental
(heavy indirection and dynamism in the script’s source). Either
possibility is covered under our definition of obfuscation in terms
of concealed behavior.

Human Identifiable Patterns. Consider the case of an indirect
feature site involving a function call. There are two distinct, simple
ways to invoke a function in JS given the function name identifier—
we can either append a pair of parentheses with the arguments to
be passed to the function enclosed within, or we can invoke any
of the call, apply, bind methods defined on the prototype of the
Function object. Since functions are first class objects in JS, they
can be treated as any other variables. For feature sites making an
indirect API function call, the feature offset should either contain a
regular call on a source token that does not resemble the accessed
property of the feature name, or an invocation of any of the call,
apply, bind methods also on an non-resembling token. In either
case, we need to trace back the token to the accessed property of
the feature name in question.

In the case of property accesses, due to the dynamic nature of JS,
there are myriad possible ways a property access can be performed.
We focus on a limited subset of patterns a human examiner can
resolve through the inspection of the script’s source code. This
subset included property accesses as part of a logical expression

(e.g.var a = false || "name"; . window[a] = "value";),
an assignment redirection (e.g. var p = "name"; . q=p;
window[q] = "value";), or a member access expression on an

object (obj["p"] = "name"; window[obj.p] = "value").
In the examples, the ellipsis designates other lines of source code
within the script, and both the expression and the following refer-
ence shares a scope. In all these cases, again we need to trace back
a non-resembling token to the feature name’s accessed property.

The Resolving Algorithm. To perform our analysis, we parse
the script source into an AST using the Esprima[4] JavaScript parser
and identify the variable scopes, references, and binding expres-
sions with the complementary EScope[21] analysis library. EScope
provides all the variable scopes statically derived through the AST
in nested form, and can provide the current scope for a given AST
node with a reference to both the parent scope and the children
scopes.
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For each indirect feature site, we identify the originating AST
node by first finding the AST leaf node that contains the target
offset of the site. Next, we reach that leaf node’s nearest parent
node of the appropriate type: member access expression nodes for
feature site involving property retrieval, assignment expression
nodes for feature site involving property setting, and function call
expression nodes for feature site involving function calls. At this
point, our algorithm performs a recursive walk of the AST until
we can resolve the expression under examination to the accessed
property part of the feature name or a certain recursion level is
reached (in our case this level was 50).

At each recursive AST walk, we expand the expression into
AST nodes and kept reducing it by focusing on the particular node
of interest in the expression - based on the expression subset we
described previously, until we pinpoint either to a literal node or an
expression node. If we reduce to a literal value, we check it against
our accessed property of the feature site and report if there is a
match or not.

However, if we reduce to an expression rather than a literal, we
invoke an evaluation routine for the expression to resolve it to a
literal value for checking with our accessed property. This evalu-
ation routine is a JS interpreter for a subset of the AST structure
which can potentially be resolved by a human examiner through
inspection. This subset includes references to bound identifier vari-
ables, string concatenations, object member accesses, array literals,
and method calls for which the receiver and all arguments can be
evaluated statically.

When the evaluation routine reduce the expression to an iden-
tifier, we search for the variable corresponding to that identifier
within the nearest enclosing scope as given by EScope. Upon find-
ing the variable, we iterate over the variable’s references within
the current scope. If the variable has a write expression' of a literal
value, we check the literal value with the accessed property. Oth-
erwise, we invoke the evaluation routine recursively on the write
expression.

We mark the indirect feature site as resolved when we could find
a match to the resolved literal value for the accessed property. If we
encounter an expression outside of our subset during the recursive
walk or expression evaluation, or the recursion depth reaches the
maximum level, or the resolved literal value does not match, we
mark the indirect feature site as unresolved. These unresolved fea-
ture sites remaining after the AST-based analysis on our indirect
sites contain feature usages that cannot not be deduced from static
analysis of the source, and thus we identify the script to contain
feature concealing obfuscation.

var global = window;
var prop = "Left Right".split(" ")[e];
global['client' + prop];

w

Listing 1: Example for expression evaluation routine

Listing 1 shows an example scenario to explain how our evalua-
tion routine works. Given we are aware of the property access at
line 3 (window. clientLeft) through our trace logs, we invoke our
routine to evaluate the member access expression. Since this is a
string concatenation expression with a literal and an identifier, we

In EScope terminology, write expressions are assignments to a bound variable within
a scope
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recursively invoke the evaluation routine on the identifier. From
our variable scope analysis, we see that this identifier has a write
expression of an array indexing expression, over a method call
expression on a literal value. We recursively invoke our evaluation
routine on these expressions until we reach the literal value and
on our way back on the recursion, we evaluate each expression
until we finally evaluate the prop variable to the literal value of
"Left". We finally evaluate our string concatenation expression
with the value of prop to be "clientlLeft" and since this matches
our accessed property of the feature name, we mark the feature site
as resolved.

However, the script excerpt in Listing 1 can be argued to be
partially obfuscated—depending on the subjective judgment of the
examiner. Due to the aggressiveness of our AST-based resolving
algorithm, we can confidently claim that any unresolved feature
site after passing though our analysis should be obfuscated, and
our detection system provides a conservative bound of obfuscation
traces.

5 VALIDATING THE HYPOTHESIS

If we assume our hypothesis (§2) to be true, then the following two
sub-hypotheses should also hold: 1. for a script completely devoid of
any obfuscation we should be able to identify all executing browser
API calls and property accesses through static analysis of the source;
2. for an obfuscated script, we should be able to observe executing
browser API calls and property accesses that we cannot resolve through
static analysis of the code.

To test these two sub-hypotheses, we selected a set of candidate
scripts and a set of web domains on which they are statically in-
cluded, set up a specialized web-crawling system through which we
visited our selected domains, and performed the analysis described
in §4. In the following sections, we describe the candidate selection
process and the candidates themselves, followed by the analysis
results of our detection system.

5.1 Candidate Selection

To test our first sub-hypothesis, we required scripts without any ob-
fuscation, and also preferably without any compression or minifica-
tion, as some compression or minification tools, such as UglifyJS[24],
can perform a certain degree of optimization during the compres-
sion phase that can introduce obfuscation by altering the logical
structure of the script. We refrained from using the minified ver-
sions of the scripts available, as there was no way to determine the
tool and the level of minification used for these scripts. The best
initial candidates we found were the developer versions of popular
third-party JS libraries. These scripts are typically provided without
any minification and are used for debugging purposes.

To identify our candidates, we focused on one of the biggest
content delivery network (CDN) system for popular JS third-party
libraries: Cloudflare’s cdnjs [19], which serves 19% of the top one-
million websites [54]. We picked the most-downloaded unique
libraries through cdnjs based on the download statics for the month
of September, 2019 [20] and filtered any libraries that are not JS (e.g.
font-awesome), or libraries that do not provide developer versions
of their source code (e.g. gsap). We came up with 15 libraries after
this filtering listed in Table 7 in appendix A.
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However, in most real-world websites developers opt to use the
minified versions of third party libraries to improve network per-
formance, and thus the developer versions of the script are barely,
if at all, used in real-world websites. To select the domains using
any of the third-party libraries of our selection, we retrieved both
the developer and minified source code for all semantic versions
available through cdnjs and computed the SHA-256 hash value for
the minified source - giving us 545 distinct hash pairs. We then per-
formed a search for these 545 hash values in our previously crawled
dataset for the Alexa top 100K domains (crawled within the first
week of October, 2019 - we describe this crawl in §6), which con-
tains the DOM content and the scripts present on the root landing
page of each of the domains along with their corresponding SHA-
256 hashes. The matched domains constituted the set of candidate
domains where we could use the developer versions of the scripts
and have the page behave similarly. We found a total of 41,055 do-
mains with hash value matches for 207 distinct semantic versions
(obtained from cdnjs) of our 15 libraries (Table 8 in appendix B).

For each of the libraries, we took the 10 highest ranked domains
(irrespective of the specific included semantic versions) as candi-
dates, except for lodash, which had eight matches only, all of which
were taken as candidates for our validation system. We excluded
popper. js as we found only a single domain with a hash value
match in our dataset, thus giving us 138 domains covering 64 se-
mantic versions of these 14 libraries. After de-duplication, we ended
up with 116 distinct domains as our candidate set for the validation
system to visit with the developer version of the libraries.

For the second sub-hypothesis, we decided to use deliberately
obfuscated versions of our developer version JS scripts. This way
we can also demonstrate that obfuscation does result in concealed
API calls or property accesses. To obtain the deliberately obfuscated
versions of our developer version scripts, we used the widely popu-
lar JS obfuscation tool JavaScript Obfuscator [22], which has both a
web-interface [48] and a command line tool through npm package
manager, with weekly downloads averaging closer to 20k [45]. We
based our tool selection by the comparative obfuscation tool study
conducted by Skolka et al. in their work [53], where JavaScript
Obfuscator was the top tool with the majority of highly used ob-
fuscation features.

5.2 Record & Replay Webpages

For the validation system, we needed a way to visit the candidate
domains twice - once with the developer versions of the candidate
scripts and again with their tool-assisted obfuscated counterparts.
However, the domains as we have seen, used the compressed ver-
sions of the candidate scripts. To circumvent this issue, we relied
upon the Web Page Replay (WPR) tool [25], part of the catapult
project [18] from Google. WPR is a Go-based tool that, when used
in record mode, positions itself between the browser and the web as
a proxy. The Chromium browser instance can connect to the WPR
server over a proxy connection and any subsequent web page visit
during the connected session is recorded in a compressed archive
which contains all requests and the corresponding responses be-
tween the browser and the web for a specific session. Similarly,
when WPR is run in replay mode with a prior recorded archive,
the browser can reenact all request responses exactly as performed
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during the record session, given the requests are present in the
archive—thus reconstructing the exact same web page in effect
during the recording. We used the data collection system described
in §3 in combination with the WPR server for our page visits during
validation.

In our system, we visited each of our candidate domains three
times: once in record mode and twice in replay mode. The visit in
record mode was to create the archive for the candidate domains’
webpages with the candidate scripts’ requests later to be used for
replaying the page. Our crawler launched the WPR server and
added the proxy details to the Chromium browser’s launch options.
After the page visit was completed, the crawler closed the WPR
server, triggering it to write the recorded archive in a file on disk.

During our recording visit? for the 116 candidate domains, we
found 57 distinct semantic versions of our 14 candidate libraries out
of the initial 64 distinct versions matched in our Alexa crawl data -
this is most likely due to the websites updating their third-party
scripts during the time between our Alexa crawl and the validation
crawl.

We visited each of the candidate domains twice with this recorded
archive data - once for the developer versions of the scripts and
again for the tool-assisted obfuscated versions of the scripts. We
wrote a Go-based tool named wprmod to alter the WPR record
archives’ request-responses given the SHA-256 hash of the response
body to replace and the actual content in textual format to replace
it with. With this altered archive, WPR replays provided the re-
placed content for the same request performed during recording.
Our replay runs replaced the used versions of the scripts with our
developer and obfuscated versions respectively, and visited the
candidate pages with this altered archive.

However, we observed that in our recorded archives some of
the requests’ responses had compression encoding scheme mis-
matches. For example in the request header, it mentioned gzip as
compression encoding and then provided a response body with
encoding utf-8. These were clearly server configuration errors
from the site developers and caused a few decompression error
in our wprmod tool where we did not rewrite these the request’s
response body in such cases. So, during our replay for the developer
versions of the scripts, we replaced 51 distinct semantic versions of
the 57 compressed versions.

To generate our deliberately obfuscated scripts, we passed the de-
veloper versions of the scripts through the command-line version of
the JavaScript Obfuscator tool. The authors of the tool provide three
preset configurations for the tool, and we used the most popular
configuration with medium obfuscation and optimal performance
for generating our deliberately obfuscated versions of the candidate
scripts. We refrained from using the maximum obfuscation setting
to keep script breakage to a minimum - only 34 out of 51 versions
of developer scripts did not result in either a time-out or exeception
with maximum settings. We replaced 50 distinct semantic versions
out of the 51 versions of developer scripts - only a single library
(json3, version: 3.3.2) failed to parse with the Javascript Obfuscator
tool.

2Done in October, 2019
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Developer | Obfuscated
Direct 3,050 250
Indirect - Resolved 15 757
Indirect - Unresolved 20 2,009
Total 3,085 3,012

Table 1: Breakdown of feature sites after the two-step anal-
ysis on candidate scripts

5.3 Validation Results

In our post-processed data, we had 3,085 and 3,012 distinct API
feature sites from the 51 developer version scripts and the 50 ob-
fuscated scripts, respectively. We applied our two-step detection
system as described in §4 on these features sites. Table 1 shows the
breakdown of the feature sites over our developer and obfuscated
versions of the candidate scripts after our analysis.

We manually checked the 20 indirect feature sites on the de-
veloper versions of the candidate scripts that were marked unre-
solved by our analysis. We found that all of these feature sites were
property accesses through a wrapper function of the form: f =
function (recv, prop) {... recvlprop] ...} Using this
the property accesses were made by invoking this function, e.g.
f(window, "location"), where the function invocations were
not necessarily part of the script itself. This was an indirection
mechanism, which could only be resolved by a human examiner
if the examiner had access to the entire call stack. However, static
analysis of variable scope is incapable of evaluating callee argument
values through the call expressions. Based on this, we classified
these as legitimate unresolved feature sites.

Given the sheer number of unresolved feature sites present in
obfuscated candidate scripts (2,009—66.70% of total sites) compared
to the developer versions (20—0.64% of total sites) after our anal-
ysis system, we concluded that both of our sub-hypotheses hold,
and establish that comparing dynamic trace information with static
analysis for API features is a viable way to reveal feature concealing
obfuscations in JS scripts.

6 ALEXA TOP 100K DATA COLLECTION

To measure the effect of JS obfuscation through concealed API
usage on the web, we reused our crawling system from §3 to collect
data from the Alexa top 100K domains.®> We deployed this crawl
over a Kubernetes cluster with 80 CPU cores and 512GB of memory,
connecting to the internet from our university network.

We queued the Alexa top 100k domains, excluding the 37 Punycode-

encoded [12] domain names that our queuing logic did not process,
to our web crawler as described in §3.1. Of the queued domains,
85,470 completed successfully; i.e., the crawler completed the visit
without error. Table 2 shows the major broad categories of the
14,493 page visit failures. Most of the network failures occurred
due to the domain name not being resolved, indicating presence of
stale domains on the Alexa list, followed by a variety of ephemeral
network errors including DNS lookup failures, TLS/SSL errors, and
transport level errors (connection reset/refused). The vast majority
of PageGraph issues were triggered by PageGraph’s conservative

3http://s3.amazonaws.<:0m/alexa— static/top- Im.csv.zip - as retrieved on Sep 24, 2019
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Page Abort Category Category Count
Network Failures 5,431
PageGraph Issues 4,051
Page Navigation (15s) Timeout 3,706
Page Visitation (30s) Timeout 1,305
Total 14,493

Table 2: Categories for Alexa top 100K domains visit errors
breakdown

Category Distinct Scripts
No IDL API Usage 177,305
Direct Only 787,599
Direct & Resolved Only 43,048
Unresolved 75,851
Total 1,083,803

Table 3: Breakdown of all unique scripts from Alexa top
100K crawl after the analysis

internal correctness assertions aborting the page load, with a few
breakages encountered due to the page not having the necessary
content to generate a PageGraph. The page navigation and visita-
tion timeouts happened when our preset time limits during page
visits exceeded, as described in §3.1.

After the post-processing run on the collected trace logs, we
extracted and archived 11,120,829 JS scripts encountered in our
instrumented Chromium browser from 84,260 distinct domains of
the 85,470 domains successfully visited, out of which 3,222,053 had
a unique script hash. Our use of dynamic analysis and instrumen-
tation focused tightly on browser APIs limited the population of
scripts for which we had feature site data for 1,083,803 distinct
scripts from 77,423 distinct domains.

7 RESULTS

Table 3 summarizes the volume of scripts at each level of our analy-
sis workflow. In this case “No IDL API Usage” means our instrumen-
tation detected native function or property access (e.g., accessing
the global object), but that no standard, IDL-defined browser fea-
tures were invoked. Direct only includes scripts in which all feature
sites were cleared through the filtering pass of our analysis. Direct
& resolved only scripts include both direct and some indirect feature
sites - all of which were successfully resolved through our AST-
based analysis. The remaining unresolved scripts show at least one
unresolved indirect feature site, constituting to our set of obfuscated
scripts. Note that in the following discussion, when we mention
resolved scripts, we refer to the set of scripts that do not contain
any unresolved indirect sites after our analysis. Similarly, when
we refer to obfuscated scripts, we refer to the set of scripts with
unresolved feature sites.

7.1 Obfuscation Prevalence

To approximate the extent of obfuscated JS scripts through feature
concealing in the wild, we consider the two values from the anal-
ysis of our collected data: the number of scripts with unresolved
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Alexa Domain Unresolved | Total
Rank

79,633 | 11lalive.com 55 220
57,593 | sportune.fr 49 250
64,969 | racingjunk.com 49 296
75,354 | kron4.com 48 223
47,511 | ovaciondigital.com.uy 47 | 254

Table 4: Top 5 domains by number of obfuscated scripts vs.
total scripts loaded on that site

indirect feature sites out of the total analyzed script population, and
the popularity of such scripts across all visited domains. We find
that the majority of the scripts are without obfuscation traces in
accordance with the intuition, and a relatively small population of
scripts containing obfuscated feature sites is encountered on almost
all top websites.

We found that of the 77,423 domains for which we had script
data, out of the Alexa top 100k, only 3,178 (4.10% ) did not load
obfuscated scripts. The vast majority of these, 74,245 domains
(95.90% ), contained at least one obfuscated script. In Table 4, we
show the top five web domains loading the most obfuscated scripts
along with the total number of scripts loaded by that site, ordered
by the site’s Alexa rank. We note that four out of the five sites are
news media sites (local news, sporting events). Online news sites
are, of course, notorious for heavy use of aggressive advertising
(and associated tracking) content - that such sites are the most
prolific users of observed obfuscated scripts is unsurprising.

7.2 Context and Origin of Scripts

To understand how and from where obfuscated scripts are loaded,
we leverage metadata from our instrumentation to compare the
execution contexts, source origins, and loading mechanisms of both
obfuscated and resolved scripts. We find that obfuscated scripts
typically come directly from 3rd-party sources despite executing in
a 1st-party security context at nearly the same proportional rate as
resolved scripts.

Script Loading Mechanisms. PageGraph[28] provides script
type annotations, which indicate how a script was loaded - via
external URL, inline inclusion in static HTML, or dynamic inline
injection via various DOM APIs. From these annotations, we discov-
ered contrasting differences in how resolved and obfuscated scripts
were loaded during our experiment. We saw obfuscated scripts
loaded overwhelmingly (98%) via external URL (i.e., script tags with
explicit, http(s) URL src attributes). Conversely, resolved scripts
showed more diversity of loading mechanism: 59% from external
URLs, 26% from inline code in HTML documents, 7% generated
inline via document.write, 5% generated inline via DOM API calls,
etc. Obfuscated feature sites are thus heavily concentrated in exter-
nal scripts (e.g., advertising and tracking frameworks, compressed
libraries from CDNs loaded from other 3rd parties), compared to
application specific or bootstrapping script source code directly
embedded in (or injected into) HTML documents.

1st vs. 3rd Party Defined. We consider two axes of distinction
when analyzing how obfuscated scripts are loaded and executed.
Most obviously, scripts may be loaded from the 1st-party domain
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(i.e., the domain we are visiting) in contrast to some other 3rd party
domain. This 1st vs. 3rd party categorization of a script’s origin
URL (the URL the script was loaded from - if any exists) is distinct
from the script’s security execution context which is the security
origin as extracted from the dynamic traces mentioned in §3.3.

The browser enforces a Same Origin Policy (SOP) to prevent
documents and sub-documents (such as iframes) loaded from dif-
ferent origins (i.e., URL scheme, host name, and port number) cannot
access each others’ DOM trees. In our case, we compare only the
€TLD+1 (public suffix plus one subdomain; e.g., “example.com” for
“sub.example.com”) of domain names, not the full origin for 1st vs
3rd party association. This approach differs from the browser’s offi-
cial SOP, but it has the advantage of revealing close relationships
between related subdomains.

Execution Context. We consider a script to have 1st party exe-

cution context if the €TLD+1 of the runtime evaluation of Window.origin

matches that of the visiting domain. Based on this, among resolved
scripts, 49.11% were loaded in 1st party context compared to 50.75%
in 3rd party context. Obfuscated scripts showed nearly the same
breakdown: 48.47% 1st party to 51.27% 3rd party loading. That ob-
fuscated scripts are loaded and executed with 1st party privileges at
nearly the same proportional rate as more readable code raises ques-
tions about the amount of trust afforded to JS scripts deliberately
concealing its range of potential activity.

Source Origin. For our scripts, we categorized scripts with
source origin URL that have the same eTLD+1 as the visiting do-
main to be 1st party source origin scripts. In the case of the script
not having a source origin URL, we recursively look for the par-
ent script responsible for this script either though dynamic DOM
manipulation or eval, and use the source origin URL of the parent
script. During this ancestral recursive walk, if we encounter that
the parent is not a script, rather a document or sub-document (eg.
iframe) - indicating the the child script was included in the docu-
ment in an inline manner, we simply fall back to the security origin
URL of the document.

We found obfuscated scripts to have 3rd party source origins
more frequently than the resolved scripts. In our dataset, 78.55%
of obfuscated scripts had 3rd party source origins compared to
61.77% for resolved scripts. This disparity in favor of 3rd party
source origins again corroborates that obfuscated JS scripts typically
originates from 3rd party domains, rather than created and hosted
locally.

7.3 Feature Site Obfuscation and eval

Given the long association of eval with obfuscated and malicious
code [10, 57, 58], we wanted to explore the relationship between
feature site obfuscation and use of eval in the wild. Note that our
methodology does not attempt to classify eval use as obfuscated or
unobfuscated at all, so we are not attempting a direct comparison
between obfuscation mechanisms. But we report on the overall
volume of eval activity observed, to compare it with the volume
of unresolved feature sites and obfuscated scripts.

In this context, if a script uses eval to load another script, we
refer to the script performing the eval as the parent and the script
loaded via eval as the child. Out of the 1,083,803 distinct scripts
analyzed, we found 69,163 total distinct eval children scripts from



Hiding in Plain Site: Detecting JavaScript Obfuscation
through Concealed Browser APl Usage

IMC ’20, October 27-29, 2020, Virtual Event, USA

Feature Name Obfuscated | Direct
Perc. Rank | Perc. Rank
Element.scroll 96.11% 45.90%
HTMLSelectElement.remove 87.15% 50.76%
Response.text 89.96% 55.72%
HTMLInputElement.select 88.23% 56.26%
ServiceWorkerRegistration.update 87.90% 57.67%
Window.scroll 92.12% 64.36%
PerformanceResourceTiming.toJSON 82.61% 55.08%
HTMLElement.blur 96.54% 69.76%
Iterator.next 84.99% 58.64%
Navigator.registerProtocolHandler 91.04% 65.01%

Table 5: Top 10 API functions accessed via obfuscation

21,380 total distinct eval parents. When we considered only the
set of obfuscated scripts, we found 1,901 distinct obfuscated scripts
resulting from eval (2.75% of all distinct children) and 5,028 dis-
tinct obfuscated scripts performing eval (23.52% of all distinct
parents). Strikingly, while in the general population of analyzed
scripts, eval children outnumber parents more than 3 to 1, among
obfuscated scripts the relationship is reversed, with eval parents
outnumbering children more than 2 to 1. In other words, obfuscated
scripts are more likely to use eval to load scripts, than they are to be
loaded by eval in the first place.

Recall that these statistics reflect not necessarily obfuscated eval
usage, but all eval usage observed in our dataset. While we make
no effort to classify eval usage as obfuscation or not, the num-
bers provide a comparative upper bound on how much eval-based
obfuscation could have existed in our dataset. Even if every eval
parent observed were assumed to be a case of obfuscation (which is
almost certainly not true), we still observed significantly more distinct
instances of feature site obfuscation (75,851 vs. 21,380 ). This is in ac-
cordance with the intuitive observation that eval is a well-known
footprint of obfuscation, even among static detection systems, pos-
sibly resulting in this shift away from eval by the obfuscation tools
and actors.

7.4 Frequently Obfuscated APIs

To gain insight into what browser API interactions tend to be ob-
fuscated in the wild, we compare API function popularity across
resolved and unresolved (i.e., obfuscated) feature sites.

Popularity Comparison Mechanism. To identify distinct ob-
fuscated features (i.e., both function calls and property accesses
more likely to be accessed from unresolved than resolved feature
sites), we first computed each distinct API feature name’s percentile
rank (i.e., popularity) among resolved (P,) and unresolved (Py)
feature sites. We then compute the percentile ranks difference
(IPy — Pr|) for each feature name, giving a score that is higher
when the feature is more popular among unresolved than resolved
feature sites. APIs showing the highest percentile rank differences
were more likely to be used in an obfuscated way in our data. How-
ever, since low frequency outliers in either list can radically skew
the scores, we further filtered out the feature names with highest
scores by removing all API features with total global access count
below 100.

Feature Name Obfuscated | Direct
Perc. Rank | Perc. Rank
UnderlyingSourceBase.type 98.45% 30.89%
HTMLInputElement.required 94.91% 56.89%
Navigator.userActivation 88.77% 52.42%
StyleSheet.disabled 92.00% 56.95%
CanvasRenderingContext2D.imageSmoothingEnabled 84.68% 50.00%
Document.dir 89.76% 56.76%
HTMLElement.translate 86.79% 54.65%
HTMLTextAreaElement.disabled 86.66% 54.65%
Document.fullscreenEnabled 95.97% 65.20%
BatteryManager.chargingTime 91.07% 60.73%

Table 6: Top 10 API properties accessed via obfuscation

Distinctly Obfuscated APIs. We initially identified 923 dis-
tinct API functions and 1,608 distinct API properties accessed via
resolved feature sites, while 320 distinct functions and 639 distinct
properties were accessed in an obfuscated manner. In Table 5, we
present the top 10 functions by gain in percentile rank, ordered by
descending rank gain. Out of these 10 functions, 5 are associated
with simulating user-interaction or manipulating user input forms.
Among the rest are APIs associated with performance profiling,
JS-initiated network requests, ServiceWorkers, and registration of
custom URL scheme handlers (which requires user consent). In
Table 6, we present the top 10 properties by gain in percentile rank,
also ordered by descending rank gain. Of these, 4 are associated
with user interaction detection or other user interface manipulation,
4 with obscure DOM metadata, and 1 with media streaming. The
last is part of the infamous BatteryManager API that was hastily
deprecated for privacy reasons [42, 47].

8 OBFUSCATION TECHNIQUES IN THE WILD

Having identified the scripts with obfuscation traces, we focused on
the obfuscation techniques used for concealing the feature usages.
To extract and identify the most prominent obfuscation techniques
used in real-world obfuscated scripts, we build an automated system
that processes unresolved feature sites and automatically identifies
groups of similar feature sites. Our system is capable of assigning
each cluster a score, which highlights clusters that are indicative of
representing a specific obfuscation technique.

8.1 Feature Site Clustering

Clustering Process. To apply clustering on our unresolved feature
sites, we needed to extract feature vectors from our 491,909 un-
resolved feature sites over 75,851 scripts from our analysis of the
Alexa top 100K crawl data. Since we were clustering the feature
sites instead of the entire scripts, we wanted to extract feature vec-
tors from only the relevant portion of the script contiguous to the
feature site, which we termed a hotspot. For each unresolved feature
site of a script, we parsed the script into tokens using Esprima[4]
and identified the token containing the character offset of the fea-
ture site. The hotspot of the feature site consisted of r tokens before
and after the containing token, including the containing token itself,
where r was the radius of the hotspot. We then proceeded to create
a vector from the 2r + 1 tokens of the hotspot in terms of token
type frequencies, resulting in a vector of 82 dimensions for each of
the unresolved feature site.
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Figure 3: Mean silhouette score vs noise percentage of DB-
SCAN runs over different radii of feature site hotspots

We then applied off-the-self DBSCAN (epsilon = 0.5, min sam-
ples = 5, distance metric = euclidean) [52], a density based partial
clustering algorithm, on our hotspot vectors to generate the clus-
ters. Since our vectors depended upon the value of the radius r,
we ran the clustering with different radius values. Figure 3, shows
the clustering results in terms of noise percentages (percent of fea-
ture sites not belonging to any cluster; lower is better) and mean
silhouette scores (average measure of all cluster cohesiveness and
isolation, out of 1.00; higher is better) of different radii. As can be
seen, smaller radius values performed better as they were likely
to exclude tokens non-relevant to the obfuscated feature site into
the hotspot. We selected the clustering labels for radius value 5,
resulting in 5,741 clusters with a noise percentage of 4.33% and a
mean silhouette score of 0.9212.

Ranking Clusters. After the initial clustering, we wanted to
manually inspect clusters containing prominent obfuscation tech-
niques. To select the candidate clusters, we assigned each cluster
a diversity score and ranked the clusters based on this score. The
idea behind the diversity score was that the popular obfuscation
techniques were applied to a large number of scripts, concealing
also a large variety of API features. The diversity score of a clus-
ter was the harmonic mean[56] of the distinct number of scripts
and the distinct number of feature names within the cluster for
all feature sites belonging to the cluster, thus the value of diver-
sity score for a cluster would be higher when both constituting
values were larger. The top 20 clusters by diversity score contained
65,595 unique scripts with unresolved feature sites (86.48% of total
unique scripts with unresolved sites). With our clusters ranked, we
manually inspected 20 randomly sampled scripts from each of the
top 20 clusters having the highest diversity scores with no false
positives. We describe our findings in the following section.

8.2 Observed Obfuscation Techniques

In this section we describe the prominent obfuscation techniques we
identified through our inspection of the top-ranked clusters of the
unresolved feature sites. All of these techniques described here rely
on complex logical structures and convoluted string manipulations
to hide the API functionalities being invoked. We named each
technique based on the term we gave the core logical structure of the
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technique. None of these techniques make use of the notorious eval,
the function almost synonymous with JS obfuscation, marking a
shift in how JS code is obfuscated that went unnoticed. The excerpts
shown here are from our dataset—we removed the white-space
minification for clarity and some excerpts were curtailed for brevity
(designated by the use of the ellipsis).

Technique 1: Functionality Map. This was by far the most preva-
lent obfuscation technique we observed through our inspection.
This obfuscation technique begins with an array containing all pos-
sible invocations throughout the script in string literal form—the
functionality map—followed by a rotation routine that manipulates
the order of the array, so that the actual indexes are only known
during runtime. This rotated mapping is then leveraged by the ac-
cessor function, which performs the actual lookup into the map to
retrieve the particular functionality to invoke (Listing 2 in appendix
C). Using the combination of these two, the API functionalities are
invoked throughout the script. For example, this is appending a
DOM node to the document body using the Document. append API
function:
document[_0x5a0e('0x3a')I[_0x5a0e('0x17"')]1(...).

We found a number of variations of this technique during our

manual inspection: 1) no use of a rotating routine, 2) the accessor
function was a simple index lookup into the rotated functionality
map, and 3) no use of an accessor function, the functionality map
was accessed using direct indices in octal form. We identified four
off-the shelf JS obfuscation tools capable of one or more variations
of this technique [15, 29, 46, 59], which coincides with the findings
of Skolka et al [53], which they termed String Array feature of the
tools. According to our clustering, 36,996 scripts contained at least
one variation of this technique.
Technique 2: Table of Accessors. This technique relies upon a
string manipulation decoder function that can create the function
names or property accesses used in the script in string literal form
from an encoded string and an adjustment offset (Listing 3 in ap-
pendix D).

Using this decoder function, b("nslcLe", 15) gets translated to
charAt. Then, using this function, a table is created which consists
entirely of calls to this accessor function with the specific argu-
ments to concoct the functionalities to be used in the script as a =
["", b("nslcLe", 15), b("msvvy", 19), b("enagbz", 13),
b("Qejp32Wnnwu", 4), ...J;. The rest of the script invokes API
calls or accesses properties based on the table indices. For example,
this is retrieving the document cookies through the global window
variable: window[a[130]]1[a[868]]. We identified 22,752 unique
scripts with this technique in our manually inspected clusters.
Technique 3: Coordinate Munging. This core of this technique
is a decoder function and a table of numerals (coordinates) to feed
into it (Listing 4 in appendix E).

The technique then creates multiple instances of the wrapper
functions to use throughout the script: var f = (new N).d, c
= (new N).d, ...;.Using these wrapper functions, all the API
invocations and property accesses are performed through the rest
of the script. For example, (we are using ellipsis to avoid using very
long identifiers in code) f ("dR5. . . ") translates to setTimeout and
is invoked using window[f("dR5...")]. There were 1,452 unique
scripts with this technique in our inspected clusters.
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Technique 4: Switch-blade Function. This technique is centered
around a function consisting of a switch-case function that is re-
turned using logical obfuscation that performs the duty of a decoder
function (Listing 5 in appendix F). The technique then involves cre-
ating multiple wrapper functions that act as executor for the switch-
blade function (Listing 6 in appendix F). Using these executor func-
tions, invocations are made through the rest of the script. For exam-
ple, window. document can be accessed as window[Z4EE . x7K(28)1].
The number of unique scripts with this technique in our inspected
clusters was 1,123.

Technique 5: Classic String Constructor. This is one of the clas-
sical string manipulation techniques - which relies on a decoder
function to translate numerical values to concoct a string literal.
The variations of this we observed included an offset argument
passed in for the numerical values to translate. Here are two vari-
ations of the function that we observed in our clustering (both of
them do the exact same thing with minute variations), as shown in
Listing 7 in appendix G.

With these decoder functions setTimeout can be concocted
through the call z(36, 151, 137, 152, 120, 141, 145, 137,
147, 153, 152) and subsequently the function can be invoked
using window[z(36, 151, ...)]. We found 3,272 unique scripts
with both variations of this technique in our inspected clusters.

9 LIMITATIONS & DISCUSSION

Our definition of JS obfuscation and the subsequent detection sys-
tem were intrinsically dependent on dynamic analysis, which itself
is limited by the particular execution flow taken, and thus does not
reveal all the capabilities of the code. In our collection methodology,
we did not generate inputs or simulate human browsing behavior,
so the script execution through the trace logs was not exhaustive.
However, JS code that executes on page load would always be ob-
served in our system, and it is this code that performs interesting
and security-relevant behaviors like loading third-party widgets
and ads. Exhaustive JS code coverage through execution [37] is a
tangential problem and out of scope of this paper.

The VV8 instrumentation system explicitly traces only browser
API interactions and global object manipulations. This restriction
suits our hypothesis and the presented obfuscation definition and
analysis well, but it imposes the limitation that we cannot readily
compare the obfuscation of browser API feature sites with feature
sites for built-in JS APIs (e.g., String. fromCharCode). Furthermore,
to the best of our knowledge, there does not exist a tool that can give
us full stack trace of execution for the JS API triggered, which denies
us context information that limits our static analysis. However,
the former limitation has no impact on the validation of our core
hypothesis, and the latter affected only a negligible fraction of
feature sites in our validation experiment. We do not consider
either of these external limitations to impact our methodology
significantly.

Due to the hybrid nature of the analysis used in this paper, it is
hard to establish any concrete comparison to prior works in the
field of obfuscation detection. However, because of our system’s
not relying on ground truth data or specific trained models, our
system does not suffer from the limitations of the large body of
prior work, as we are able to detect obfuscation without having
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knowledge of it in a ground truth set or even requiring retraining
of the model(s) involved.

10 RELATED WORK

Obfuscation Identification. Prior work in this area falls into
two major categories: 1) identifying JS obfuscation as part of the
malicious JS footprint, and 2) identifying JS obfuscation by itself
as a transport. In the first category, a number of studies used
trained classifier(s) on statically extracted features from the JS
source [16, 30, 31, 40]. But, there also exist systems using non-static
techniques: casual relations finding [2], string pattern based analy-
sis [36]. A few studies combined both static or dynamic features to
identify obfuscated malicious activity: trained classifier on static
and dynamic features [14], ensemble of classifiers as a filter for
malicious URLs [9], anomaly detection to identify drive-by down-
load attacks [13]. Our system, in comparison, did not rely on any
classifier training, thus avoiding the requirement for ground truth
set of already labeled JS source. This enables us to detect unknown
obfuscations while prior systems could only identify obfuscation
traces seen in the labeled set.

There are some studies which attempted to identify JS obfusca-
tion by itself. Choi et al. performed static string pattern analysis to
identify JS obfuscation automatically on a web page level [10]. The
NOFUS [33] system was built on the ideas similar to ZOZZLE [14] to
classify JS obfuscation based on static hierarchical features from the
AST. Similarly, JSOD [3] used a Bayesian classifier on context based
features from the AST to classify readably obfuscated JS scripts, and
Skolka et al. [53] used neural network based approach on enriched
ASTs to identify obfuscation and minification footprints by specific
tools in JS sources. Our system did not solely rely on static analysis
and our detection process did not use any trained classifier, but
instead we relied on the fundamental property that API usage that
we see dynamically from a script should be evident in its source
code. This also removes any requirement of retraining the models
with newly available data unlike a large portion of the existing
work.

Hybrid Analysis. There are a few prior studies utilizing the
combination of static and dynamic analysis. JStill [58] combined
runtime bytecode analysis with static information to identify obfus-
cated malicious functions in JS source. In contrast, we used trace
footprints of JS API function calls and property access to identify
obfuscation. Li et al. combined both static and dynamic analysis to
detect malicious JS contained in pdf files [39]. Xu et al. conducted a
measurement study [57] of obfuscation techniques over 1039 mali-
cious samples from VirusTotal[55]. In our measurement study, we
performed on a much larger scale (Alexa top 100k domains) and
we did not consider the intent of the scripts we processed in terms
of maliciousness.

Deobfuscation. A modest amount of research exists on remov-
ing JS obfuscation from scripts. This includes Maude, a static rule-
based JS rewriter to deobfuscate JS source[6], and the dynamic
semantic-based JS deobfuscator by Lu et al.[41]. However, JSDES
attempted to perform automated deobfuscation on only malicious
JS by first identifying obfuscation set manually, followed by tracing
the functions capable of generating code dynamically within the
obfuscated set, and simulating their execution to have deobfuscated
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code [1]. In contrast, our system used both static and dynamic anal-
ysis to identify obfuscation without any detection of its intent, and
was not concerned with any levels of obfuscation removal.

11 CONCLUSION

In this paper, we have presented a novel definition of JS obfusca-
tion in terms of browser API features concealing. We centered our
definition on the fundamental hypothesis that if we observe some
runtime functionality in a script, then we should be able to stati-
cally identify the responsible code that triggered that functionality,
otherwise the script is hiding its runtime behavior. We presented
a system to detect JS obfuscation based on our definition and vali-
dated our hypothesis using this system. Additionally, we crawled
the Alexa top 100k domains to measure the prevalence of feature
concealing JS obfuscation in the concurrent web ecosystem. Our
results showed that a significant number of domains (95.90% of the
domains we visited) contained at least one script which hides func-
tionality. We observed that this feature concealing effect is more
widespread than eval, we demonstrated a data-driven system to
discover several previously unseen obfuscation techniques.

Our work indicates a shift in how JS code conceals functionality
on the web, which significantly affects current security analysis
tools and the effort needed from human analysts to study the web.
Obfuscation that is based on code generation through eval is fad-
ing away as more sophisticated obfuscation techniques are being
employed. Future web security measurements and tools would need
to take this shift into consideration in order to deal with evolving
web threats.
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C. Code Listing for Obfuscation Technique 1

var _0x3866 = ['object', 'date', 'forEach',...];
// The rotaion routine
(function(_0x1d538b, _@x59d6af) {

var _@xfoddbf = function(_0x6dddcd) {

while (--_0x6dddcd) {

6 _0x1d538b[ 'push']1(_0x1d538b['shift'1());
7 i
8 IS
9 _0xfoddbf (++_0x59d6af);
10| }(_0x3866, 0xf4));

Qe W o

12| // The accessor function
13| var _@x5a0e = function(_0x31af49, _ox3a42ac) {

14 _0x31af49 = _0x31af49 - 0x0;

15 var _0x526b8b = _0x3866[_0x31af49];
16 return _0x526b8b;

17| };

Listing 2: The functionality map and following rotation
routine, and the accessor function for technique 1

D. Code Listing for Obfuscation Technique 2

1| var Ha = /[a-z]/,

2| Ia = /[A-Z1/,

3| b = function(a, b) {

4 if (null == b && (b = 13), b = Number(b), a = String(a),
< @ == b) return a;

5 0 >b & (b += 26);

6 for (var c, g, f, h = a.length, e = -1, d = ""; ++e < h;)
< ¢ = a.charAt(e), Ha.test(c) ?

7 (g = "abcdefghijklmnopgrstuvwxyz".index0f(c),

8 f=1(g+b) %26, d+= "abcdefghijklmnopgrstuvwxyz".
< charAt(f)) : Ia.test(c) ?

9 (g = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" .indexOf(c),

10 f=(g+b) %26, d+="
< ABCDEFGHIJKLMNOPQRSTUVWXYZ".charAt(f)) : d += c;

11 return d

12 }

Listing 3: The decoder function for technique 2

E. Code Listing for Obfuscation Technique 3

1| var a = [17, 95, 94, 86, 24, 63, 2, 0, 1423857449, ...];

2| ! function() {

3 function N() {

4 var ¢ = "WITR2D5dv3Xzw8Cs".split("");

5 this.d = function(d) {

6 if (null == d || void @ == d) return d;

7 if (d.length % a[6] != a[71) throw Error("1100");
8 for (var e = [1, f = a[7]; f < d.length; f++) {

9 f % a[6] == a[7] && e.push("%");

10 for (var g = ¢, K = a[7]; K < g.length; K++)
11 if (d.charAt(f) == g[K]1) {

12 e.push(K.toString(al[50]));

13 break

14 }

15 }

16 return decodeURIComponent(e.join(""))

17 }

18] }

Listing 4: The decoder function for technique 3

Sarker et al.

F. Code Listing for Obfuscation Technique 4

Z4AEE.m7K = function() {
var u7K = 2;
for (; u7K !==1;) {
switch (u7K) {
case 2:
return {
B6Q: function(h6Q) {
var C7/K = 2;
for (; C7K !==10;) {
switch (C7K) {
case 5:
var t6Q
c6Q
C7K = 4;
break;

=0,
=0;

305

Listing 5: The switch-blade function for technique 4

Z4EE.Q7K = function() {
return typeof Z4EE.m7K.B6Q === 'function' ? Z4EE.m7K.B6Q.
< apply(Z4EE.m7K, arguments) : Z4EE.m7K.B6Q;

o=

31}

41 ...

5| Z4EE.x7K = function() {

6 return typeof Z4EE.m7K.B6Q === 'function' ? Z4EE.m7K.B6Q.
< apply(Z4EE.m7K, arguments) : Z4EE.m7K.B6Q;

7| };

Listing 6: The executor functions

F. Code Listing for Obfuscation Technique 5

function Z(I) {
var 1 = arguments.length,
0
S

1,
=1;
while (S < 1) O[S - 1] = arguments[S++] - I;
return String.fromCharCode.apply(String, 0)
3
function z(I) {
var 1 = arguments.length,
0=1[1;
for (var S = 1; S < 1; ++S) O.push(arguments[S] - I);
return String.fromCharCode.apply(String, 0)

Listing 7: The string decoder function variations
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