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Abstract
JavaScript has gained traction as a programming language
that qualifies for both the client-side and the server-side logic
of applications. A new ecosystem of server-side code written
in JavaScript has been enabled by Node.js, the use of the V8
JavaScript engine and a collection of modules that provide
various core functionality. Node.js comes with its package
manager, called NPM, to handle the dependencies of modern
applications, which allow developers to build Node.js appli-
cations with hundreds of dependencies on other modules.

In this paper, we present Mininode, a static analysis tool for
Node.js applications that measures and removes unused code
and dependencies. Our tool can be integrated into the build-
ing pipeline of Node.js applications to produce applications
with significantly reduced attack surface. We analyzed 672k
Node.js applications and reported the current state of code
bloating in the server-side JavaScript ecosystem. We leverage
a vulnerability database to identify 1,660 vulnerable packages
that are loaded from 119,433 applications as dependencies.
Mininode is capable of removing 2,861 of these vulnerable
dependencies. The complex expressiveness and the dynamic
nature of the JavaScript language does not always allow us
to statically resolve the dependencies and usage of modules.
To evaluate the correctness of our reduction, we run Minin-
ode against 37k Node.js applications that have unit tests and
reduce correctly 95.4% of packages. Mininode was able to
restrict access to the built-in fs and net modules in 79.4%
and 96.2% of the reduced applications respectively.

1 Introduction

Node.js [10] is an open-source JavaScript runtime engine
typically used to build scalable network applications. The
JavaScript runtime that powers Node.js is based on Chrome’s
V8 engine. Despite Node.js’ young age, it has become
very popular among the open-source community and enter-
prises. Moreover, big companies such as Microsoft, IBM,
PayPal [22, 27, 39] are among others who use Node.js in their

products. One of the reasons for its popularity is in Node.js
architecture choice. Node.js uses a non-blocking event-based
architecture which gives an ability to developers to scale up
Node.js applications easily. Nowadays Node.js is used to
develop critical systems [49] that require security attention.

Node.js developers distribute community-developed li-
braries using an in-house built package manager system called
NPM. NPM is considered to be the largest package manager by
the number of packages [12] it hosts (over million) and growth
rate of almost 800 pkg/day [9]. Since 2014, the NPM registry
traffic has grown 23,500%, which shows its increasing pop-
ularity among developers [47]. This staggering amount of
packages hosted in NPM gives developers the power to build
apps very quickly by using already implemented functionality
by others. In this paper, we argue that overusing third-party
libraries comes with its own security risks.

The drawbacks of extensive dependence on third-party
packages are: (1) developers need to trust others on the se-
curity and maintenance of the libraries; (2) the popularity of
NPM makes it lucrative for adversarial users to distribute mali-
cious libraries using attacks such as typosquatting [20,43,44],
ownership takedown and introducing a backdoor [45, 52]; (3)
upgrade or removal of the package from NPM may break the
build pipeline of an application [46].

Our study of 1,055,131 packages shows that on average
only 6.8% of the code in the application is original code
according to source logical lines of code (LLOC) or putting
in different words 93.2% of the code in Node.js application is
developed by third-parties. One of the reasons why developers
tend to use "trivial" third-party packages, is the belief that
they are well managed and tested. Despite the belief, the
study shows that only 45.2% of "trivial" packages have tests
implemented [19].

Previous works on Node.js security mostly concentrate on
architecture choice of Node.js and, therefore, on attacks that
target the main thread of Node.js applications [23–25, 38, 42].
Others have conducted research on the reasons why develop-
ers use "trivial" dependencies [19] and security implications
of depending on NPM packages [52]; however, no research



on an attack surface that extensive usage of third-party li-
braries may bring and ways of reducing the attack surface of
a Node.js application was conducted before.

Due to all of the above, it is important to know the attack
surface of third-party packages and to reduce them ahead of
time during a development process.

Our main contributions are the following:

• We developed a system that reduces the attack surface of
Node.js applications by removing unused code parts and
modules from the dependency graph. The system can use
one of two different reduction modes: (1) coarse-grain;
(2) fine-grain; Our system is publicly available here:
https://kapravelos.com/projects/mininode

• We analyzed 672,242 Node.js applications from the NPM
repository and measured their attack surface. Our find-
ings show that at least 119,433 (11.3%) of applications
depend on vulnerable third-party packages. Also, on av-
erage only 9.5% of all LLOC is used inside analyzed
packages.

• We created a custom build of Node.js that can restrict
the access to the built-in modules using a whitelist gen-
erated by Mininode. Our evaluation experiment shows
that Mininode successfully restricted the access to fs
and net modules for 79.4% and 96.2% of packages, re-
spectively.

2 Background

In this section, we describe the technical details of Node.js
modules, how NPM works, and how Node.js resolves im-
ported modules, both built-in and third-party dependencies.
We use the term module to describe anything under the
node_modules folder that can be loaded using the require
function. A package is everything that is hosted on NPM, but
not necessarily can be loaded by using require function, e.g.
CSS files. In this paper, we refer to a package as a directory
of files with a JavaScript entry point that can be loaded with
the require function. We treat applications the same as pack-
ages, i.e. they both have a JavaScript entry point, from which
Mininode can start its analysis.

2.1 Node.js module system

JavaScript has been traditionally the language of the browser.
Web applications build their front-end logic in JavaScript
by leveraging browser APIs. Node.js applications rely on a
completely different ecosystem that is built to assess the needs
of server-side applications. Instead of the DOM and other Web
Platform APIs, Node.js relies on built-in modules that provide
functionalities like networking and filesystem access. These
modules are based on the CommonJS module system and only

recently we have seen experimental support for ECMAScript
modules [11].

Node.js treats every JavaScript file as a CommonJS module.
Node.js has built-in require() function to import both built-
in and developer-created modules into code. The require
function behaves differently depending on the type of the
module requested. If the requested module is on the list of
built-in modules, then it is returned directly from the modules
written in C++. If the requested module is not part of the built-
in modules, require will wrap the imported module with a
function wrapper, as shown in Listing 1, before executing the
code. This ensures that variables from the imported modules
are not placed unintentionally in the global scope. Despite
this, modules can declare variables and functions in the global
scope, which poses a challenge in accurately determining the
used APIs of the module (§5.2).

1 (function(exports, require , module,
__filename , __dirname) {

2 // Module code lives in here
3 });

Listing 1: Function wrapper to execute module code

Every module that wants to provide some of its functional-
ity to other modules can use the exports object. For example,
in Listing 2 b.js exports two functions. However, a.js uses only
function foo() after importing b.js. Thus, function bar() can
be removed without impacting the behavior of the a.js. We
discuss how we leverage this mechanism to restrict access to
built-in modules Section 6.1.

1 //inside b.js
2 exports.foo = function foo(){}
3 function bar(){}
4 exports.bar = bar;
5 //inside a.js
6 var b = require("./b.js")
7 b.foo()

Listing 2: Example of CommonJS module and common
ways to export the functionality

2.2 Node Package Manager (NPM)
Node.js comes with a built-in package manager called NPM,
which hosts aside from JavaScript libraries also front-end
CSS, JavaScript frameworks and command-line tools. In this
paper we focus only on server-side Node.js packages that are
distributed over NPM. Developers can install a package using
the command "npm install <name>@<version>", where
"<name>" is the name of the package. By default, if version
is missing, NPM will install the latest version of the package.
If the package name is not given, NPM will look for the pack-
age.json file inside the current working directory and will
install all packages listed as dependencies in the file. The
package.json file also contains metadata about the Node.js
application. These metadata can contain the main file of the
application (i.e. entry point), the version number, a short de-
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scription, a list of dependencies, and other information about
the Node.js application. NPM installs dependencies transitively.
For example: if package A depends on package B, and pack-
age B depends on package C, NPM will install packages A, B,
C. The NPM’s transitive installation of dependencies creates a
serious problem of bloated code, as it makes it really hard for
the developer to understand on how many packages the code
depends. De Groef et al. states that some popular packages
may in total depend on more than 200 packages [26].

3 Threat Model

Our threat model targets vulnerable Node.js applications that
are susceptible to arbitrary code execution vulnerabilities. The
main premise of this paper is that we can 1) reduce the capabil-
ities of the attack by restricting the application’s functionality
and 2) eliminate further exploitation of the application that
would elevate the attacker’s capabilities by targeting vulnera-
bilities in unused dependencies.

We reduce the attack surface of applications by restrict-
ing the available built-in modules that can be loaded to the
absolute necessary. This results in removing classes of capa-
bilities from the application if they are not already used, like
filesystem access or networking.

We mitigate chained exploitation by removing unused vul-
nerable modules and restricting built-in modules. Our assump-
tion here is that the application is exploitable, but with certain
restrictions, i.e., code can be injected, but without arbitrary
execution due to unsafe regular expression checks. In that
particular scenario, the attacker can take advantage of other
existing vulnerable packages that are now reachable and gain
full control of the application. The attacker can take advan-
tage of the existing modules in two scenarios: 1) directly
manipulating the input to the require function to load any
modules, 2) indirectly manipulate the input to the require
function to load any modules, except built-ins. Our system is
capable of stopping further exploitation of the unused parts of
the application, but it does not prevent the initial vulnerability
that leads to partial code execution.

When the attacker can directly manipulate the require
function and load additional built-in modules, Mininode re-
stricts the access to unused built-in modules, even if they
are used in one of the unused transitive dependencies. This
significantly reduces the capabilities of the attack.

Listing 3 shows a theoretical motivating example of
chained exploitation when the attacker can indirectly con-
trol the input to the require function. In the example, the
attacker can inject malicious data to the fs.linkSync func-
tion (line 6), which is used to create a symbolic link, by ma-
nipulating the request data. For example, the attacker can
replace the entry point of header-parser with a symbolic link
to unused.js by manipulating dst and src fields. Therefore,
next time when the attacker navigates to "/exploit" end-
point, Node.js will load the unused.js module instead of the

header-parser package, and the application passes data pro-
vided by the attacker to the unused.js (lines 11-12). Note that
an attacker cannot manipulate symbolic links to load built-in
modules because they are part of the Node.js binary. For this
kind of chained exploitation, Mininode can remove unused
packages from the application and restrict the attacker’s abil-
ity to load modules that are not used by the application; thus,
making the attack less effective. Some vulnerable packages
though, like fast-http [4] , marscode [2] and marked-tree [3]
are directly exploitable by just loading their module, but not
all vulnerabilities can be exploited via chained exploitation,
as they can depend on additional constraints that might not
be available to the attacker.

1 const fs = require(’fs’)
2 const express = require(’express’)
3 const app = express()
4
5 // some code parts omitted for brevity
6 app.get(’/vulnerable’, (req, res) => {
7 fs.linkSync(req.body.dest , req.body.src);
8 res.send(’Hello World!’)
9 });

10
11 app.get(’/exploit’, (req, res) => {
12 let parser = require(’header -parser’);
13 let result = parser(req.headers);
14 res.send(result);
15 });

Listing 3: Motivating vulnerable example of chained
exploitation for loading unused packages

One of the great advantages of Mininode is that it restricts
the attacker from using any unused module, including built-in
modules, e.g. fs, even if it is used in a transitive dependency.
When these modules are not used from the application, Minin-
ode can have a significant impact on the attack.

4 Design Goals and Architecture Overview

4.1 Design Goals

There were two main design goals that we followed during
the implementation of the Mininode.

Effectiveness. Mininode should reduce the attack surface
of the Node.js application as much as possible. To achieve the
effectiveness goal, we implemented two modes of reduction:
(1) coarse-grain; (2) fine-grain; and added a built-in mod-
ule restriction mechanism into Node.js. We provide Minin-
ode’s reduction effectiveness results later in the paper (§7.1
and 7.2).

Correctness. Mininode must remove only unused code
parts, i.e. should not break the original behavior of the ap-
plication. To validate that Mininode meets the correctness
goal, we automatically verified the original behavior of 37,242
packages after reduction (§7.1).
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Figure 1: Mininode consists of main 5 parts: 1 Parser; 2 Value-binding; 3 Load Dependency Builder; 4 Call Graph Builder;
5 Reducer and supports coarse-grain and fine-grain reductions

4.2 Architecture Overview

Mininode consists of five different stages as shown in Figure 1,
that will run during the reduction of the application.

Mininode takes a directory path of a Node.js application,
which contains package.json file, as an input. Then, Mininode
traverses the directory, parses all JavaScript files and generates
abstract syntax trees (ASTs) for each JavaScript file ( 1 ).
We use AST representation of the source code because it
is easier to analyze statically and convenient to transform
the tree structure to modify the initial source code. To parse
JavaScript code, we use the popular open-source esprima [8]
library. The final outcome of the Parser is an array of all
modules inside the application folder and each module’s AST
representation. After Parser completes processing the code, it
will pass the generated ASTs to the next stages of Mininode.

The Value-binding ( 2 ) is a pre-reduction stage that col-
lects metadata about each module in the application from
their AST representation, which is used in reduction stages.
Also, Value-binding collects overall statistics on each mod-
ule regarding the number of logical lines of code, dynamic
imports, dynamic export.

The main reduction process consists of three different
stages: (1) Load Dependency Builder, (2) Call Graph Builder
and (3) Reducer.

The Load Dependency Builder ( 3 ) builds a file-level de-
pendency graph of the application by traversing the AST
generated by Parser. To build the dependency graph, Load
Dependency Builder starts from the entry point(s) and detects
all require function calls from AST. All modules that are
recursively accessible from the application’s entry point(s)
are marked as used by Load Dependency Builder . Despite the
simplicity of the algorithm, there are challenges that need to
be addressed to construct a complete dependency graph (§5)
and are further discussed in Section 6.

Mininode supports two reduction modes for the applica-
tion: (1) coarse-grain reduction; (2) fine-grain reduction. The

coarse-grain reduction mode works at file-level and removes
unused files in the application, while the fine-grain reduction
works at function-level and removes functionalities from in-
dividual modules that are never used. As shown in Figure 1,
Mininode skips the Call Graph Builder stage, and proceed
directly to the Reducer stage in coarse-grain reduction mode.

The Call Graph Builder ( 4 ) is responsible for detecting
used and unused functions, exports and variables of all mod-
ules that are part of the dependency graph generated by Load
Dependency Builder (§6.4). To achieve effectiveness design
goal, Call Graph Builder may perform several passes on the
AST of each module until no change to the final usage graph
is made.

The final stage in our reduction pipeline is the Reducer
( 5 ) stage. The Reducer is responsible for removing AST
nodes and modules that are marked as unused by Call Graph
Builder and Load Dependency Builder, respectively (§6.5).
After finishing all of the reduction stages, Mininode generates
source code for each module from their updated AST.

5 Challenges

The dynamic nature of JavaScript introduces several chal-
lenges to static analysis [33, 37, 50] and this is also true for
the module system used by Node.js (§2.1). In this section, we
list some of the research challenges that we faced during the
implementation of the attack surface reduction tools using
static analysis for Node.js applications. Overall, we divide the
challenges into two categories: (1) export-related challenges;
(2) import-related challenges.

5.1 Export-Related Challenges
The export-related challenges relate to the way how a module
is exporting its functionality, and thus directly affects the
Mininode’s effectiveness design goal as defined earlier (§ 4.1).



Failure to deal with export-related challenges will mostly lead
to the under-reduction of the attack surface, i.e. not removing
unused functionalities from the module. However, in some
rare cases may lead to over-reduction of the functionality,
i.e. removing used functionality. We give an example of both
cases in follow up subsections.

Unusual use of the export object. JavaScript allows
developers to modify an object in several different ways. Con-
sequently, the export object can also be modified in several
different ways to export functionality. For example, develop-
ers can create an alias for the export object and use the alias
instead to export the module’s functionalities.

1 // inside request.js
2 exports.post = function(){}
3 exports.get = function(){}
4 // inside request -v2.js
5 exports = module.exports = require("request")
6 exports.patch = function(){}
7 // inside index.js
8 var req = require("request -v2")
9 req.get();

10 req.patch();

Listing 4: Example of re-exporting the imported module

Extension of a module with re-export. In CommonJS
module system one can extend other modules by re-exporting
it and adding additional functionality. In the example given in
Listing 4, one can see how request-v2.js module extends re-
quest.js module with patch function. During analysis, Minin-
ode should detect that get function used in index.js is ac-
tually coming from request.js. This behavior prevents over-
reduction of the request.js module, and it ensures that Minin-
ode meets the correctness goal.

5.2 Import-Related Challenges
The import-related challenges affect the static analysis’s per-
formance in the detection of used functionalities of the im-
ported CommonJS modules. Failure to detect used function-
alities of imported modules will lead to over-reductions, i.e.
removing used functionalities. Thus, it will lead to breaking
the original behavior of the Node.js application. The rest of the
section is describing some of the import-related challenges.

1 //inside request.js
2 exports.post = function(){}
3 exports.get = function(){}
4 // inside index.js
5 request = require("request");
6 request.post()
7 // inside util.js
8 request.get();

Listing 5: Example of importing a module in the global
scope.

Dynamically importing the module. It is common for
Node.js applications to load different modules depending on
the execution environment or the user’s input. Dynamically

importing a module restricts the ability for simple static anal-
ysis to detect which module was loaded, which may lead to
the removal of the whole used module. Therefore, it is vital to
resolve dynamic imports to build a complete load dependency
graph of the application.

1 // inside parent.js
2 module.exports = require("child.js")
3 exports.foo = function(){
4 exports.childFoo(); //defined in child.js
5 }
6 exports.parentBar = function() {
7 }
8 //inside child.js
9 exports.childFoo = functon() {

10 exports.parentBar(); //defined in parent.js
11 }

Listing 6: Example of invisible parent-child dependency

Importing as a global variable. As discussed in Back-
ground section 2.1, Node.js wraps the modules with wrapper
function to avoid collision of variable and function names
and create separate scope for each module. Despite this, de-
velopers can import a module into a global scope, as shown
in Listing 5. If a module is imported into a global scope, any
other module can have direct access to the module’s func-
tionality without importing it. Listing 5 gives an example of
loading the request.js in global scope in index.js, which makes
it possible for util.js to use get function of the request.js with-
out importing it.

1 //in index.js entry point
2 var foo = require("foo")
3 var bar = require("bar")
4 foo.x()
5 bar.z()
6 //inside foo.js module
7 var bar = require("bar")
8 exports.x = function(){}
9 exports.y = function(){

10 bar.w()
11 }
12 //inside bar.js module
13 exports.w = function(){}
14 exports.z = function(){}

Listing 7: Example of cross-reference dependence.

Invisible parent-child dependency. This issue arises
when the imported module (child) is using the functional-
ity defined inside the module (parent) that imports the child
module as shown in Listing 6. Because of the absence of a
clear dependency link from child to parent, this challenge is
counter-intuitive in nature. From Listing 6 one can see that,
even if child.js is not importing parent.js, the child module
is using parentBar that was defined in the parent module.
We saw this behavior in one of the most popular NPM package
debug [5].

Cross-reference dependency. The cross-reference depen-
dency problem happens when two different modules import
the same module, but they use different parts. For example



in Listing 7 index.js and foo.js are referencing bar.js, how-
ever using different parts of it. If Mininode preserves all used
functionality, it will preserve exports.w function of bar.js,
because function exports.w was used inside foo.js. However,
function exports.w of bar.js should be removed because it
is not reachable from the entry point (index.js) of the appli-
cation.

6 Implementation

Mininode takes as input a Node.js application and makes
three different reduction stages to produce a reduced version
of the application (§4.2). This section gives implementation
details of each reduction stage and how certain challenges de-
scribed in Section 5 are resolved. Additionally, the following
subsections give details about how access to built-in modules
is restricted, and what kind of metadata is collected during
Value-binding stage.

6.1 Restricting Access to Built-in Modules
The require function in Node.js checks if the requested
module is in a built-in modules list before trying to resolve
it (§2.1). We modified the original behavior of the require
function at the Node.js C++ level. The patched require func-
tion restricts access to the built-in modules by checking if
the requested module is not in a whitelist of built-in modules
generated by Mininode. The whitelist is generated only once
during the reduction of the application and kept unchanged. If
the application does not have previously generated whitelist,
our custom-built Node.js will allow all built-in modules to
avoid breaking the application.

6.2 The Value-binding Details
The Value-binding ( 2 ) is a preprocessing step that collects
metadata about each module in order to help other reduc-
tion stages to overcome challenges listed previously (§5).
Value-binding collects an array of aliases for exports object
and require function, because developers may rename these
CommonJS APIs by assigning them to another variable and
using an alias for the API instead of using API directly. Espe-
cially, this behavior can be seen in the case of packages that
provide a minified version. Minification usually substitutes
longer names with shorter ones to decrease the size of the file.

Value-binding also collects a dictionary of identifier names
with their corresponding values, which are used to detect
the possible values of dynamically imported modules. Possi-
ble values of identifiers could be literals (strings) or other
identifier names that were assigned to the original identi-
fier. If an identifier’s value depends on any dynamic expres-
sion, e.g. a function call, Value-binding will mark the identi-
fier as non-resolvable. However, if the identifier’s value de-
pends on binary expression, e.g. var a=b+"-production",

Value-binding tries to resolve the possible values by get-
ting the values of "b" from the dictionary and adding the
"-production" to it. Note that variable "b" in the dictionary
must be resolvable. Otherwise, Value-binding will mark the
variable "a" as non-resolvable.

6.3 The Load Dependency Builder Details
The Load Dependency Builder ( 3 ) is responsible for build-
ing the file-level dependency graph by looking for require
(or its aliases (§6.2)) function calls in AST and by resolving
the function’s argument to one of the existing modules (§4.2).
The Load Dependency Builder resolves require’s argument
using Node.js default resolution algorithm if the argument’s
type is literal. In other cases, it will use a simple algorithm to
resolve dynamic import.

Resolving dynamic imports. To resolve the dynamic im-
ports, the Load Dependency Builder uses the dictionary gen-
erated by Value-binding in the previous stage. If the argu-
ment’s type is an identifier and the dictionary contains values
for the identifier, Load Dependency Builder iterates through
the possible values and resolves to possible modules in the
application. This process is one of Mininode’s advantages
over other open-source NPM packages implemented to build
the dependency tree of an application [13, 29, 31]. On the
other hand, if the identifier does not exist in the dictionary, or
the identifier is marked as non-resolvable, Load Dependency
Builder will mark a module as using complicated dynamic
import that can not be resolved reliably using only static tech-
nique. If the dependency graph of the application contains a
module with complicated dynamic import, Mininode stops
performing further analysis and exits because the application
under analysis cannot be reduced reliably without breaking
its original behavior.

6.4 The Call Graph Builder Details
The Call Graph Builder ( 4 ) runs only during fine-grain
reduction mode, as can be depicted from Figure 1. The goal
of the Call Graph Builder is to detect which parts of the code
are used for each module and mark unused ones. To achieve
the goal, it performs two separate tasks on the module’s AST
each time during analysis.

The first task, which is called marking unused, is responsi-
ble for marking exports, functions, and variables as unused if
they are not used inside or outside of the module according
to an array of used exports of the analyzed module.

The second task, which is called usage detection, is respon-
sible for constructing the used exports array for each imported
modules of the currently analyzed module. It achieves this
by recording the variable names initialized by require (or
the aliases (§6.2)) function calls and detecting all member
expressions (i.e. property accesses) for all recorded variable
names.



Resolving cross-reference challenge. To achieve the ef-
fectiveness design goal discussed in Section 4.1, Mininode
needs to resolve the cross-reference challenge. The cross-
reference challenge can be solved by always running the
marking unused task before the usage detection task for each
module’s AST. One benefit of running marking unused be-
fore usage detection is that during usage detection, we can
skip functions that are marked as unused. For example, for
the module foo.js from Listing 7, by first running marking
unused task, we mark exports.y as unused. Thus, usage de-
tection will skip traversing exports.y during analysis, and,
therefore, exports.w will not be included in an array of used
exported functions of the bar.js module.

Resolving extension of the module by re-exporting. The
Call Graph Builder internally keeps track of used re-exported
modules during an analysis of the AST. Later on, Call Graph
Builder will add re-exported modules into the descendants ar-
ray of the currently analyzed module. In the case of Listing 4,
request.js module will be added into the descendants array
of request-v2.js module. Additionally, request-v2.js becomes
part of the ancestors array of request.js automatically. Later,
when Call Graph Builder analyzes request.js module, it passes
all used properties of request.js’s ancestors (i.e. request-v2.js)
to the marking unused task as an extra argument. In this par-
ticular case, the extra array argument will include get and
patch function names. Thus, exported get function of re-
quest.js will not be marked as unused during the marking
unused task. Therefore, Reducer will not remove used ex-
ported functions, and eventually, Mininode will preserve the
correctness design goal (§4.1).

Resolving invisible parent-child dependency. Call
Graph Builder resolves the invisible parent-child dependency
challenge almost the same way it resolves extension by re-
export challenge. Because Mininode already has information
about ancestors and descendants of the module, Call Graph
Builder can pass as an extra argument all used exports of all
ancestors and descendants of the module during the marking
unused task. In the case of Listing 6, Call Graph Builder pass
as an extra argument child.js’s used exports array, which con-
tains parentBar function, into the marking unused task for
parent.js.

Resolving importing as a global variable. To resolve the
importing module as a global variable challenge, Call Graph
Builder keeps track of leaked global variables during the
usage detection task and stores used members, i.e. accessed
properties, of a variable inside a dictionary of leaked global
variables. In the example from Listing 5, Call Graph Builder
creates an entry in the dictionary with a key request after
analyzing index.js. The value of the entry is an array of used
members, which contains post and get after analyzing in-
dex.js and util.js, respectively. Next, when Call Graph Builder
performs the marking unused task for request.js, it passes the
corresponding members’ array of the dictionary as an extra
argument.

4. Reduction Testing

Reduced VersionUnit Tests

2. Installation and Testing

Production VersionUnit Tests Reduced Version

3. Application Reduction

Production Version

5. Analyze The Results
1. Filtering and Data Collection

Packages w/ Tests Source Code
w/ Tests

Figure 2: Validation experiment setup

6.5 The Reducer Details
The Reducer ( 5 ) is responsible for removing the AST nodes
marked as unused without breaking the valid syntax of the
AST and generating code from the AST. We are using the
open-source escodegen [7] library to generate the source code
from the AST.

Resolving unusual use of exports object Currently,
Reducer can reduce exporting logic for the most common
three ways to statically define a property for the object in
JavaScript. These are: (1) defining property using dot no-
tation, e.g. exports.a=1; (2) defining property using array
notation, e.g. exports["b"]=2; and (3) defining property
using Object.defineProperty function. In addition to the
listed ones, Reducer tries to resolve the value for dynamically
defined properties, e.g. var c=’c’; exports[c]=3, using
a similar algorithm as in the resolving dynamic import chal-
lenge. If the Reducer cannot resolve the dynamically defined
property, it will not reduce the property, which may cause
under-reduction. However, this behavior will not break the
original code of the application.

7 Mininode Validation and Measurement

Overall, we run two experiments: (1) to validate the correct-
ness of the Mininode in reducing the attack surface of the
application; (2) to measure the bloated code and to check
the effectiveness of the system in reducing the attack surface
and vulnerabilities in the NPM registry packages. In the next
subsections, we will give more details of experiments’ setup
and results.

7.1 Mininode Reduction Validation
Experiment Setup. We performed the validation experiment
to evaluate the effectiveness and correctness of the Mininode
reduction (§4.1). We measured the effectiveness by calculat-
ing the total number of removed files, removed LLOC, and re-
moved exports. The correctness of the reduction, i.e. whether
Mininode reduced the package without changing its original
behavior, is measured by the success rate of passed original
unit tests of the packages after the reduction of their attack
surface. The validation experiment consists of five steps as
shown in Figure 2.



The goal of the first Filter and Data Collection step was
to gather package names for which we could run unit tests,
and calculate the tests coverage metrics automatically. The
most popular test coverage package on NPM is nyc, previously
known as istanbul, which is advertised as a tool where no
configuration is needed to calculate unit tests’ code coverage
metrics. Therefore, we selected packages that list as one of
their dependencies nyc and/or unit test package that is com-
patible with nyc. In total, 225,449 out of 1,055,131 packages
depend on one of the packages required for automatic testing
and coverage calculation. Next we collected packages’ source
code from Github, installed them, and ran their original unit
tests without performing any reduction. We decided to collect
source code from Github because not all developers publish
package’s test code into NPM. As a result of this, we were left
with only 49,535 packages that were successfully installed,
and passed their original unit tests before reduction.

Initially, we tried to reduce the full version of the packages
and run the unit tests on the final results. However, this ap-
proach failed, because during the reduction step Mininode
removed all code responsible for unit tests. To resolve this
issue, we leveraged the way Node.js looks for a correct de-
pendency by traversing the node_modules directory in the
same location where the file requesting the dependency is
located. We installed both the full and production versions
of the package and created a symbolic link from the main
file (i.e. entry point) of the full version to the main file of the
production version. In this way, we could run the package’s
unit tests in the full version but test its production version.
During the test of packages’ production version, we noticed
that some packages in production version require developer-
only dependencies that are not installed (§2.2). Usually, these
cases of counter-intuitive dependencies are used in the pack-
ages that are implemented as a plugin to other developer-only
packages, e.g. eslint-plugin-jest is a plugin for eslint. Another
challenge we faced was that babel [1], a popular package
to transpile JavaScript, needed a special configuration for
projects located in a different folder or symlinked [14]. After
eliminating packages that failed during the test of their pro-
duction version using a symbolic link from the full version,
we were left with 45,045 packages in our validation dataset.

The final steps in the validation experiment, before result
analysis, were package reduction and unit tests validation of
the reduced version of the packages (Figure 2). In 6579 out
of 45,045 packages Mininode detected dynamic import that
could not be resolved with the current implementation (§6.3)
and for 2.7% of packages Mininode threw runtime errors,
such as heap out of memory. The final dataset has 37,242
packages that we tested for correctness and effectiveness.

Results. For the final dataset of 37,242 packages, we per-
formed both coarse-grain and fine-grain reduction and ran
unit tests to verify that Mininode did not break the original
functionality of the reduced packages. The results of both
modes of reduction are shown in Table 1. As it may be ex-

Coarse-grained Fine-grained
Passed test 35,762 35,531
Removed fs module 28,144 28,196
Removed net module 33,262 34,180
Removed http module 32,878 32,795
Removed https module 33,137 33,044
Total removed files 86.9% 87.3%
Total removed LLOC 85.4% 92.2%
Total removed exports 86.7% 89.0%
Failed test 1,480 1,711
TOTAL 37,242 37,242

Table 1: Coarse and fine grain reduction results on validation
set

pected, the coarse-grain reduction (96.0%) has a higher suc-
cess rate than the fine-grain reduction (95.4%). This is due
to the behavior of the fine-grain reduction trying to reduce
the individual modules on function-level, compared to coarse-
grain reduction, which only performs reduction on file-level.
Reducing in the fine-grain mode may cause over-reduction
of the used functions, which leads to breaking the original
behavior of the package and, thus, failing the unit tests. How-
ever, despite the higher failure rate, the fine-grain reduction
performed better in terms of reducing unused code parts. Fine-
grain reduction removed almost 8% more LLOC compared
to coarse-grain reduction. Also, in other reduction categories
such as reduction of the files and the exported functionalities,
fine-grain shows better results. As shown in Table 1 Minin-
ode was able to restrict the access to the built-in modules
at least in 28,144 (78.7%) of packages during the coarse-
grain reduction, and in 28,196 (79.4%) of packages during
the fine-grain reduction. The high results of reduction may
be counter-intuitive, especially in case of reducing a lot of
files and LLOC from the package. That is why we randomly
selected three packages that have a more than 99% reduction
rate and manually verified the results. Both of the packages
mfdc-router and middleware-chain-js were shipping a bun-
dled version along with their source code. In these cases,
Mininode removed almost all of their dependencies from the
node_modules folder and unnecessary source code files. In
the last case, after installation, cpr had 35,911 test files out of
all 35,982 JavaScript files, which were removed by Mininode.

Coverage Coarse-grained Fine-grained
100% 13,561 13,548
Between 90-99.9% 8,413 8,290
Between 50-90% 6,915 6,797
Unknown or below 50% 6,873 6,896
Total 35,762 35,531

Table 2: Coverage statistics of successfully passed test sam-
ples

In addition, we calculated the test coverage of the success-
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Figure 3: NPM measurement experiment setup

Job statuses and reasons Packages
Succeeded packages 672,242
Failed packages 382,889
Package does not have main entry point 188,630
Non-resolvable dynamic import detected 128,533
Failed to install 26,875
Package’s main entry point is not CommonJS 20,977
Others 5,013
TOTAL 1,055,131

Table 3: NPM measurement experiment overall status

fully reduced packages for both reduction modes. From all
packages that successfully passed the validation test after
reduction, more than third has 100% test coverage and al-
most forth have coverage between 90-99.9% for both coarse
and fine-grain reductions, as shown in Table 2. This shows
that Mininode can successfully reduce the packages without
breaking the intentional behavior.

7.2 Attack Surface Reduction in NPM
Experiment Setup. The setup and stages of the measure-
ment experiment are shown in Figure 3. First, we collected
all package names from NPM. Second, we tried to install the
production version of all packages and to run reduction logic
on successfully installed ones. Finally, we analyzed the results
and measured the vulnerabilities and their reduction.

We gathered all package names from NPM using the open-
source package all-the-package-names [12] that contains the
list of all package names sorted by dependent count. The
list contained 1,055,131 package names from NPM as of 19th
September 2019.

After gathering all the package names, we tried to install
and reduce packages using the coarse-grain reduction method.
Table 3 shows that only 672,242 out of 1,055,131 were suc-
cessfully installed and reduced. Table 3 lists the most common
reasons why not all of the packages were analyzed. Top two
most common reasons are: (1) installed packages are not
Node.js application, which means they are not intended to
run on the server-side, e.g. theme’s CSS files; (2) packages
that can not be reduced with Mininode, due to non-resolvable
dynamic import. One interesting failed category is packages’
for which entry point is not CommonJS, e.g. ES6, or even not
JavaScript file, e.g. TypeScript, JSON and so on.

In the fourth step, as shown in Figure 3, we gathered a

Number
Removed fs built-in module 549,254
Removed net built-in module 623,646
Removed http built-in module 606,981
Removed https built-in module 614,030
Percentage of removed JavaScript files 79.1%
Percentage of removed LLOC 90.5%
Percentage of removed exports 90.4%
TOTAL 672,242

Table 4: NPM measurement experiment results

vulnerability database from snyk.io [16] and mapped vulnera-
bilities with packages by calculating if specific vulnerable de-
pendency is part of the dependency chain inside the package.
In addition to mapping vulnerability, we calculate if Minin-
ode removed the particular vulnerability during the reduction
process. We consider that a specific vulnerable dependency
is removed if Mininode removes all source files from it. Oth-
erwise, we say that the package still depends on vulnerable
dependency. Note that this is a conservative approach and
gives us a lower bound reduction number because certainly
Mininode may have removed a vulnerable file from vulnerable
dependency, and left only safe files.

Results. The NPM measurement experiment reduction re-
sults are shown in Table 3. As discussed earlier, only 672,242
out of 1,055,131 were successfully installed and reduced.
From all successfully installed and reduced packages, Minin-
ode restricted access to fs built-in module in 81.7% pack-
ages, and it also restricted access to network-related built-in
modules such as net, http, https in 92.8%, 90.3%, 91.3%
packages, respectively. We discussed how Mininode restricts
access to built-in modules in Section 6.1.

One question we tried to answer during the NPM measure-
ment experiment was how significant is the severity of bloated-
code in NPM packages. To answer this question, we calculated
the relationship between declared and installed dependencies
of the packages. On average, successfully analyzed packages
declared 1.9 dependencies but installed 27.3 dependencies,
which means NPM installed x14 times more dependencies than
declared. This behavior is the result of the transitive depen-
dency installation process discussed in Section 2.2. On NPM
public registry, the package’s detailed information shows the
number of declared, i.e. direct dependencies, but not the num-
ber of actually installed dependencies. As a consequence,
developers may choose packages with lower declared, but
higher installed dependencies instead of packages with higher
declared, but lower installed dependencies.

To give a more detailed insight of the bloatedness of NPM
packages, we calculated the ratio between third-party and
original code base’s logical lines of code. On average, from
all code-base, only 6.8% was original code, while 93.2% was
external code from third-party dependencies, and from all



LLOC, only 9.5% were left after coarse-grain reduction by
Mininode. This result clearly shows that more and more ap-
plications are developed as a mash-up of third-party packages
and the need for reduction techniques.

We also measured the effectiveness of Mininode in reduc-
ing unused vulnerable dependencies from packages. These
vulnerabilities are present in the application’s code, but are
not reachable. In order to get exploited, the attacker needs
to chain vulnerabilities together (§ 3), something that might
not be always possible. The results of vulnerability reduction
analysis in NPM packages are given in Table 5. We used the
vulnerability database from snyk.io, which contains 1,660
vulnerable packages grouped by categories. In total, we found
that 119,433 of packages have at least one active vulnera-
ble dependency by the time of writing. This corresponds to
17.8% of all successfully analyzed and reduced 672,242 pack-
ages. Table 5 shows the top ten most common vulnerability
categories sorted by the number of unique packages that have
a dependency from a specific vulnerability category. For ex-
ample, 91,184 packages have at least one dependency vulner-
able to Prototype Pollution. Partially removed column of the
Table 5 shows the number of unique packages from which
Mininode removed at least one vulnerability of a specific cat-
egory. For example, if the package @chrismlee/reactcards
had two vulnerable dependencies from the Arbitrary Code In-
jection category and Mininode was able to remove one of the
vulnerable dependencies, then we count the package as par-
tially removed. On the other hand, the fully removed column
shows the number of unique packages where all vulnerabili-
ties of the specific category were removed. Also, in Table 5,
one can see the percentage of partially and fully removed
packages from the total number of vulnerable packages. On
average, Mininode was able to partially remove vulnerabil-
ities from across all categories in 13.8% cases, and remove
all vulnerabilities in 13.65% cases. In conclusion, Mininode
was able to remove at least one vulnerability from 10,618 and
remove all vulnerabilities from 2861 unique packages from
all 119,433 vulnerable packages.

8 Related Work

Attack Surface Reduction. Howard et al. [30] introduced
the notion of the attack surface, a way to measure the secu-
rity of the system. Manadhata [35] generalized Howard’s
approach and introduced a step by step mechanism to calcu-
late the attack surface of the system. Theisen et al. [48] came
up with an attack surface approximation technique based on
stack traces. There are several attempts both to reduce and to
measure the attack surface of the different systems, such as
OSes, websites, mobile applications [28, 40, 41, 51]. While
all of the above works are related to attack surface reduction,
we concentrate on the attack surface reduction of the Node.js
applications. Azad et al. [21] showed that debloating the web
application improves its security. They debloated the PHP

application by recording the web application’s code coverage
from client-side interaction, which may break the website if
rarely used functionality was not triggered during recording
step. On the other hand, we use static analysis to create the de-
pendency graph of the application, which covers all use-cases
accessible from the application’s entry point.

Node.js and NPM Security. Previous researchers on the
security of Node.js concentrate more on injection attacks [17,
37, 42] and event poisoning attacks [23–25]. Ojamaa et al.
was the first to assess the security of Node.js [38]. They
conclude that denial of service is the main threat for Node.js.
On the other hand, we concentrate on reducing the overall
attack surface of Node.js rather than on specific attack or
vulnerability.

NodeSentry [26] is a permission-based security architec-
ture that integrates third-party Node.js modules with least-
privilege. While NodeSentry also reduces the attack surface
by using least-privilege modes for Node.js modules, we ap-
proached the problem from a different angle. Mininode re-
moves unused functionality from third-party dependencies
instead of restricting their functionality as NodeSentry does.

On the NPM side, researchers try to answer why devel-
opers use trivial packages [19] and the security implications
of depending on NPM packages [52]. Zimmermann and et
al.’s results supplement our results that depending on too
many third-party packages significantly increase the attack
surface [52].

JavaScript Application Analysis. In the past, researchers
tried to come up with static [33,34,37] and dynamic [6,36,37]
techniques that help developers with analysis of the applica-
tion written in JavaScript. Madsen et al. [33] focuses on static
analysis of JavaScript applications using traditional pointer
analysis and use analysis. The key insight of the paper is
the idea of observing the uses of library functionality within
the application code to better understand the structure of the
library code. Madsen et al. [34] introduced an event-based
call graph representation of Node.js application that is useful
to detect various event-related bugs. The advantage of the
event-based call graph is that it contains information about
listener registration and event emission that can be used to
detect dead events and emits. Sun et al. [6] introduced a dy-
namic analysis framework called NodeProf that can be used
for profiling, for locating bad coding practices, and for de-
tecting data-race in Node.js applications. Mezzetti et al. [36]
introduced a technique called type regression testing, which
automatically determines if NPM package’s update affects the
types of its public interface, which eventually will introduce
breaking changes for clients. While there exists many other
JavaScript static analysis tools, Mininode differs because it
mostly concentrates on building dependency graphs to reduce
the attack surface.

JavaScript bundlers. Traditionally bundlers are used on
the client-side to combine all the source code files into a sin-
gle file to reduce network requests back to the server. One



Category names Vulnerable packages Partially removed % Fully removed %
Prototype Pollution 91,184 5,333 5.85% 3,633 3.98%
Regex Denial of Service 42,163 3,930 9.32% 1,228 2.91%
Denial of Service 21,312 403 1.89% 370 1.74%
Uninitialized Memory Exposure 6,433 690 10.73% 592 9.20%
Arbitrary Code Execution 5,324 413 7.76% 396 7.44%
Cross-Site Scripting 5,142 665 12.93% 590 11.47%
Arbitrary Code Injection 3,451 1,715 49.70% 1649 47.78%
Remote Memory Exposure 3,323 16 0.48% 15 0.45%
Arbitrary File Overwrite 3,240 383 11.82% 381 11.76%
Information Exposure 3,088 47 1.52% 47 1.52%

Table 5: Common vulnerability categories and their reduction results. Some vulnerabilities might not be exploitable since their
code is not directly reachable and it might not be possible to chain the vulnerabilities due to additional constrains.

of the most popular bundlers is webpack [18], that supports
plugins and different file types, e.g. CSS, HTML. While the
latest version of webpack can perform dead-code elimina-
tion, which is eliminating declared but unused functions and
variables, Mininode removes exported functionalities that are
never used outside the module, in addition to dead-code elimi-
nation. Another popular bundler is rollup [15] which can also
remove unused exported functions from modules. However,
rollup works only for ES6 module system, while Mininode
was designed to work with CommonJS module system which
is the most widely used in NPM. There are open-source plugins
for both webpack and rollup tools that try to convert Com-
monJS module into ES6 module, but to our best of knowledge,
they do not try to resolve the dynamic challenges that Minin-
ode resolves (see §5 and §6). We envision that our work will
be integrated into existing JavaScript bundlers.

9 Limitations

In this section, we discuss some of our evaluation and imple-
mentation limitations. First, using a test coverage metric to
detect if Mininode breaks the original behavior can be mis-
leading. For example, in the case of dynamic code generation,
i.e. eval, test coverage may give 100% coverage even if it is
not covering all functions. However, we argue that test cov-
erage is the most appropriate mechanism that we can use to
automatically perform a large-scale evaluation.

Second, we employed the snyk.io database in our vulnera-
bility analysis measurement instead of the well-established
CVE-DB or NIST. Unfortunately, despite the high quality of
reports, both contain less number of reports related to third-
party Node.js package vulnerabilities [32].

Third, the dynamic nature of JavaScript is a well-known
challenge for static analysis. In this paper we tried to solve
some Node.js specific challenges, such as dynamic import,
and defining aliases, by using static analysis. However, there
are challenges that cannot be easily resolved with static analy-
sis. For example, one of those challenges is dynamic code gen-

eration using various JavaScript APIs, e.g. eval, Function,
setTimeOut. Another challenge is patching Node.js specific
APIs, e.g. require, as shown in Listing 8. In this case, Minin-
ode will not be able to resolve a module inside a different
folder, because it uses an unpatched version of require.

1 // patching the require
2 require = function(arg) {
3 return {mocked: true};
4 }

Listing 8: Example of patching the require()

A solution to this challenge can be to dynamically execute
the patched code in Mininode to resolve the dynamically
required module. Another approach is to forbid patching
of require function in Node.js application by creating a
constant global object require that can be accessed by all
modules. This way, the function wrapper (See Listing 1)
discussed in Section 2.1 does not need to pass require as an
argument.

10 Conclusion

In this paper, we presented a detailed evaluation of exces-
sive functionality in Node.js applications. We presented
a tool, called Mininode, that measures and effectively re-
moves unnecessary code and dependencies by statically an-
alyzing Node.js applications. We conducted an extensive
analysis of 672,242 packages listed in the NPM repository
and found 119,433 of them to have at least one vulnera-
ble module dependency. Our tool is capable of statically
removing all vulnerable dependencies from 2861, and re-
moving partially from 10,618 applications. In addition to
removing vulnerabilities, Mininode was able to restrict ac-
cess to the file system for 549,254 packages. We envi-
sion our tool to be integrated into the building process
of Node.js applications. Mininode is publicly available at
https://kapravelos.com/projects/mininode.

https://kapravelos.com/projects/mininode
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