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ABSTRACT

Browser extensions are small JavaScript, CSS and HTML programs
that run inside the browser with special privileges. These programs,
often written by third parties, operate on the pages that the browser
is visiting, giving the user a programmatic way to configure the
browser. The privacy implications that arise by allowing privileged
third-party code to execute inside the users’ browser are not well
understood.

In this paper, we develop a taint analysis framework for browser
extensions and use it to perform a large scale study of extensions
in regard to their privacy practices. We first present a hybrid ap-
proach to traditional taint analysis: by leveraging the fact that
extension source code is available to the runtime JavaScript engine,
we implement as well as enhance traditional taint analysis using
information gathered from static data flow and control-flow analy-
sis of the JavaScript source code. Based on this, we further modify
the Chromium browser to support taint tracking for extensions.
We analyzed 178,893 extensions crawled from the Chrome Web
Store between September 2016 and March 2018, as well as a sep-
arate set of all available extensions (2,790 in total) for the Opera
browser at the time of analysis. From these, our analysis flagged
3,868 (2.13%) extensions as potentially leaking privacy-sensitive
information. The top 10 most popular Chrome extensions that we
confirmed to be leaking privacy-sensitive information have more
than 60 million users combined. We ran the analysis on a local
Kubernetes cluster and were able to finish within a month, demon-
strating the feasibility of our approach for large-scale analysis of
browser extensions. At the same time, our results emphasize the
threat browser extensions pose to user privacy, and the need for
countermeasures to safeguard against misbehaving extensions that
abuse their privileges.
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1 INTRODUCTION

All popular web browsers today offer extension mechanisms that
allow users to customize or enrich their web browsing experiences
by modifying the browser’s behavior, enhancing its functionalities
or integrating with popular web services. To support interaction
with the visited web pages, such as modifying their the contents
or UI layouts, extension frameworks provide mechanisms to in-
ject custom JavaScript code into a web page and execute in the
page’s context (e.g., [6, 39]). This capability allows extensions to
inject code that retrieves private information from a web page (e.g.,
page URL, cookies, form inputs, etc). Moreover, browser extensions
have access to privileged extension APIs that are out of reach from
the normal JavaScript code executing as part of the web pages.
For example, Chrome extensions can use the JavaScript extension
API chrome.history to directly query any past browsing history
information [9].

This unique vantage point enjoyed by browser extensions pro-
vide them opportunities to gain intimate knowledge of the browsing
habits of their users; when this knowledge is abused, it puts users’
privacy and personal information at risk. Although the potential
for abuse is high, the privacy implications posed by browser ex-
tensions have only recently caught the attention of the security
community. Several reports and blog posts shed light on the scope
of the issue by manually analyzing a few extensions [24, 31, 51].
Recent works [43] and [52] investigated the privacy practices of
browser extensions by analyzing the network traffic generated by
extensions. Specifically, [43] applied heuristics to attempt decod-
ing of common encoding/obfuscation techniques, while [52] used
machine learning to identify traffic patterns that indicate possible
privacy leaks. However, these previous efforts lack either the scale
or the depth to examine the full scope of the privacy implications
introduced by third-party extensions. For example, the approach
proposed by [43] cannot handle customized encoding algorithms
or encryption; traffic pattern analysis employed by [52] is prone to
evasion whereby attackers mask their network traffic with noise.
Indeed, addressing the potential privacy abuse posed by browser
extensions requires not only an automatic analysis framework, but
also a mechanism that tracks the detailed data flows inside browser
extensions.

Requirements: Privacy-intrusive extensions abuse their privileges
to leak sensitive information. To avoid detection at the network
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level, they can arbitrarily generate decoy traffic patterns or other-
wise obfuscate/encrypt such information before it is sent on the
wire. Thus, to be generic an analysis framework must be able to
label any sensitive information accessed by third-party extensions,
as well as to track their usage throughout the lifetime of the exten-
sions. That is, it must implement dynamic taint tracking (e.g., [27]).
Such an analysis framework must be able to track data flows across
all available JavaScript object types, handle control-flow dependen-
cies, and address any browser-specific data flows paths that are
introduced, for example, by the DOM interface or the extension
APIs. Additionally, to detect extensions that utilize local storage
to persist privacy-sensitive information for later exfiltration only
when certain conditions are met (e.g., a threshold number of events),
the analysis framework must also identify such extensions and flag
them for further scrutiny.

Previous research in the direction of applying dynamic taint

tracking to the browser context include [25, 26, 47], which relied
on instrumenting the bytecode instructions emitted by the Firefox
browser’s JavaScript engine SpiderMonkey [40]. However, similar
research efforts is lacking for the Google Chrome browser, which
currently holds over 57.64% worldwide market share as of April
2018 [44]. Previous works [36, 38] implemented taint tracking for
Chrome, albeit only for the string type and did not handle the ex-
tension APIL There is currently no complete dynamic taint tracking
implementation for Chrome browser’s V8 JavaScript engine [29]
that satisfies all the requirements of detecting privacy-intrusive
extensions. Furthermore, given the highly optimized nature of the
V8 engine, previous approaches that applied to Firefox cannot be
straightforwardly adapted to Chrome.
Introducing Mystique: To help bridge this gap, we propose Mys-
tique, an extension analysis framework that serves as the first
effort at a complete implementation of dynamic taint tracking for
the Google Chrome browser. We augment multiple components
of the browser, particularly its V8 JavaScript engine, with taint
tracking capabilities. To analyze extensions, Mystique automati-
cally loads them in a monitored environment. Our primary goal in
this paper is to identify third-party browser extensions that leak
privacy-sensitive information. To this end, Mystique automatically
taints values obtained from extension-accessible data sources that
divulge users’ private information. To overcome complexities of the
JavaScript language as well as the V8 engine, Mystique implements
runtime taint propagation by leveraging information obtained from
a static data flow and control-flow dependency analysis of the
JavaScript source code. Mystique logs extensions that triggered
taint sinks with tainted values during the analysis. To aid in post-
analysis understanding, Mystique also logs how tainted values are
propagated and used by the extension JavaScript code.

We applied Mystique to analyze 178,893 extensions that were
crawled from the Chrome Web Store between September 2016
and March 2018, plus a separate set of all available extensions
(2,790 in total) for the Opera browser at the time of analysis. Our
analysis flagged 3,868 (2.13%) extensions as potentially leaking
privacy-sensitive information. The top 10 most popular Chrome
extensions that we confirmed to be leaking privacy-sensitive infor-
mation have more than 60 million users combined, highlighting the
privacy threat posed by third-party browser extensions. From the
analysis results, we also uncovered multiple encoding/obfuscation

techniques employed by extensions. Our analysis of all 181,683 ex-
tensions was run on a local Kubernetes cluster and finished within
a month, showing the feasibility of applying Mystique to large-
scale analysis of browser extensions. Thus, Mystique can provide
“analysis as a service”, e.g., integrated as part of a triage system for
online extension repositories such as the Chrome Web Store.

We release as open source software our dynamic taint tracking
enhancements to the Chromium browser, as well as the framework
to reproduce our experiments in this paper. We also provide a web
interface that we have been using internally through which users
can submit extensions to Mystique and get back the analysis results.
More details can be found at https://mystique.csc.ncsu.edu/.
Contributions: The major contributions of this paper are:

e We propose a novel taint analysis technique that leverages
both dynamic taint tracking and static analysis. We provide
the first full implementation of hybrid taint tracking for
the V8 JavaScript engine, based on techniques that leverage
information gathered from static data flow and control-flow
dependency analysis.

e We present Mystique, an analysis framework that builds on
our hybrid taint tracking implementation to analyze and
detect third-party browser extensions that abuse privacy-
sensitive information.

e We conducted the first large-scale study of 181,683 third-
party browser extensions in regard to their privacy practices.

e We advance the state of the art by uncovering obfuscation
schemes used by extensions that escaped the attention of
similar previous research efforts.

2 BACKGROUND

In this section, we first give an overview of the Chrome browser’s
extension framework, and the opportunities that this framework
presents for extension authors to obtain and exfiltrate users’ privacy-
sensitive information. We also provide the relevant technical back-
ground of the V8 JavaScript engine that will be used for this work.
Note that since Chromium is the open-source version of the Google
Chrome browser, in the rest of this paper the names Chrome and
Chromium will be used interchangeably.

2.1 Chrome Extension Framework

Chrome supports extensions that modify or enhance the function-
ality of the browser [14]. Extensions are written using JavaScript,
HTML and/or CSS, and packaged together with a mandatory man-
ifest file and distributed as a single zip archive. The manifest file
describes the extension, and contains, among other parameters,
the declared permissions that determine which Chrome extension
API calls it can access, as well as what web pages (i.e., URLs) the
extension can operate on. API permissions are typically requested
by indicating the API names, while the allowed web pages is known
as host permissions and are specified using match patterns. Match
patterns allow wild-carding, and the special token <all_urls>
matches any URL. We discuss the relevant aspects of the extensions
architecture in the rest of this section. Please refer to Barth et.al [16]
for a detailed treatment of the Chrome extension framework.

2.1.1 Content Scripts. Extensions can inject and run JavaScript
code inside web pages. This injected code is known as content
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script [6]. There are two ways to inject content scripts: 1) stat-
ically by declaring in the manifest the JavaScript files and their
corresponding match patterns, so that Chrome automatically in-
jects the scripts contained in the specified files into every web
page whose URL satisfies one of the match patterns, or 2) dynami-
cally by using the so-called programmatic injection method. Either
way, the intent to use content scripts need to be declared (explic-
itly or implicitly) in the manifest file. For the former method, it
is obvious that the JavaScript files containing the content scripts
must be listed in the manifest file; for the latter method, the ex-
tension must: a) declare the “tabs” permission (in order to use
the chrome. tabs.executeScript API), and b) also declare host
permissions for the URLs where this injection should be allowed.
Since content scripts are injected into web pages and executed
there, they run in the same environment as the normal JavaScript
code that is downloaded as part of the web pages. For example,
they have the same access to the Document Object Model (DOM)
interface, and are therefore able to query it for page details or to
make changes. Although content scripts are sandboxed from the
normal JavaScript code of the web pages [6], they nevertheless
provide a powerful feature and allow extensions the opportunity to
access information that would otherwise not be available to them.

2.1.2  Background Pages. In addition to content scripts, extensions
can also run JavaScript code in the background page [1], which is a
special HTML page that is not visible to the user. Unlike content
scripts, there can only be one background page per extension, and
its purpose is to allow a long-running script to manage states for the
lifetime of the extension. Background pages have full access to the
Chrome extension API, as long as the appropriate permissions have
been declared. For example, they can register callback functions to
the chrome. tabs.onUpdated event, so as to be notified about the
details of any tab update event (e.g., URL of a newly loaded page),
provided they have declared the “tabs” permission and that the
loaded page URL matches one of the host permissions.

2.1.3  Message Passing API. Given that content scripts execute in-
side web pages, there needs to be a way for them to communicate
with the rest of the extension. This is achieved by using the message
passing API [11], which allows callback functions to be registered
that listen for messages being sent on the same channel. A message
may be delivered to multiple registered callbacks; inside each of
the callback functions further logic can be implemented to decide
if actions should be performed for the received message. Both con-
tent scripts and background pages can register callbacks, as well
as to send messages. The message passing API can also be used to
communicate across extensions.

2.2 V8 JavaScript Engine

The Chromium browser uses V8 [29] to JIT-compile and execute
JavaScript code. One characteristic of the V8 architecture is its
use of two separate compilers, i.e., the full compiler (Full-codegen)
and the optimizing compiler (Crankshaft). Both of them compile
JavaScript to native code. Recently, V8 has moved away from this
architecture in favor of an interpreter-compiler pair (i.e., Ignition
and TurboFan) [46]. Nevertheless, the basic idea is still the same:
begin executing JavaScript code with as little delay as possible, and
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Figure 1: Architectural overview of Mystique, showing ma-
jor components of Chrome that Mystique augments with
taint tracking capabilities.

during execution collect runtime information which will aid the
optimizing compiler (Crankshaft or TurboFan) in generating effi-
cient code for portions of the JavaScript source that are frequently
executed. Our prototype implementation of Mystique (described
in Section 4) is based on an earlier version of V8 that uses the Full-
codegen/Crankshaft architecture, and we turned off the optimizing
compiler (i.e., Crankshaft) so that JavaScript compilation is handled
exclusively by Full-codegen. This implementation choice is primar-
ily motivated by simplicity in a proof-of-concept prototype, as well
as the intended “analysis as a service” usage scenario of Mystique.
Nevertheless, we note that the JavaScript parser (and therefore V8’s
internal AST representation of JavaScript source code) is shared be-
tween Full-codegen and Crankshaft, so the methodology we present
in this paper can also be adapted to Crankshaft. In addition, the
code base for the JavaScript parser remains largely stable across V8
versions, and as a result our methodology can also be ported to the
latest Ignition/TurboFan architecture.

3 TECHNICAL APPROACH

Mystique utilizes dynamic taint analysis to track the runtime data
flows inside third-party extensions and identify the ones that leak
privacy-sensitive information. Specifically, it extends the Chrom-
ium browser and its JavaScript engine (V8) with taint tracking
capabilities so that any values that can potentially contain privacy-
sensitive information are marked (as tainted). To analyze an exten-
sion, Mystique launches an instance of our taint-enhanced Chrom-
ium browser with the extension preloaded, inside a monitored
environment. The browser is then automatically driven to browse
the web. Mystique logs any extension that triggers a taint sink
with tainted values. Figure 1 shows the architectural overview of
Mystique.

Previous research [36, 38] that implemented taint analysis for
Chromium handled only string-to-string propagation. To detect
privacy-leaking extensions, Mystique’s taint analysis needs to be
generic and therefore should consider all object types and data
flow paths available to extension JavaScript code. To achieve this,
Mystique needs to overcome the challenges that 1) JavaScript is a
complex dynamically-typed language and as a result operations
have different meanings that depend on object types; 2) the V8



JavaScript engine is highly optimized so it requires significant engi-
neering efforts to patch all possible data flow paths such that they
are taint-aware: for example, V8 can emit native code differently for
arithmetic operations (e.g., “+”) as either integer or floating-point
operations depending on the operand values, despite JavaScript hav-
ing only one (floating) number type; and furthermore 3) additions
to the JavaScript semantics made by both the Chrome extension
API [9] and the DOM interface create data flow paths that are not
reflected at the JavaScript source level.

To address them, Mystique does not attempt to instrument each
individual data-flow operation in order to propagate taint, as was
done by Lekies et al. [36] and Melicher et al. [38] for Chromium (and
also [25, 26, 47], which were for Firefox). This design choice primar-
ily follows from the first two challenges, which together imply that
it is not feasible to manually identify and patch all the possible data
flow operations that can be emitted by the V8 JavaScript engine. On
the other hand, since JavaScript is an interpreted language, all the
JavaScript source code that is to be executed will become available
to the runtime interpreter or JIT compiler at some point. This pro-
vides Mystique the opportunity to combine dynamic taint tracking
with static source code analysis. Specifically, Mystique leverages
information from static data flow and control-flow dependency anal-
ysis at the JavaScript source level to determine which additional
objects should also be tainted, given a set of already-tainted objects.
For simplicity, Mystique currently employs a flow-insensitive, intra-
procedural analysis for this purpose. In the rest of this section, we
present the details of Mystique’s taint analysis framework.

3.1 Sensitive Data Sources

There are two broad categories of sources from which an extension
can obtain users’ privacy-sensitive information: 1) the DOM inter-
face, and 2) the Chrome extension APIL. The DOM interface of a web
page is accessible to all JavaScript code executing in it, including
the content scripts injected by extensions. For example, the DOM
property document.location.href gives the URL of the page in
which it is evaluated. In order for an extension to interact with web
pages through the DOM interface, it needs to have the permission
to inject content scripts (Section 2). On the other hand, the Chrome
extension API allows extensions to register callbacks for page load-
ing events (e.g., chrome.webRequest), as well as to directly query
for privacy-sensitive information (e.g., the chrome.history API
gives access to the user’s browsing history information). These
APIs typically require permissions to be declared in the manifest
files before they can be used.

Mystique’s goal is to track the flow of data containing privacy-
sensitive information inside third-party extensions. Therefore, it
needs to mark the values obtained from these sources as tainted.
Table 1 summarizes the taint sources considered by Mystique. We
note that this is not intended to be an exhaustive list of all sources
from which privacy-sensitive information can be obtained by ex-
tensions. Additionally, extensions can also leak privacy-sensitive
information without having to access it themselves. For example,
they can inject into the DOM of the current page an img element
whose src attribute points to a third-party host and does not en-
code any tainted values, but the Referer field in the HTTP header
of resulting request would be set by the browser and sent to the

1 function encode_page_url() {

2 var loc = location.href;

3 var obj = { url: loc, length: loc.length };
4 var length = obj.length;

5

6 var output = H

7 for (var i = 0; i < length; i++) {

8 var ¢ = obj.url[il;

9 if (c == )

10 output += ;

11 else if (c == )

12 output +=

13 /* repeated for all valid URL characters =*/
14 }

15

16 var result = window.btoa(output);

17 return result;

18}

Listing 1: Sample JavaScript code, showing control
dependency.

third-party host. This way, by reading the Referer filed of the in-
coming request, the third party can learn of the URL that the user
is browsing while the extension that injected the element never
accessed such information directly. However, this behavior is easy
to detect at the network level since the Referer field is sent by
the browser in plaintext, and although Mystique’s taint tracking
currently does not handle this scenario, it is nevertheless easy to
modify Chromium so that any DOM element injected by extensions
can be differentiated (whether it contains tainted values or not).
For example, one way to achieve this is to hook the relevant DOM
APIs to mark the elements when they are injected by extension
JavaScript, which can itself be differentiated because the associ-
ated Context objects are different from those of normal website
JavaScript (see Section 4.2 for explanation regarding the Context
objects). We consider leakage via the Referer field out-of-scope for
our current work since Mystique’s focus is on tracking the usage
of privacy-sensitive information inside extensions.

3.2 Taint Propagation with Static Analysis

To monitor the complete data flow of extensions, we not only need
to consider all object types available in JavaScript, but also the
conversion and interaction among different object types. For ex-
ample, a base64 encoding routine might first convert the input
to integers, which are then used to index into a table to produce
the output string. In this case, if the intermediate integers are not
tainted, then we might fail to taint the output string. As mentioned,
to be generic and avoid the complexities of JavaScript and the V8
engine, Mystique does not patch individual data flow operations to
be taint aware, but rather leverages the fact that V8 has access to
all the JavaScript source code that is to be executed, and propagates
taint according to information obtained from a flow-insensitive,
intra-procedural static analysis of the JavaScript source code.
Figure 2 illustrates an overview of this approach. The basic idea is
to use the taint status of concrete runtime objects that the JavaScript
code operates on (e.g., strings and numbers) to taint nodes (e.g., vari-
ables) in the abstract syntax tree (AST) parsed from the JavaScript
source code. Taint propagation then starts from these tainted AST
nodes by using a data flow graph (DFG) constructed from the AST.
For each AST node that taint propagates to, their corresponding



Category Taint source

Type ‘ Requires permission?

DOM document.URL Property evaluation Content script injection
DOM location, window.location, document.location | Property evaluation Content script injection
DOM document. cookie Property evaluation Content script injection
DOM <input type="password"> DOM query Content script injection

Chrome Extension API chrome. tabs

Event callbacks “tabs” permission

Chrome Extension API chrome.webRequest

Event callbacks “webRequest” permission

Chrome Extension API

chrome.webNavigation

Event callbacks “webNavigation” permission

Chrome Extension API chrome.history

Direct query “history” permission

Table 1: Taint sources considered by Mystique.
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Figure 2: Overview of Mystique’s approach to taint propaga-
tion. (1) and (2): JavaScript source code is compiled by V8
to native code and instrumented by Mystique; (3) During
runtime, as expressions get evaluated, the instrumented na-
tive code looks up the evaluated values in the object taint
table and updates the AST taint table; (4) At taint propaga-
tion points, the instrumented native code invokes Mystique
to propagate taint; (5) Mystique reuses V8’s existing infras-
tructure to parse for the function’s AST and also constructs
DEFG, caching both; (6) Mystique propagates taint according
to the DFG and AST taint table.

runtime objects are then also tainted. Mystique utilizes V8’s exist-
ing infrastructure to parse the JavaScript source code for its AST.
Mystique also collects control dependency information from the
AST, and augments the DFG with this information (Figure 2). List-
ing 1 contains an example showing why control dependencies need
to be taken into account: assuming location.href is tainted (and
therefore also obj.url and c), if control dependencies are not con-
sidered, then the if branches starting from line 9 would allow an
attacker to evade taint analysis (notice that string literals such as
"a" are not tainted).

Mystique generates DFG in the unit of individual JavaScript
functions, since V8 also parses for AST on a function-by-function
basis. Note that the JavaScript top-level, or global, scope is treated
as an unnamed function by V8. The V8 JavaScript engine does
not currently cache but throws away the AST after the JavaScript
source has been compiled. However, the JavaScript source code is
always kept available, in order to support re-compilation by the
optimizing compiler (as well as possible future de-optimization) [22].

To minimize performance overhead, Mystique caches the parsed
AST and DFG (Figure 2).

To store taint data, two sets of tables are used by Mystique: one
for storing taint status of concrete runtime JavaScript objects, and
the other for tainted AST nodes (Figure 2). For convenience, we
refer to the former as object taint table, and the latter as AST taint
table. We need the latter since Mystique propagates taint based
on the DFG, which is constructed from the AST. Note that there
should be one AST taint table per function invocation, since each
invocation (even of the same function) can operate on tainted values
differently. This allows Mystique to handle taint propagation for
recursive calls. During execution of the JavaScript code, the taint
status of concrete runtime objects are looked up in the object taint
table and used to update the AST taint tables.

Mystique triggers taint propagation for each individual JavaScript
function at critical points during its execution. For example, since
Mystique’s static analysis is intra-procedural, it cannot readily track
data flow across function boundaries. Therefore, taint propagation
needs to be triggered on function calls so that if taint data should
propagate to any of the callee’s parameters (or any objects that the
callee can access), it will be correctly reflected in the callee. This
mechanism shown as the fourth step in Figure 2.

In the following, we present the details of Mystique’s taint prop-
agation approach.

3.2.1 Taint Representation for Runtime Objects. As mentioned,
Mystique uses two sets of tables to store taint data. For the run-
time JavaScript objects, their taint status is recorded in the object
taint table, and we simply implement it as a global hash table that
is keyed on the addresses of tainted runtime JavaScript objects.
However, this simplistic scheme is complicated by the fact that
V8 uses a garbage collector to recycle memory occupied by “dead”
objects that are no longer accessible from the JavaScript code. In-
ternally, the heap-allocated runtime JavaScript objects are always
given word-aligned addresses, and V8 tags the pointers to heap-
allocated objects by setting their lowest bit. This is done so that
during garbage collection cycles these pointers can be distinguished
from non-tagged (i.e., non-heap-allocated) values. There is only one
type of non-tagged values used by V8, i.e., Smi for storing small
integers (e.g., in the range [-2%, 230 — 1]) whose values fit in a
word (minus the tag bit, since it is always cleared for untagged
values). If the integer value is not in the given range, then it is
stored in a normal heap-allocated object (i.e., HeapNumber, which
is also used to store floating-point numbers). Note that no heap



memory is allocated to Smis - their values are stored directly in the
non-tagged word. This arrangement by V8 leads to two problems:
a) V8’s garbage collector might move objects around in memory, so
that the addresses stored in the object taint table become outdated,
and b) if we taint Smis by storing their values inside the object taint
table, then subsequent accesses to those same integer values will
all be considered as tainted, leading to false positives.

Mystique addresses the first problem by making V8’s garbage
collector aware of the object taint table, i.e., if tainted objects are
either moved in memory or freed, the object taint table is updated
to reflect the change. Note that if tainted objects are freed, they
can be safely deleted from the object taint table since they are no
longer reachable from the JavaScript code. To solve the second
problem, Mystique requires that the types of AST nodes that can
be included in the DFG (e.g., variable nodes) can never refer to
Smi values. Specifically, we modify V8’s code generation phase
so that assignments to such nodes are instrumented with checks
to test if the values being assigned are Smis, and if so, replace
them with equivalent (i.e., same numerical value) HeapNumbers. See
Section 3.2.3 for AST node types that are included in the DFG. We
remark that for function call nodes, since they are "assigned"” when
the callee returns, we also instrument return statements similarly
so that Smi values are never returned.

3.2.2 Taint Representation for AST Nodes. Mystique stores taint
status of AST nodes in the AST taint table, which is implemented
as a hash table keyed on the memory addresses of tainted AST
nodes (e.g., of a variable node). Notice that since V8 constructs
AST at runtime, memory for AST nodes are always dynamically
allocated. As mentioned, to account for different invocations of the
same function, each invocation should be given its own table. Thus,
to check the taint status of an AST node (of a function invocation),
two levels of lookups are needed: starting from a global table, using
in sequence a) the invocation’s frame pointer, and b) the AST node’s
memory address as keys. It should be noted that in practice, most
JavaScript functions never operate on tainted values, so the majority
of lookups will not go beyond the first level. Also, for most of its
operations involving the AST taint table, Mystique does not need
to traverse the two levels of table lookups for every AST node. For
example, when propagating taint for a function invocation, it would
first get a reference to the second-level table, and all lookups then
query this table directly.

Unlike runtime objects, memory allocated to the stack frames
and the AST nodes is not managed by V8’s garbage collector, so it
does not need to be made aware of either of the two levels of tables.

3.2.3 DFG Generation. Mystique considers the JavaScript assign-
ment operation as the primary means in which taint propagates,
i.e., if the right-hand side expression of an assignment operates on
tainted values, then the target on the left-hand side should also be
tainted. To account for control dependencies (e.g., introduced by
control structures such as while statements), Mystique treats their
conditional expressions in the same way as the right-hand side of
assignments, from which taint should propagate to the left-hand
side of every assignment operation contained in that control struc-
ture (including nested statements). For control structures having
more than one branch (e.g., if-else statements), taint propagates
from the conditional expression to all branches. For convenience

Figure 3: Data-flow graph (DFG) generated by Mystique for
the code sample in Listing 1, augmented with control flow
dependencies (dashed lines). Taint source (location.href) is
highlighted. Also shown are implicit data flows (dashed-and-
dotted lines), which are not encoded into the DFG.

we use the term RHS expressions to refer to both the right-hand side
of assignments and conditional expressions of control structures.

RHS expressions are processed recursively, and when an AST
node representing 1) variable, 2) object property, or 3) function
call is encountered, an edge going from it to the left-hand side
target (corresponding to the containing RHS expression) is added
to the DFG. Note that array indexing (e.g., str[i]) is treated in
JavaScript the same as object property access. We remark that if
a function call is processed as part of an RHS expression, then
Mystique not only generates a DFG edge from the call expression
itself (representing the return value), but also recursively processes
each argument expression as an RHS expression. Similarly, for
object property accesses (e.g., obj.x), an edge is generated from
the property itself, then the home object expression is also processed
recursively. However, if the current RHS expression is an object or
array literal, then Mystique does not process the expression. This
is due to how Mystique handles tainting for objects and arrays (see
Section 3.2.5).

Figure 3 shows the DFG, augmented with control dependency
information, that Mystique generates for the example in Listing 1
according to the rules given above. We represent direct data flows
as solid lines (e.g., from location.href to loc, corresponding to
the assignment on line 2 in Listing 1), and control dependencies as
dashed lines (e.g., from i to output). Note that the initialization of
a variable in the var statement is treated in V8 as two separate op-
erations: one as variable declaration and the other as an assignment
with the initializer expression being the right-hand side. Figure 3
also shows implicit data flows (dashed-and-dotted lines), which we
describe next, that are not generated as part of the DFG.

3.24 Implicit Data Flows. Besides explicit assignment operations
and control dependencies, data flow paths can also be introduced
implicitly in JavaScript. For example, at function calls, the actual
parameters are themselves expressions which are evaluated and
the resultant values “assigned” to the callee’s formal parameters. In
this case, the formal parameter should be treated in the same way



as the left-hand side of an assignment, and the actual parameter
expression the right-hand side. Generally, implicit data flows are
introduced whenever the evaluated value of an expression can
be “caught” in some manner other than explicit assignment at the
source level. For convenience we refer to this type of expressions
as implicit-flow expressions.

Further examples of this include function return values and
literals of compound types (e.g., object/array literals). For the former,
if the return value expression is tainted, then the return value needs
to be tainted; for the latter, if the expression that specifies the
value of a property in the object literal is tainted, its corresponding
property value should be tainted as well (Mystique does not taint
the object literal itself, see Section 3.2.5). Figure 3 illustrates an
example of implicit flow in the case of object literals (corresponding
to line 3 in Listing 1), shown as dashed-and-dotted lines pointing
from loc to obj.url and obj.length, and from loc.length to
obj.length. Note that in this example, implicit flows are crucial
in linking location.href, one of the taint sources considered by
Mystique, to the final result variable (i.e., the return value of the
function in Listing 1).

Mystique does not generate DFG edges for implicit data flows
and their taint propagation is handled separately (discussed in
Section 3.2.7).

3.2.5 Tainting of Object Properties. In contrast to previous ap-
proach (e.g., [47]), when tainting a specific property value, Mystique
does not propagate taint to its containing object. For instance, if the
property obj. x should be tainted, we only taint the property’s AST
node (and its corresponding runtime object), but we do not taint
obj. This rule also applies to arrays, since array indexing is treated
semantically in the same way as property access. However, note
that due to how the DFG is constructed (Section 3.2.3), if an object
is tainted, then all property accesses from that object will propa-
gate taint from it (e.g., if str is tainted and str.length is assigned
to a variable, then that variable will be tainted as well). Similarly,
property accesses of a tainted object, if they constitute parts of an
implicit-flow expression (Section 3.2.4), would also propagate taint
to the evaluated value of that expression (Section 3.2.7 details how
Mystique propagates taint for implicit-flow expressions).

3.2.6 Updating the AST Taint Tables. To accurately update the AST
taint tables during runtime, we instrument the code emitted by
V8 for the AST node types that can be included in the DFG. This
instrumentation makes sure that as the expression represented
by an AST node gets evaluated at runtime, the taint status of the
resultant value is looked up in the object taint table and, if tainted,
the AST node must also be tainted (i.e., it is recorded in the AST taint
table). On the other hand, if the evaluated value is not tainted but
the corresponding AST node is tainted, then the AST node should be
untainted (this can potentially be the case for AST nodes belonging
to loop statements). Doing so prevents overtainting and ultimately
false positives. Note that if the value that an AST node refers to
is replaced by a HeapNumber (as described in Section 3.2.1), this
instrumentation will update the AST taint table using the replaced
(i.e., HeapNumber) value.

3.2.7 Taint Propagation Points. Since Mystique adopts an intra-
procedural static analysis, data flows across function boundaries

are not reflected in the DFG. To solve this problem, Mystique re-
quires that taint propagation be triggered on function calls and
returns in order to update taint data for the callee and caller, re-
spectively. Additionally, to more accurately capture the taint data
flows in JavaScript, two more propagation points need be included
in Mystique’s analysis.

First, as mentioned in Section 3.2.6, to precisely model taint data
flows in loop statements, Mystique allows untainting AST nodes
when they no longer refer to tainted runtime objects. However, this
can introduce inaccuracies into the analysis. For example, if a loop
statement operated on tainted values during its execution, but on
its last iteration it did not, then on exit from the loop statement
none of the AST nodes belonging to it will be tainted. To address
this scenario, Mystique requires that taint propagation be triggered
at the end of a basic block.

Second, taint propagation should also be triggered when en-
countering implicit data flows (Section 3.2.4), so that if taint should
propagate to the implicit-flow expressions, it is correctly reflected.
Then, to handle taint propagation from implicit-flow expressions,
Mystique treats them as RHS expressions: for all of the containing
AST nodes from which a DFG edge should otherwise be generated
(as described in Section 3.2.3), if any of them are tainted, then the
evaluated values of the implicit-flow expressions need to be tainted
as well (i.e., recorded in the object taint table).

3.2.8 Handling eval of Tainted Strings. Mystique handles eval of
tainted strings in a manner similar to [47]: if a JavaScript function
is compiled from a tainted string, Mystique then taints all left-hand
side targets of assignment expressions in that function; for implicit-
flow expressions, Mystique always taints their evaluated values.

3.3 Additional Data Flow Paths

Besides the data flow paths mentioned in Section 3.2, the Chromium
browser also augments the semantics of JavaScript to implement
both the DOM interface and its extension API, which creates ad-
ditional data flow paths that are accessible to extensions. In the
following we detail how Mystique propagates taint across these
paths. Note that the data flow paths mentioned in this section are
those that are currently considered by Mystique’s analysis, and
should not be considered as an exhaustive list of data flow paths
accessible to extensions through the DOM or the extension API.

3.3.1 The DOM Interface. The DOM interface is not implemented
by V8. Instead, it is implemented as an add-on to JavaScript in
WebKit/Blink [2]. Since the DOM implementation is external to V8,
JavaScript values written to DOM need to be converted to their
corresponding representations in WebKit/Blink (and vice versa
when values are read from the DOM). Extensions that have declared
the permission to inject content scripts can use them to interact
with the DOM interface of web pages. For example, they can invoke
the setAttribute method on an element in the DOM, and later
read back that attribute’s value. Given the value conversion between
V38 and WebKit/Blink, the read-back value may be a separate copy
of the original and therefore not tainted. To solve this problem,
Mystique also taints in WebKit/Blink any values that are tainted
in V8. When such tainted values are read by JavaScript, Mystique
ensures that they are tainted in V8.



We remark that as an implementation choice, our current Mys-
tique prototype (see Section 4) does not cover string manipulations
(e.g., concatenation) that are internal to WebKit/Blink, nor do we
handle the HTML tokenizer that WebKit/Blink invokes to parse
HTML content written to the DOM via JavaScript (e.g., by writing
to innerHTML). We stress that these are particular implementation
choices and not a fundamental limitation of Mystique’s methodol-
ogy. Previous work [36] has already made the internal operations
of WebKit/Blink taint-aware.

3.3.2 Chrome Extension APl. As mentioned in Section 2, the Chrom-
ium browser provides an API for message passing between content
scripts, which execute inside of web pages, and the rest of the ex-
tension (e.g., the background page) [11]. This API allows JavaScript
objects to be passed through it. Internally, the objects being sent
are first serialized (using JSON. stringify) and then given to the
(C++) IPC implementation to be delivered to the receiving end of
the message pipe, where the original objects are then parsed back.
However, if the original objects contain tainted values, then the ob-
jects parsed back need to reflect the same taint status. To minimize
changes to the code base, we chose not to make the IPC implemen-
tation taint-aware. Instead, for each JavaScript object sent through
the message passing API, Mystique visits each of its properties
recursively and constructs a “meta-object” that describes its taint
status. This meta-object is then also stringified, and the result is
then prepended to the stringified output of the original JavaScript
object. On the receiving end, the meta-object is used to reconstruct
the taint status of the parsed back object.

Another data flow path introduced by the extension API is the
executeScript method in chrome. tabs [5], which as mentioned
allows programmatic injection of strings that execute as content
scripts in web pages. If the injected scripts are tainted, we treat
them in the same way as eval of tainted strings (see Section 3.2.8).

Finally, Chromium provides an API (chrome.storage) that al-
lows extensions to serialize JavaScript objects to storage [4]. Similar
to the messaging AP, serialization is done using JSON.stringify.
Therefore, Mystique also handles taint propagation for it by use of
meta-objects that are serialized together with the original objects.

3.4 Taint Sinks

To detect extensions that abuse their privileges to gather and ex-
filtrate users’ privacy-sensitive information, Mystique currently
considers the following as taint sinks in its analysis:

e XMLHttpRequest: An alert is raised if tainted values form
any part of the request URL parameter or the request body.

e WebSocket: Similar to XMLHt tpRequest, an alert is raised if
any tainted values are sent via this interface.

e chrome.storage: Raise an alert if tainted values are given
to the chrome.storage API for persistence.

e For the DOM elements injected by extensions, raise an alert
if their src attributes contain tainted values.

We consider the chrome. storage API to be a taint sink, for the
case where an extension stores privacy-sensitive information first
and only exfiltrates them later in bulk (e.g., only after collecting a
threshold number of URL visits). Note that as with all dynamic anal-
ysis systems, Mystique might not be able to generate the threshold

number of events at runtime in order to trigger the leaking behav-
iors for an extension. In such cases, Mystique will still be able to
flag the extension if it uses the chrome. storage API to persist data
across runs. Previous approaches (e.g., [43, 52]) that rely solely on
observing the network traffic generated by an extension would fail
to detect such cases.

DOM elements injected by extensions are also considered as
taint sinks, since for such elements the browser will try to fetch
their content from the URL specified in the src attribute. Thus,
extensions can leak sensitive information by, for example, encoding
it as part of the src attribute URL.

3.5 Taint Propagation Logs and Sink Report

To keep track of tainted data flows inside extensions, each step of
taint propagation needs to be logged. In its basic form, for each
tainted JavaScript object, Mystique logs the JavaScript object from
which taint propagated to it, along with the JavaScript function and
source code position in that function where propagation occurred.
For JavaScript objects that are taint sources, whose taint did not
propagate from another object (e.g., document.location.href),
Mystique logs them in a separate table along with the JavaScript
function and position inside that function where they are accessed.

In cases where taint propagation is due an meta-object (see
Section 3.3.2), Mystique first dumps on the filesystem the propaga-
tion logs of all the tainted JavaScript values that the meta-object
describes. Then, the filesystem paths of the propagation logs are
encoded inside the meta-object. These filesystem paths would then
be used to indicate the previous step in taint propagation once the
original object is parsed back.

For JavaScript functions that are compiled from tainted strings
(due to either eval or the extension API’s executeScript method),
as mentioned Mystique taints all left-hand side targets of assign-
ments as well as the evaluated values of implicit-flow expressions.
For these values, the previous step in taint propagation would be
the tainted string from which the function was compiled.

When tainted values reach taint sinks, Mystique logs the event
by recording 1) the tainted values that triggered the taint sink and
their propagation logs, 2) the current JavaScript stack trace, and
3) the source code of JavaScript functions along the propagation
paths (including the functions that accessed taint sources).

4 IMPLEMENTATION

We implemented a prototype of Mystique for the Chromium browser.
Apart from our description in Section 3, we detail in the rest of this
section the additional changes that our prototype implementation
added to V8 and WebKit/Blink.

4.1 Mapping AST Nodes to JavaScript Objects

Given Mystique’s approach to taint propagation detailed in Sec-
tion 3, it is necessary to know, for each AST node that taint prop-
agates to, what JavaScript object they referred to at the instant
when their values were evaluated during runtime. This is needed so
that the object taint table can be updated correctly. To obtain this
mapping information (from AST nodes to JavaScript objects), we
used a method similar to that described in Section 3.2.6, namely, for
each AST node that can be included in the DFG, we instrument the



native code emitted for it. This instrumentation makes sure that the
evaluated value of the expression corresponding to the AST node
is recorded in a table. We refer to this table as the AST-to-object
mappings table. Note that as with the AST taint table, there needs
to be one AST-to-object mappings table per function invocation.

4.2 Optimizing Taint Propagation

V8 uses a Context object [8] to model an execution environment
that corresponds to a global variable scope in JavaScript. To mini-
mize runtime overhead incurred by taint propagation, in our pro-
totype implementation of Mystique we chose to only propagate
taint for JavaScript code with a Context (i.e., global variable scope)
belonging to extensions. This optimization is sound since JavaScript
code with a given global variable scope cannot access objects de-
fined in another. Furthermore, even though content scripts are
injected and run in the “context” web pages, they cannot use vari-
ables or functions defined by 1) the web pages, 2) other content
scripts, or even 3) their own extension’s pages [6]; internally, this
rule is enforced by defining separate Context objects for content
scripts. Lastly, JavaScript code from different extensions is given
separate Contexts.

Although the Context class is defined and implemented in V38,
their runtime instantiation is initiated by WebKit/Blink, which dif-
ferentiates the Contexts of web pages and extension content scripts
by the terms main worlds and isolated worlds, respectively [13].
That is, the content scripts of an extension are run inside iso-
lated worlds. To implement our optimization of propagating taint
only for extension Contexts, we modified WebKit/Blink so that
it notifies Mystique whenever a Context is instantiated for iso-
lated worlds. On the other hand, the background page of an ex-
tension is treated by WebKit/Blink as a normal web page, in the
way that the JavaScript code of the background page is run inside
the main world. Thus, we also need to have WebKit/Blink notify
Mystique when a Context is instantiated for a background page
in the main world. In our prototype implementation, we currently
identify background pages by checking if the page URL begins with
“chrome-extension://”.

We note that for JavaScript code with a non-extension Context,
it is also not necessary to: 1) taint any values obtained from the taint
sources described in Section 3.1, and 2) maintain the corresponding
AST taint table or the AST-to-object mappings table.

4.3 JSON.stringify and JSON.parse

Evidently, if the JavaScript object passed to JSON.stringify con-
tains tainted properties, then the output string needs to be tainted
as well. However, given how Mystique handles tainting of object
properties (Section 3.2.5), if the input object itself is not tainted but
nevertheless contains property values that are tainted, then taint
would not propagate to the output string. This is due to the fact that
V8 implements JSON. stringify as a built-in function directly in
C++. To propagate taint, we added a JavaScript trampoline function
that calls the underlying C++ implementation. This trampoline is
also responsible for constructing a meta-object (see Section 3.3.2)
that describes the taint status of the object being serialized. If the
input to JSON. stringify contains tainted values, the trampoline

# Extensions | # Flagged | Percentage
Chrome 178,893 3,809 2.13%
Opera 2,790 59 2.11%
Total 181,683 3,868 2.13%

Table 2: Summary of dataset and analysis results.

function will taint the output, as well as update the propagation
logs using the meta-object as the previous step in taint propagation.

Given our changes to JSON.stringify, if the input string to
JSON. parse is tainted, we have two possibilities: 1) the string’s
previous step in taint propagation is a meta-object, in which case
Mystique reconstructs taint according to the meta-object, otherwise
2) Mystique sets taint for the output object and recursively for
all of its properties. As with JSON.stringify, we also inserted a
JavaScript trampoline function for JSON. parse to achieve these.

Our treatment of JSON.stringify and JSON.parse is similar
to how we handle the Chrome message passing and storage APIs
(Section 3.3.2). However, note the difference here is that the out-
put of JSON.stringify and JSON. parse stays within the V8 heap
memory, instead of being given to the C++ IPC implementation or
to external storage.

4.4 jQuery Request Protocol

The jQuery library is frequently used by third-party Chrome ex-
tensions. To support protocol-less URLs (which start with “//”),
the jQuery library first retrieves the current page’s URL by reading
the DOM property location.href and parses for its protocol (e.g.
https), which is then prepended to the request URL if its protocol
is not specified [10]. The request URL is later passed to the open
method of XMLHttpRequest. Since location.href is treated by
Mystique as a taint source and XMLHttpRequest’s request URL as
taint sink, this will cause an alarm to be triggered regardless of
whether the original request URL is tainted or not. To fix this false
positive case, Mystique creates a signature based on the AST struc-
ture of the particular assignment expression that is responsible for
falsely propagating taint (i.e., [10]), and does not propagate taint
for the expression when it is encountered.

5 EVALUATION

In this section, we describe our experimental setup and present
the results of applying Mystique to large-scale analysis of browser
extensions. The dataset used in the analysis include 178,893 ex-
tensions that were crawled from the Chrome Web Store between
September 2016 and March 2018, as well as a separate set of all avail-
able extensions (2,790 in total) for the Opera browser at the time of
our analysis. The Chrome extensions in our dataset typically con-
tain multiple versions of the same extension. Discounting version
differences, our dataset contains 118,083 unique Chrome extensions.
Our analysis loads the Opera extensions in our modified version of
Chromium - this works in most cases since the Opera browser is
based on Chromium [49]. We were able to analyze all of the 2,790
Opera extensions using this method. As shown in Table 2, Mystique
flagged 3,868 Chrome extensions and 59 Opera extensions as po-
tentially leaking privacy-sensitive information. The total number
of flagged extensions is 3,868 (2.13%). We finished analyzing all of



the 181,683 extensions in less than a month with our experimental
setup, as described next.

5.1 Experimental Setup

Our analysis is automated using Selenium’s ChromeDriver [3].

For each extension, we launch a fresh instance of our modified
Chromium with the extension pre-installed using Chromium’s
--load-extension command line argument. We then simulate web
browsing by using Selenium to drive the Chromium browser to
visit a fixed set of URLs.

We divide this fixed set of URLs that we use to simulate web
browsing into two categories: real URLs and mock URLs. For the
real URLs, we serve real website responses; for the mock URLs, we
serve only a static mock page. The motivation for using mock pages
is to shorten analysis time by avoiding spending the time needed to
load a real page inside the browser, while still be able to generate
many URL load events for the extension being analyzed. In total

we have 10 real URLSs (of popular websites such as wikipedia.org).

Mock URLs are derived from the real URLs: for each real URL, we
visit it in the browser and randomly select 10 URLs that it links
to (the selection was done programmatically by using Python’s
random module). Thus, in total, we drive the Chromium browser to
visit 110 URLs for each extension analyzed.

Using mock pages is a common methodology that was adopted
in similar works that dynamically analyze browser extensions
(e.g. [43]). However, one potential shortcoming of this is that an
extension might expect the web page to have specific structural
layouts (e.g., certain DOM elements need to be present) before it
manifests malicious behaviors. To elicit malicious behaviors from
such extensions, we incorporated HoneyPage [34] into our analysis
whenever mock URLs are visited. Note that for real URLSs, it is not
necessary to use HoneyPage since the real website responses are
served in this case.

To minimize network traffic as well as to make the analysis
more reproducible, we used a tool [19] to implement a replay cache
that serves pre-recorded responses for real URLs. We pre-record
the responses for a real URL by visiting that URL and using the
same tool to save the website responses into the replay cache. We
also modified the tool so that when a response is not found in
the replay cache, it fetches the latest content from the Internet
instead of the default behavior of returning an error status. This
modification is needed since we don’t want to restrict an extension’s
network access (e.g., extensions might query a remote server for

configuration files, which is not pre-recorded in the replay cache).

We remark that for dynamic websites (e.g., amazon.com), their
responses are non-deterministic so that we cannot pre-record all
of the possible responses (i.e., there will likely be cache misses for
such websites).

We use mitmproxy [12] to serve mock page for the mock URLs,

as well as to log network traffic generated during the analysis.

We arranged the replay cache and mitmproxy in a way such that
contents already pre-recorded in the replay cache will not be logged
again by mitmproxy.

The analysis infrastructure used in our experimental evaluation
consists of a local Kubernetes [35] cluster that can run 120 threads
simultaneously. We used this cluster for parallel processing of the

Sample Size # TP (%) #FP (%) | Precision
Chrome 349 | 272 (77.94%) | 30 (8.60%) |  90.07%
Opera 59 | 45(76.27%) | 6 (10.17%) |  88.24%
Total 408 | 317 (77.70%) | 36 (8.82%) |  89.80%

Table 3: Quantifying true positive rates (TP = True Positive,
FP = False Positive). Numbers in the “Precision” column are
calculated as TP/(TP + FP).

extensions. Each instance of our modified Chromium browser is
run in a separate Docker [7] container.

5.2 Quantifying True Positive Rates

We attempt to quantify the true positive rate of Mystique’s analysis
by manual verification of the flagged extensions. Specifically, for
each flagged extension, we examine their taint sink objects to see
if they contain privacy-sensitive information and/or any data de-
rived from such information (e.g., encrypted/hashed). We manually
verified all of the 59 flagged extensions for the Opera browser. To
estimate the true positive rate for the Chrome extensions, we man-
ually verified a randomly selected sample of 349 extensions (out of
a total of 3,809 flagged Chrome extensions). This sample size was
chosen to target a confidence interval of 5% at a 95% confidence
level, according to the standard theory on confidence intervals for
proportions (e.g., [18], Chapter 13).

Most of the taint sink objects encountered during this process
are in plaintext. For the taint sink objects that are apparently ob-
fuscated, encrypted and/or cryptographically hashed, we confirm
by examining the relevant portions of the extension’s source code
(given by the propagation logs as described in (Section 3.5)). Table 3
summarizes the results. We confirmed 272 and 45 true positives
(TP) for the Chrome and Opera extensions, respectively. We were
also able to confirm 30 and 6 false positives (FP) for the Chrome and
Opera extensions, respectively. Note that we were not able to, from
examining the taint sink objects, definitively confirm the true/false
positive status for 47 of the Chrome extensions in our sample and
8 of the Opera extensions. Their taint sink objects do not seem to
indicate the use of obfuscation, encryption and/or hashing. To as-
certain their true/false positive status would require us to manually
go through their entire propagation logs one by one, a resource
expenditure that we currently do not have. We give our best effort
estimate of the actual true positive rate in the “Precision” column
in Table 3, calculated as TP/(TP + FP).

Since Mystique propagates taint across control-flow dependen-
cies in addition to tracking direct data flows (Section 3.2.3), which
as we mentioned is necessary for detecting privacy leakage from
extensions, some false positives in the analysis result are inevitable.
During the development of Mystique we did investigate some false
positive extensions and found overtainting due to control-flow de-
pendencies. However, verifying that this is indeed the cause of all
the false positives would again require us to manually examine
the taint propagation logs one by one, which as we mentioned is
beyond our current resource expenditure. To ascertain the reason
for the false positives, further improvements to Mystique’s taint
propagation logs should 1) label the taint data propagated from
control-flow dependencies differently than normal data flows, and
2) include more detailed information to facilitate easy pin-pointing



of where a control-flow dependency originates. These improve-
ments would also help a human analyst to quickly discern false
positive results, mitigating the inaccuracy introduced by control-
flow dependencies. Nevertheless, our prototype implementation
of Mystique already provides reasonable accuracy for detection of
privacy-leaking extensions, and we argue that in its current form,
Mystique can be incorporated as part of a triage system for online
extension repositories such as the Chrome Web Store.

5.3 Case Studies

In this section we present the details of Mystique’s analysis results,
highlighting the privacy threats posed by third-party extensions.

5.3.1 Number of Affected Users. We begin by capturing the num-
ber of users that are affected by extensions that were flagged by
Mystique. These are extensions that were found and/or have the
potential to leak users’ privacy-sensitive information. To do this,
we first sort all of the 3,809 flagged Chrome extensions according
to the number of users they have. Starting from the extension with
the most users, we then manually verify their taint sink objects to
see if they are true positive results, as we have done in Section 5.2.
Table 4 shows the number of users for the top 10 true positive
Chrome extensions that were flagged by Mystique (10,000,000+
means more than 10 million users). The data on the number of
users were obtained by crawling the Chrome Web Store after Mys-
tique has finished analyzing the extension.

From the top 10 extensions in Table 4, 7 used XMLHttpRequest
directly to send privacy-sensitive information to third-party, while
the remaining 3 used the chrome.storage API to persist such
information. Note that all XMLHttpRequests made by the exten-
sions listed in Table 4 are sent to remote network hosts (instead of
localhost, see Section 5.3.4). Although third-parties cannot imme-
diately learn of privacy-sensitive information that was persisted us-
ing the chrome. storage API, extensions that stored tainted values
with this API should still be labeled suspicious and further investi-
gated, for the reasons that 1) the extension might be bulk-sending
such information and our analysis did not trigger the conditions
necessary for the actual leaking behavior, and 2) an updated version
of the extension may leak the stored information, even though the
current version only stores the information for local use. The latter
is especially problematic when the original author decides to sell
her extension to another entity, or when her account was hijacked
by a malicious actor to push out bogus updates.

It should be noted that many of the Chrome extensions flagged by
Mystique are no longer available on the Chrome Web Store (either
taken down by Google or the extension authors), and therefore
we were not able to collect data on the number of users for these
extensions. There are 1,084 unique extensions (i.e., discounting
version differences) in the 3,809 Chrome extensions flagged by
Mystique. Out of these 1,084 unique extensions, we obtained data
on the number of users for 659 of them.

In the rest of this section, we give case studies of representa-
tive extensions that were detected by Mystique. We also show the
strength of Mystique by comparing it with similar previous efforts.

5.3.2  SimilarWeb Library and Web of Trust. Here we look at Mys-
tique’s effectiveness at flagging extensions that have been known

to leak privacy-sensitive information. The SimilarWeb tracking
library and the Web of Trust extension are two cases that have
drawn attention from the security community in the past. In partic-
ular, The SimilarWeb library was identified in [51], and it is often
bundled by extension developers to serve as a revenue source. In
the report [51], the author was able to find 42 extensions out of
the 7,000 most popular extensions on the Chrome Web Store by
searching in the extension package for specific source code strings.
In comparison, Mystique found a total of 382 extensions (or 99
unique extensions discounting version differences) that include the
SimilarWeb library. Note that all of the 382 extensions were detected
by Mystique’s automatic analysis. Our emphasis here is to highlight
Mystique’s ability to detect additional cases that were missed by the
approach in [51].

Specifically, to find extensions that contain the SimilarWeb li-
brary from Mystique’s analysis results, we filtered the extensions
flagged by Mystique (3,868 in total) by similarity in the general for-
mat of the taint sink objects. We further verified that they indeed
executed the SimilarWeb library by manually examining the taint
propagation logs generated by Mystique (Section 3.5). Overall, we
were able to identify 5 more domains that received the leaked data
than the original report [51] (these are: starwebnet.com, fvdsugges-
tions.com, upgit.com, analyticstats.com, and connectwebonline.net).
We also found extensions that 1) does not package the SimilarWeb
library code directly but nevertheless download and execute it at
runtime, and/or 2) use minified versions of the library. Note that
this highlights the drawbacks of the approach used in [51]: it cannot
catch extensions that load tracking code externally at runtime, nei-
ther can it catch minified/obfuscated cases, since it only searched
in the extension package for specific source code strings.

We next turn our attention to Web of Trust (WOT) [20], an exten-
sion that provides its users with reputation and safety information
about the websites based on popular reviews. Note that in order to
provide its advertised functionalities, WOT has to collect the cur-
rent browsing activity and use it to query a remote server. However,
as mentioned, WOT has reportedly been selling its users’ brows-
ing history to third parties [41], which demonstrates the potential
threat of privacy abuse by such extensions.

Mystique was able to flag the WOT extension as leaking privacy-
sensitive information. By examining the taint propagation report,
we found that the WOT extension obfuscates the leaked data by
first applying RC4 encryption and then encoding the result with
double-base64 (i.e., twice base64-encode). Additionally, Mystique
also flagged another extension, Filter by WOT, released by the same
developers as WOT, that demonstrates the same behavior. Since
these two extensions use encryption, the method used by Starov et
al. [43] cannot use its heuristics to decrypt the data, and therefore
would not be able to detect them.

5.3.3 Comparison with Traffic Analysis Methods. Previous research
efforts at identifying privacy-leaking browser extensions using dy-
namic analysis focused only on the network traffic generated by
extensions (e.g., [43]). Since they lack the insights into the detailed
data flows inside the extensions, they have to rely on heuristics to
attempt de-obfuscation of any encoded parameters and recover the
plaintext. As such, they cannot handle 1) encoding schemes that



# Users | Taint Sink(s) Triggered
Avast SafePrice 10,000,000+ chrome.storage
Avira Browser Safety 10,000,000+ XMLHttpRequest
Avast Online Security 10,000,000+ chrome.storage
Pinterest Save Button 10,000,000+ XMLHttpRequest
Unlimited Free VPN - Hola 8775275 XMLHttpRequest
AVG SafePrice 5585975 chrome.storage
Pop up blocker for Chrome™- Poper Blocker 2292266 XMLHttpRequest
Block Site - Website Blocker for Chrome™ 1468846 XMLHt tpRequest
Trustnav Safesearch 1340990 XMLHttpRequest
WOT Web of Trust, Website Reputation Ratings 1231219 XMLHttpRequest

Table 4: Top 10 true positive extensions flagged by Mystique.

are not anticipated beforehand, and 2) more importantly, exten-
sions that use one-way hashing (e.g., MD5) or encryption. Further-
more, they cannot identify cases where extensions persist privacy-
sensitive information on local storage, which as we mentioned in
Section 5.3.1 presents opportunities for abuse and should be labeled
for further investigation. Finally, since Mystique logs each step of
taint propagation, it is also able to give detailed information on how
sensitive data are abused within third-party extensions, an insight
that pure network-level analysis lacks.

We present in this section case studies of extensions that were
detected by Mystique, but would have been missed by previous
traffic analysis methods. We start by giving two example encoding
schemes that we found through Mystique, but would have evaded
the heuristics used by Starov et al. [43]. The first one, which we
term string-to-hex encoding, is a method that simply converts each
character to a two-digit hexadecimal number according to its inte-
ger value in the ASCII table. For example, in this scheme, the string
“abc” would be encoded as “616263” (0x61 is the ASCII value for
the character ’a’). The second encoding scheme uses plain base64
encoding, but appends to the end a fixed string "/version=2.x/*"
(x ranges from 0 to 2 in our detected extensions). Since the Starov
et al. [43] only considered URL encoding, base64, repeated base64,
gzip/deflate, and JSON-packing to attempt decoding of each individ-
ual parameters, their methodology cannot detect the string-to-hex
encoding scheme. For the second scheme, although plaintext can
still be recovered by attempting unmodified base64 decoding, this
would not be the case if the version string was prepended rather
than appended (i.e., slight modifications to the standard encoding
schemes would invalidate their heuristics). The simplicity of these
two encoding schemes nevertheless points to the problems faced
by approaches that rely on heuristics to decode network traffic.

On the other hand, if the extension employs one-way hashing or
encryption, then it is not possible to recover the plaintext by merely
applying heuristic to the captured network traffic. For one-way
hashing, third-parties that are interested in learning the browsing
activities of the extension users can simply build beforehand a table
of hashes of all the popular website’s URLs (e.g., from Alexa top
sites). The most frequently encountered hash algorithm used by
extensions is currently MD5. For extensions that use encryption,
apart from the aforementioned WOT extension, which uses RC4,
we also observed another extension that uses ROT-13 (a simple

encryption that maps a letter to another that is 13 places after it in
the alphabet).

We point out that although traffic analysis methods that match
the traffic features to those generated by privacy-leaking extensions
(e.g. [52]) can potentially catch extensions that use encoding meth-
ods not thought of beforehand, or even those that use encryption,
such methods are prone to evasion whereby attackers mask their
network traffic with noise. Mystique’s tracking of tainted data flows
is not affected by such evasion.

5.3.4 Extensions that leak to localhost. From Mystique’s analy-
sis results, we frequently find extensions whose taint sink objects
are seemingly sent to localhost on a particular port. Upon closer
examination, these extensions typically serve as a complement to
native applications that are already installed on the user’s computer.
These native applications are the ones responsible for listening for
the requests on localhost. It is possible that the desktop applica-
tion would then be the one that actually leaks browsing activities to
a remote server. To be conservative, any such extension should be
labeled for further investigation (i.e., leakage to localhost should
be treated in the same way as triggering of local storage taint sink).

6 LIMITATIONS AND FUTURE WORK

Mystique fundamentally relies on runtime dynamic analysis of
browser extensions in order to detect privacy-intrusive behaviors,
and as with all dynamic analysis systems, the successful detection
of malicious behaviors depends on triggering such behaviors during
the analysis. And even though we incorporated HoneyPage [34]
into our analysis to aid in actively triggering malicious behaviors
from extensions, HoneyPage is not without limitations and cannot
guarantee complete coverage. While code coverage is an important
metric to obtain for a dynamic analysis system such as Mystique,
its measurement poses challenges in the web context. For example,
a browser extension can implement some part of its functionality
in JavaScript code that is fetched remotely from a server during
runtime, and the fetched content might be different depending on
a number of factors, such as whether the server is being queried by
a security crawler (i.e., web cloaking [32]). To this end, our future
research efforts will look into complementing Mystique with static
program analysis techniques, such as [30, 42], in order to deduce
properties of the JavaScript source code and automatically trig-
ger privacy-intrusive behaviors. It will also be helpful to combine



techniques from previous works to detect when when cloaking is
employed by malicious sites.

Privacy-sensitive information can also be leaked via side-channel
attacks (e.g., [50]). In this paper, along with other similar previous
research efforts, we consider side-channel attacks to be out-of-
scope. Orthogonal techniques are needed to mitigate the impact of
side-channel attacks.

7 RELATED WORK

Information flows in the web context: A number of previous
works have investigated applying taint analysis to the web security
context. Specifically, Lekies et al. [36], Stock et al. [45], and Melicher
et al. [38] detect DOM-based cross-site scripting (XSS) vulnerabili-
ties by augmenting both the V8 JavaScript engine and WebKit to
make Chrome taint-aware. As mentioned, their system only handles
direct taint propagation between strings, and as such is not adequate
in detecting privacy-leaking extensions. Earlier works [25, 47] have
implemented taint tracking for the Firefox browser by extending the
SpiderMonkey [40] JavaScript engine. Although these were able to
cover all available object types in JavaScript as well as control-flow
dependencies, they relied on instrumenting all (bytecode) data flow
operations emitted by SpiderMonkey. This approach is not suitable
for our purposes, given the complex nature of the V8 engine as
mentioned in Section 3.

The taint analysis technique that Mystique leverages fits in a
broader category of works that deal with information flows in the
web security context. Jang et al. [33] use source-level rewriting
to track information flows in JavaScript web applications. How-
ever, they pointed out that their approach did not cover browser
built-in APIs, nor did they handle data flows through the DOM,
both of which are handled by Mystique. Also, their approach intro-
duces source-level changes (e.g., script size) that might alter pro-
gram behaviors. Similar rewriting-based approach was also used
by Chudnov et al. [21], who propose an information flow control
(IFC) monitor, but substantial additional work is needed for their
approach to work with existing JavaScript applications. Another
work [23] implements IFC for Firefox to enforce confidentiality
policies between web scripts and browser APIs. Finally, Bauer et
al. [17] offer an approach to enforce coarse-grained information
flow policies among entities in the browser (e.g., DOM elements,
events, and extensions), but it lacked Mystique’s ability to track the
detailed data flows within JavaScript applications (they treated the
V8 JavaScript engine as a black box in their analysis).

As a complement to dynamic analysis techniques, previous works
(e.g., [15, 30, 42]) applied static program analysis techniques in the
web context to secure information flows, and/or to provide other
security properties (e.g., Saxena et al. [42] implemented symbolic
execution for JavaScript to automatically find vulnerabilities).
Detecting privacy-leaking extensions: Previous research [28,
37, 43, 52] also dealt with the privacy implications of browser ex-
tensions. In particular, Starov et al. [43] and Weissbacher et al. [52]
are closely related to Mystique. Mystique differentiates in method-
ology from these prior works. As we mentioned the approaches
adopted by Starov et al. [43] and Weissbacher et al. [52] rely on
monitoring and analyzing network traffic, and we already compared
Mystique with them in regard to methodologies in Section 5.3.3.

Note that unlike Mystique, Starov et al. [43] and Weissbacher et
al. [52] only analyzed the top 10K most popular extensions on the
Chrome Web Store.

Large-scale studies of browser extensions: Apart from some
of the works mentioned above (e.g., [15, 43]) and Mystique, re-
searchers have also proposed a number of dynamic analysis frame-
works aimed at automatically analyzing large numbers of browser
extensions for malicious behaviors. Kapravelos [34] actively elicit
malicious behaviors from browser extensions by developing Hon-
eyPages, which we incorporated into our evaluation of Mystique.
Another work [48] uses an instrumented Firefox browser to auto-
matically analyze extensions for dangerous behaviors.

8 CONCLUSION

In this paper, we presented the design and implementation of the
first information flow tracking tool for the Chromium browser. To
overcome the complexities posed by both the JavaScript language
as well as the V8 engine, we adopted a novel hybrid approach to run-
time taint propagation. Based on this tool, we proposed Mystique,
a framework for analyzing Chrome extensions. We applied Mys-
tique to conduct a large-scale study of extensions from the Chrome
Web Store, with respect to their privacy practices. To this end, we
analyzed 178,893 Chrome extensions and 2,790 Opera extensions,
and flagged 3,868 (2.13%) of them as potentially leaking privacy-
sensitive information. We found that the top 10 of the Chrome
extensions that we confirmed to be leaking privacy-sensitive in-
formation have more than 60 million users combined. We also
uncovered a number of obfuscation methods that were missed by
previous work. Our results demonstrate the feasibility and effec-
tiveness of Mystique, and shed light on the privacy practices of
browser extensions, highlighting the threat posed to user privacy.
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