
PExy: The other side of Exploit Kits

Giancarlo De Maio*, Alexandros Kapravelos�, Yan Shoshitaishvili�,
Christopher Kruegel�, and Giovanni Vigna�

University of Salerno*

demaio@dia.unisa.it

UC Santa Barbara�

{kapravel,yans,chris,vigna}@cs.ucsb.edu

Abstract. The drive-by download scene has changed dramatically in
the last few years. What was a disorganized ad-hoc generation of mali-
cious pages by individuals has evolved into sophisticated, easily extensi-
ble frameworks that incorporate multiple exploits at the same time and
are highly configurable. We are now dealing with exploit kits.
In this paper we focus on the server-side part of drive-by downloads
by automatically analyzing the source code of multiple exploit kits. We
discover through static analysis what checks exploit-kit authors perform
on the server to decide which exploit is served to which client and we
automatically generate the configurations to extract all possible exploits
from every exploit kit. We also examine the source code of exploit kits
and look for interesting coding practices, their detection mitigation tech-
niques, the similarities between them and the rise of Exploit-as-a-Service
through a highly customizable design. Our results indicate that even with
a perfect drive-by download analyzer it is not trivial to trigger the ex-
pected behavior from an exploit kit so that it is classified appropriately
as malicious.

1 Introduction

Over the last few years, the web has grown to be the primary vector for the spread
of malware. The attacks that spread malware are carried out by cybercriminals
by exploiting security vulnerabilities in web browsers and web browser plugins.
Once a vulnerability is exploited, a traditional piece of malware is loaded onto
the victims’ computer in a process known as a drive-by download [6, 15].

To avoid duplication of effort, and make it easier to adapt their attacks to
exploit new vulnerabilities as they are found, attackers have invented the con-
cept of “exploit kits” [1]. These exploit kits comprise decision-making code that
facilitates fingerprinting (the determination of what browser, browser version,
and browser plugins a victim is running), determines which of the kit’s available
exploits are applicable to the victim, and launches the proper exploit. As new
exploits are developed, they can be added to such kits via a standard interface.
Exploit kits can be deployed easily, with no advanced exploitation knowledge
required, and victims can be directed to them through a malicious redirect or
simply via a hyperlink.

2 Authors Suppressed Due to Excessive Length

In general, exploit kits fingerprint the client in one of two ways. If the versions
of the browser plugins are not important, an exploit kit will determine which
of its exploits should be sent by looking at the victim’s User-Agent (set by the
browser) or the URL query string (set by the attacker when linking or redirecting
the user to the exploit kit). Alternatively, if the exploit kit needs to know the
browser plugins, or wishes to do some in-depth fingerprinting in an attempt to
evade deception, it sends a piece of JavaScript that fingerprints the browser,
detects the browser versions, and then requests exploits from the exploit kit,
typically by doing a standard HTTP request with a URL query string specifying
the victim’s detected information, thus reducing this to the first fingerprinting
case.

Because of the raw number of different vulnerabilities and drive-by download
attacks, and the high rate of addition of new exploits and changes of the exploit
kits, the fight against web-distributed malware is mostly carried out by auto-
mated analysis systems, called “honeyclients”, that visit a web page suspected
of malicious behavior and analyze the behavior of the page to determine its
maliciousness [12, 16, 5, 14, 17, 10]. These systems fall into two main categories:
low-interaction honeyclients and high-interaction honeyclients. The former are
systems that heavily instrument a custom-implemented web client and perform
various dynamic and static analyses on the retrieved web page to make their de-
termination. On the other hand, the latter are instrumented virtual machines of
full systems, with standard web browsers, that are directed to display the given
page. When a malicious page infects the honeyclient, the instrumentation soft-
ware detects signs of this exploitation (i.e., newly spawned processes, network
connections, created files, and so on) and thus detects the attack.

In the basic operation of modern honeyclients, the honeyclient visits a page
once, detects an exploit, and marks the page as malicious. This page can then be
included in a blacklist so that users are protected from being exploited by that
specific page in the future. Upon the completion of this process, the honeyclient
typically moves on to the next page to be checked.

However, this design represents a humongous missed opportunity for the
honeyclients. An exploit kit that is detected in this manner is typically detected
based on a single launched exploit. However, in practice, these exploits hold
anywhere up to a dozen exploits, made for many different browsers and different
browser versions. We feel that simply retrieving a single exploit and detecting
the maliciousness of a page is not going far enough: every additional exploit that
can be retrieved from the exploit kit provides additional information that the
developers of honeyclients can use to their advantage.

For example, it is possible for honeyclients and other analysis systems to
use signatures for quicker and easier detection. A high-interaction honeyclient
can create a signature from the effects that a certain exploit has on the system,
and this signature could be used by both the honeyclient itself and by other
attack-prevention systems (such as antivirus systems) to detect such an exploit
in the future. Similarly, low-interaction honeyclients can create signatures based
on the contents of the exploit itself and the setup code (typically very specific

PExy: The other side of Exploit Kits 3

techniques, such as heap spraying, implemented in JavaScript). These signatures
could then be passed to a similarity-detection engine, such as Revolver [8], which
can detect future occurrences of this exploit. Finally, an opportunity is missed
when moving on from an exploit kit after analyzing only one exploit because
other, possibly high-profile, exploits that such a kit might possess will go ignored.
If one of these exploits is previously unseen in the wild (i.e, it is a 0-day),
detecting it as soon as possible is important in minimizing the amount of damage
that a 0-day could cause.

Our intuition is that, by statically analyzing the server-side source code of
an exploit kit (for example, after the server hosting it has been confiscated by
the authorities and the kit’s source code has been provided to the researchers), a
set of user agents and query string parameters can be retrieved that, when used
by a honeyclient, will maximize the number of exploits that can be successfully
retrieved. Additionally, because exploit kits share similarity among family lines,
these user agents and query string parameters can be used to retrieve exploits
from other, related exploit kits, even when the server-side source code of these
kits is not available. By leveraging these intuitions, it is possible to extract a
high amount of exploits from these exploit kits for use in similarity detection,
signature generation, and exploit analysis.

To demonstrate this, we designed a system called PExy, that, given the source
code of an exploit kit, can extract the set of URL parameters and user agents
that can be combined to “milk” an exploit kit of its exploits. Due to the way in
which many of these kits handle victim fingerprinting, PExy frequently allows
us to completely bypass the fingerprinting code of an exploit kit, even in the
presence of adversarial fingerprinting techniques, by determining the input (URL
parameters) that the fingerprinting routine would provide to the exploit kit. We
evaluate our system against a collection of over 50 exploit kits in 37 families
by showing that it can generate the inputs necessary to retrieve 279 exploits
(including variants).

This paper makes the following contributions:

– We provide an in-depth analysis of a wide range of exploit kits, using this
to motivate the need for an automated analysis system.

– We present the design of a framework for static analysis of exploit kits,
focusing on the inputs that those kits process during their operations.

– We develop and demonstrate a technique to recover the necessary inputs to
retrieve a majority of an exploit kit’s potential output, focusing on retrieving
as many exploits from exploit kits as possible.

2 Anatomy of an Exploit Kit

In this section, we will detail the anatomy of exploit kits, derived from a manual
examination of over 50 exploit kits from 37 different families (detailed in Fig-
ure 3, to help the reader understand our decisions in developing the automated
approach.

4 Authors Suppressed Due to Excessive Length

In general, the lifecycle of a victim’s interaction with an exploit kit proceeds
through the following steps.

1. First, the attacker lures the victim to the exploit kit’s “landing page”. This
is done, for example, by sending a link to the victim or injecting an IFrame
in a compromised web page.

2. The victim’s browser requests the exploit kit’s landing page. This interaction
can proceed in several ways.
(a) If the exploit kit is capable of client-side fingerprinting, it will send the

fingerprinting JavaScript to the client. This code will then redirect the
client back to the exploit kit, with the fingerprinting results in URL
parameters.

(b) If the exploit kit is incapable of client-side fingerprinting, or if the request
is the result of the client-side fingerprinting code, the exploit kit selects
and sends an exploit to the victim.

3. The victim’s browser is compromised by the exploit sent by the exploit kit,
and the exploit’s payload is executed.

4. The exploit payload requests a piece of malware from the exploit kit, down-
loads it, and executes it on the user’s machine. This malware (typically a
bot) is generally responsible for ensuring a persistent infection.

2.1 Server-side Code

The analyzed exploit kits in our dataset are web applications written in PHP,
and most of them use a MySQL database to store configuration settings and
exploitation statistics. We will describe several main parts of these exploit kits:
server-side modules (such as administration interfaces, server-side fingerprinting
code, and exploit selection), and client-side modules (such as fingerprinting and
exploit setup code).

Exploit kit Encoding Decoding

Blackhole 1.1.0 IonCube 6.5 Partial

Blackhole 2.0.0 IonCube 7 Partial

Crimepack 3.1.3 IonCube 6.5 Full

Crimepack 3.1.3-b IonCube 6.5 Full

Tornado ZendGuard Full

Table 1 – Server-Side encoding.

Obfuscation. Some exploit kits are obfuscated with commercial software such
as IonCube and ZendGuard (Table 1). It was possible to break the encoding,
albeit only partially in some cases, by means of the free service provided at
http://easytoyou.eu and other tools from the underground scene1.

1 See http://ioncubedecoder2013.blogspot.com/2013/05/ioncube-decoder.html

PExy: The other side of Exploit Kits 5

Database. Most exploit kits are capable of recording information about victims
that are lured to visit them. While some kits (such as the Tornado exploit kit)
store this information on the filesystem, most maintain it in a MySQL database.
Furthermore, all of the examined samples provide an administrative web inter-
face meant to access and analyze these statistics.

Administration Interface. The exploit kits in our dataset all implement
an administrative web interface, with varying degrees of sophistication. This
password-protected interface enables the administrator of the exploit kit to con-
figure the exploit kit and view collected victim statistics.

The configurability of exploit kits varies. All of the exploit kits that we ana-
lyzed allowed an administrator to upload malware samples that are deployed on
the victim’s machine after the victim is successfully exploited. More advanced
exploit kits allow fine-grained configuration. For example, Blackhole, Fragus,
and Tornado allow the creation of multiple instances (termed “threads” by the
exploit kits’ documentation), each exhibiting a different behavior (typically, dif-
ferent exploits to attempt and malware to deliver). These threads are associated
with different classes of victims. For example, an attacker might configure her
exploit kit to send different pieces of malware to users in the United States and
users in Russia.

2.2 Fingerprinting

All of the exploit kits in our dataset implement a fingerprinting phase in which
information about the victim is collected. This information is used by the exploit
kit to select the appropriate exploit (according to the type and versions of soft-
ware running on the victim’s computer) and to defend the kit against security
researchers. Such information can be collected on either the server or the client
side, and can be used by an exploit kit to respond in a different way to different
victims.

Fingerprinting results can also be used for evasion. For example, if the victim
is not vulnerable to any of the kit’s exploits, or the IP address of the victim is
that of a known security research lab (or simply not in a country that the attacker
is targeting), many exploit kits respond with a benign web page.

Additionally, many exploit kits deny access to the client for a period of time
between visits in an attempt to be stealthy. Exploit kits without a server-side
database typically implement this by using cookies, while those with a database
store this information there.

Server-side Fingerprinting. A request to a web page may carry lot of in-
formation about the victim, such as their HTTP headers (i.e., the User-Agent,
which describes the victim’s OS family and architecture and their browser ver-
sion), their IP address (which can then be used, along with the Accept-Language
header, to determine their geographic location), URL parameters (which can be
set by client-side fingerprinting code), cookies (that can help determine if the

6 Authors Suppressed Due to Excessive Length

client already visited the page) and the HTTP Referer header. A typical ex-
ample of behavioral-switching based on server-side fingerprinting is shown in
Listing 1.1, extracted from the Armitage exploit kit, where the choice of the
exploit to be delivered depends on the browser of the victim. While in this case,
the information was derived from the User-Agent, other exploit kits receive such
information in the form of URL parameters from client-side fingerprinting code.

if($type == "Internet Explorer")

include("e.php");

if($type == "Opera" && $bv[2]<"9.20" && $bv[2]>"9")

include("opera.php");

if($type == "Firefox")

include("ff.php");

Listing 1.1 – Behavior based on the victim’s browser (Armitage).

Client-side Fingerprinting. Because client-side fingerprinting can give a more
accurate view of the client’s machine, most of the exploit kits implement both
server-side and client-side fingerprinting. Client-side fingerprinting is used to re-
trieve information unavailable from HTTP headers, such as the victim’s installed
browser plugins and their versions. Since many browser vulnerabilities are actu-
ally caused by vulnerabilities in such plugins (most commonly, Adobe Reader,
Adobe Flash, or Java), this information is very important for the selection of
the proper exploit.

var a_version = getVersion("Acrobat");

if(a_version.exists){

if(a_version.version >= 800 && a_version.version < 821){

FramesArray.push("load_module.php?e=Adobe -80 -2010 -0188"

);

}else if(a_version.version >= 900 && a_version.version <

940){

if(a_version.version < 931){

FramesArray.push("load_module.php?e=Adobe

-90 -2010 -0188");

...

var newDIV=document.createElement("div");

newDIV.innerHTML="<iframe src='" + FramesArray[CurrentModule]

+ " '></iframe >";

document.body.appendChild(newDIV);

Listing 1.2 – Requests generated client-side (Bleeding Life v2.0).

The retrieved information is passed back to the exploit kit via an HTTP GET
request, with URL parameters denoting the client configuration. An example of
how these requests are generated in client-side fingerprinting code is shown in
Listing 1.2. The excerpt, extracted from Bleeding Life v2.0, makes use of the
PluginDetect library2 to obtain information about the Adobe Acrobat plugin in

2 http://www.pinlady.net/PluginDetect/

PExy: The other side of Exploit Kits 7

Internet Explorer. Depending on the plugin version, a subsequent request is con-
structed to retrieve the proper exploit. Although the fingerprinting is happening
on the client side, the server is still the one that is distributing the exploit and
makes a server-side decision (based on the URL parameters sent by the client-
side fingerprinting code) of which exploit to reveal. Listing 1.3, extracted from
the Shaman’s Dream exploit kit, shows how the result of a client-side fingerprint-
ing procedure (stored in the “exp” URL parameter) is used on the server-side
to select the exploit.

...

$case_exp = $_GET["exp"];

if ($browser == "MSIE"){

if ($vers [2] < "7"){

if (($os == "Windows XP") or ($os == "Windows 2003")){

switch ($case_exp) {

case 1: echo _crypt(mdac()); check ();break;

case 2: echo "<html ><body >"._crypt(DirectX_DS7 ())." </

body ></html >"; check ();break;

case 3: echo _crypt(Snapshot ()); check ();break;

case 5: echo _crypt(msie_sx ()); check ();break;

case 4: echo _crypt(pdf_ie2 ()); die;break;

...

Listing 1.3 – Execution-control parameters (Shaman’s Dream).

2.3 Delivering the Exploits

Exploit kits contain a number of exploits, of which only a subset is sent to the
victim. This subset depends on the output of the fingerprinting step, whether
the fingerprinting is done only server-side or on both the server and client side.
The kits that we have analyzed use the following information to pick an exploit
to deliver.

IP headers. The IP address of the victim, stored by PHP as a global variable
in $_SERVER['REMOTE_ADDR'], is used by exploit kits for geographical filtering.
For example, an exploit kit administrator might only want to infect people in
the United States.

HTTP headers. HTTP headers, stored by PHP in the $_SERVER global ar-
ray, carry a lot of information about the victim. Exploit kits typically use the
following headers:

User-Agent. Exploit kits use the user agent provided by the victim’s browser to
determine which OS family, OS version, browser family, and browser version the
victim’s PC is running.

8 Authors Suppressed Due to Excessive Length

Accept-Language. Along with the IP address, this header is used by exploit kits
for geographical filtering.

Referer. This header is used by exploit kits for evasive purposes. Some kits avoid
sending malicious traffic to victims when no referrer is present, as this might be
an indication of an automated drive-by-download detector.

Cookies. Cookies are used to temporarily “blacklist” a victim from interaction
with the exploit kit. They are accessible from PHP via the $_COOKIE variable.

HTTP query parameters. Finally, exploit kits use HTTP query parameters
(i.e., URL parameters in a GET request or parameters in a POST request)
quite heavily. These parameters, accessed in PHP through the $_QUERY global
variable, are used for two main purposes: receiving results of fingerprinting code,
and internal communication between requests to the exploit kits.

Receiving fingerprinting results. Client-side fingerprinting code relays its results
back to the exploit kit via URL parameters. As exemplified in Listing 1.3, this
information is then used to select the proper exploits to send to the victim.

Inter-page communication. By examining the exploit kits manually we found
out that the majority of the analyzed exploit kits (41 out of 52) employ URL
parameters to transfer information between multiple requests. In some cases,
such as the bomba and CrimePack exploit kits, there were up to 6 parameters
used.

2.4 Similarity

Our analysis of the exploit kits revealed that many kits share common code. In
fact, the source code is almost identical between some versions of the exploit
kits, leading to the conclusion that these kits were either written by the same
individual or simply forked by other criminals. Such similarities between exploit
kits can be leveraged by security researchers, as effective techniques for analyzing
a given kit are likely to be applicable to analyzing related kits.

To explore the implications of these similarities, we analyzed a subset of
our dataset using Revolver, a publically available service that tracks similarities
of malicious JavaScript [8]. The results, shown in Figure 1, demonstrate the
evolution of these exploit kits. We see three main families of exploit kits emerge
from the analysis: Blackhole, which contains very characteristic code within its
exploit staging, MPack / Ice Pack Platinum / 0x88, which appear to share
exploitation scripts, and Eleonore / MyPolySploits / Unknown / Cry / Adpack
/ G-Pack, which share (albeit slightly modified) exploits as well. Additionally,
manual analysis of the back-end PHP code confirmed that these exploit kits use
similar code, and are probably derived from each other.

PExy: The other side of Exploit Kits 9

Fig. 1 – Exploit kit similarities identified by Revolver. The lower the U-shaped
connection, the higher the similarity.

3 Automatic Analysis of Exploit Kits

In this work we propose a method to automatically analyze an exploit kit given
its source code. Our objective is to extract the inputs due to which the exploit
kit changes its behavior. This can be used by web-malware analyzers to both
classify websites correctly and milk as many exploits as possible from exploit-kit
deployments found in the wild.

Milking an exploit kit involves the creation of a set of inputs to trigger all
the possible behaviors in order to obtain as many exploits as possible, which
may improve the analysis of the page. This is a problem of code coverage, with
the constraint that only a specific subset of variables can be tuned. The subset
of tunable variables is extracted by the PHP engine from the victim’s HTTP
request.

The source code of an exploit kit may contain several paths depending on
HTTP parameters. The challenge is to be able to discern whether a parameter
affects the behavior of the exploit kit. An exploit kit may be characterized by a
set of behaviors, where each behavior is an execution path that maps a request
to a different response.

In essence, this problem can be reduced to (1) identifying all the branches
in the code that depend on (tunable) HTTP elements and (2) determining the
values of the parameters to satisfy the condition. By doing this, we can obtain,
for each exploit kit:

– A list of HTTP elements that characterize the exploit kit.
– A list of values for those elements that can be used to cover as much server-

side code as possible.

10 Authors Suppressed Due to Excessive Length

Fig. 2 – Architecture of PExy.

3.1 System Design and Architecture

The main contribution of this work is PExy, a system for the automatic analysis
of the source code of exploit kits. The high-level architecture of PExy is presented
in Figure 2.

An exploit kit submitted to PExy undergoes a four-stage analysis. In the first
place, an abstract representation of the source code, the Control Flow Graph
(CFG), is generated (1). The CFG is then processed by a taint analyzer that
extracts a first level of information about the HTTP parameters used by the
exploit kit (2). These initial steps are accomplished by means of Pixy [7]. How-
ever, as we discuss in Section 3.3, the information gathered so far is not sufficient
to accomplish an accurate behavioral analysis. In order to extract the missing
information, an extended taint analysis is performed (3). This knowledge is then
passed to the behavioral analyzer, which is able to discern the HTTP parame-
ters and values that influence the behavior of the exploit kit (4). The output of
PExy is a signature of the exploit kit that can be used by a honeyclient to both
identify and milk similar exploit kits in the wild.

PExy inherits most of data structures defined by Pixy. For sake of clarity, a
brief overview of Pixy is presented below.

3.2 Pixy: Data-Flow Analysis for PHP

Pixy is a flow-sensitive, interprocedural, and context-sensitive data flow analysis
system for PHP, targeted at detecting taint-style vulnerabilities. It is also avail-
able as a fully-fledged prototype implementing the proposed analysis technique.

The first phase of the analysis consists of generating an abstract syntax tree
representation of the input PHP program, which is the Parse Tree. The Parse
Tree is then transformed into a linearized form resembling Three-Address Code
(TAC). At this point, a Control Flow Graph (CFG) for each encountered function
is constructed.

In order to improve correctness and precision of the taint analysis, the method-
ology includes two further phases: alias and literal analysis. It is worth noting
that, whenever a variable is assigned a tainted value, this taint value should not

PExy: The other side of Exploit Kits 11

be only propagated to the variable itself, but also to all its aliases (variables
pointing to the same memory location). In order to handle this case, an alias
analysis to provide information about alias relationships is performed.

On the other hand, literal analysis is accomplished in order to deduce, when-
ever possible, literal values that variables and constants may hold at each pro-
gram point. This information is used to evaluate branch conditions and ignore
program paths that cannot be executed at runtime.

The analysis technique is aimed at detecting taint-style vulnerabilities, such
as XSS, SQL injection and command injection flaws. In this context, tainted
data can be defined as data that originates from potentially malicious users and
can cause security problems at vulnerable points in the program. In order to
accomplish this task, three main elements are defined by Pixy:

1. Entry Points - any elements in the PHP program that can be controlled by
the user, such as HTTP POST parameters, URL queries and HTTP headers;

2. Sensitive Sinks - all the routines that return data to the browser, such as
echo(), print() and printf();

3. Sanitization Routines - routines that destroy potentially malicious charac-
ters, such as htmlentities() and htmlspecialchars(), or type casts that
transform them into harmless ones (e.g., casts to integer).

The taint analysis implemented by Pixy works as follows. First, the Sensitive
Sinks of the program are detected. Then, for each Sensitive Sink, information
from the data-flow analysis is used to construct an acyclic dependency graph for
its input. A vulnerability is detected if the dependency graph contains a path
from an Entry Point to the Sensitive Sink, and no Sanitization Routines are
performed along this path.

3.3 PExy: Static Analysis of Malicious PHP

The main goal of PExy is to perform the behavioral analysis of a PHP code,
aimed to determine which HTTP parameters and values influence the execution
of an exploit kit. To accomplish this task, we enriched the taint analysis imple-
mented by Pixy with new techniques that allow us to classify all the branches in
the input program. The information extracted by means of this extended taint
analysis is used to discern the behavior of the exploit kit. The behavioral anal-
ysis is further divided into different sub-phases, each based on a targeted set of
heuristics. In detail, PExy performs the following activities:

1. First-level taint analysis (Pixy)

2. Branch identification through extended taint analysis

3. Branch classification

4. Parameter and value extraction

5. Value determination

12 Authors Suppressed Due to Excessive Length

First-level taint analysis. The first activity performed by PExy is the iden-
tification of all the branches in the program that depend on client’s parameters.
This can be accomplished by tainting the corresponding elements in the PHP
program (i.e., $_GET, $_POST, $_QUERY, $_SERVER, $_COOKIE arrays), which have
been previously defined as Pixy Entry Points. The main difference is that we
are now interested in how these parameters influence the behavior of a mali-
cious script. To understand this, we configured PExy to treat all conditions as
Pixy Sensitive Sinks. A Sensitive Sink corresponding to a conditional branch is
referred as Condition Sink.

The output of Pixy is a set of all the Condition Sink encountered in the
program with relative taint information (dependence graphs).

Branch identification through extended taint analysis. Any missed val-
ues from tainting would greatly impact PExy’s precision, and so it is important
to support indirect taint. In Pixy’s normal operation, a tainted value may be
passed from a variable X to another variable Y if the value of X is transferred
to Y as result of some operations. In the context of our analysis, however, this
definition is too restrictive and needs to be expanded with new rules. Consider
the example in Listing 1.4. In such a case, it is clear that the second condition is
indirectly dependent on the tainted variable $_GET['a'], since the value of $a
is part of a control-flow path that is depending on $_GET['a'].

if($_GET['a']=='1'){

the taint should be transfered to $a

$a='doit';

}

...

this indirectly depends on $_GET['a ']

if($a=='doit'){

echo($exploit1);

}

Listing 1.4 – Example of indirect tainting

In order to handle these cases, we leverage the concept of indirect taint. An
indirect taint is transferred from a variable X to a variable Y if the value of Y
depends on X. Clearly, this rule is more general since it does not imply that Y

contains the same data of X. This new definition allows handling cases as that
shown before: if X is tainted and Y is updated depending on the value of X, then
Y will be tainted in turn. In order to implement indirect tainting, we extended
the taint analysis implemented by Pixy accordingly.

A further analysis of the dependence graphs generated by Pixy allows to
discern indirect dependences among the Condition Sinks. The dependence graph
of each Condition Sink is eventually augmented with this information.

After identifying all the conditions depending on client parameters, we can
perform a reduction step. Because of the TAC representation, the expression of
a condition is split in a series of simpler binary conditions. Therefore, a single

PExy: The other side of Exploit Kits 13

condition in the original code may determine multiple conditions in the CFG.
Splitting conditions like this allows us to isolate tainted inputs from other system
conditions and reduce the complexity of future steps in the analysis.

The output of this phase is a set of Condition Sinks (and relative taint in-
formation) whose outcome in the original code is determined by one or more
request parameters.

Branch classification. The previous step yields the list of all conditional
branches of the exploit kit that depend on client parameters. We then aim to
discern how these parameters influence the behavior of the program. We define
a change of behavior as a change in the response to be sent to the client, which
depends on one or more request parameters.

In order to identify these cases, we detect Behavioral Elements in the pro-
gram. A Behavioral Element is defined as an instruction, or block of instructions,
that manipulate the server’s response. In particular, we are interested in Behav-
ioral Elements depending on Condition Sinks. We have identified four distinct
classes of Behavioral Elements: embedded PHP code, print statements, file in-
clusion, and header manipulation.

Embedded PHP code. One method with which an attacker can generate a re-
sponse to the victim is via the use of embedded PHP code, allowing the kit to
interleave HTML code with dynamic content computed server-side at runtime.

Printing statements. Print functions, such as echo() and print(), are often
used by exploit kits to manipulate the content of the response. We use the data-
flow analysis algorithm of Pixy to identify these elements. In addition, we analyze
the dependency graphs of these elements in order to retrieve information about
the output.

File inclusion. PHP allows dynamic code inclusion by means of built-in functions
such as include() and readfile(). In our analysis, we found that most of the
kits use dynamic file inclusion to load external resources. Thanks to the literal
analysis implemented by Pixy, it is possible to reconstruct the location of the
resource and retrieve its content. The content of the resource is then analyzed
by taking its context in the program into account.

Header manipulation. HTTP headers are typically manipulated by exploit kits
to redirect the client to another URL (by setting the Location header) or to
include binary data, such as images, in the response (by modifying the MIME
type of the body of the request by means of the Content-Type header). In order
to detect these cases, we analyze the calls to the header() function and try to
reconstruct the value of its argument. If the call sets a Location or Content-type
header, we add the position to the list of the Behavioral Elements.

Once we have obtained the possible Behavioral Elements of the program, we
add all conditional branches upon which a Behavioral Element depends to a list
of Behavioral Branches, which is the output of this phase.

14 Authors Suppressed Due to Excessive Length

Parameter and value extraction. PExy next determines, for each Behavioral
Branch, the type, name and value of the HTTP request parameter that satis-
fies the branch condition. It can be accomplished by analyzing the dependency
graphs of the branch condition.

It is worth recalling that, due to the TAC conversion, each complex condition
of the program has been split in multiple binary conditions. By leveraging this
fact, we can extract a subgraph of operand dependencies from the dependency
graph, and focus our analysis on the tainted parameters and the values against
which they are compared by the branch condition. If the comparison value is
hard-coded in the source code (e.g., a literal), and not computed at runtime
(e.g., as result of a database query), it is possible to determine the constraints
imposed upon the tainted parameter itself by the branch condition.

Value determination. The next step of our analysis is the determination of
the value that a given HTTP parameter must have to satisfy a condition. Typ-
ical operations used in condition statements are binary comparison operations
like: ===, ==, !=, <, >, <=, >= or the unary ! operation. We also address
some common cases in which the operation is not a comparison, but a call to a
built-in function that returns a boolean value. Some examples are the isset()

and strstr(), which are largely used by exploit kits to check values of client’s
parameters.

By analyzing the branch condition constraints, we are able to retrieve the
required string contents of our tainted HTTP parameters.

Indirect Tainted Variables. In most of cases, the condition depending on the user-
agent string is performed against an indirectly-tainted variable. As consequence,
the value of the variable does not contain any information about the original pa-
rameter. A real-word example of this situation is given in Listing 1.5, extracted
from the Ice-Pack exploit kit. In that case, the value 1 is referred to Internet
Explorer. The value that contains the semantically meaningful information is in
the condition where the current value (1) is assigned to the indirect-tainted vari-
able. Thanks to the indirect tainting algorithm, we know the original Behavioral
Branch based on which indirect tainted value is updated. By propagating branch
conditions through indirectly tainted variables, we are able to reconstruct the
indirect tainting dependences.

if(strpos($agent , 'MSIE')){

$browers =1;

...

}

else if (strstr($agent , "Opera")){

$browers =2;

...

}

...

if ($browers == 1){

if ($config['spl1'] == 'on' && $vers [0] < 7){

PExy: The other side of Exploit Kits 15

include("exploits/x1.php");

}

...

}

Listing 1.5 – Indirect browser selection in Ice-Pack v3

4 PExy: Analysis Results

PExy has been tested against all the exploit kits shown in Figure 3 except for
the Blackhole family, which was compiled to a binary. A total of more than 50
exploit kits and 37 different families were analyzed and 279 exploit instances
were found. A deeper insight of the characteristics of these samples is given
in Section 2. For our results, we consider a false negative a condition leading
to a change in exploit-kit behavior that is not correctly classified by PExy as
Behavioral Branch. On the other hand, a false positive is a Behavioral Branch
that does not lead to a change in exploit-kit behavior.

4.1 User-Agent analysis.

In all the cases listed in Figure 3, PExy has been able to identify all the con-
ditional branches depending on the User-Agent value. The branch classification
produced few false positives (conditions that do not lead to distinct output) and
just one case with false negatives (undetected conditions). A summary of these
result is shown in Figure 3a. In all the cases, PExy has been able to reconstruct
the proper User-Agent header.

The false negatives in the case of SaloPack are due to the fact that the
branches depending on the User-Agent are in a function called by means of
the SAJAX toolkit3. This library invokes PHP functions from JavaScript by
transparently using AJAX. Analyzing this would require to interpret the client-
side code. Client-side JavaScript analysis, however, is out of the scope of this
work. The fact that only one kit from our dataset exhibited such behavior shows
that, in almost all cases, the pertinent HTTP parameters can be extracted from
purely server-side analysis.

In Table 2 we show the most and least popular User-Agents that PExy de-
tected in the analyzed exploit kits. One of the most vulnerable configurations
that we found with PExy is Internet Explorer 6. There have been more than 100
vulnerabilities for Internet Explorer 6 and the fact that it is usually deployed
on a Windows XP machine makes it an easy target for the attackers. It is quite
surprising that many exploit kits have an exploit for the Opera browser. This is
very hard to detect with honeyclients, as it is a configuration that it is not very
popular. In the least favorite exploits we found that the targeted configurations
include the Konqueror browser and other Internet Explorer versions that are not
widely deployed (versions 5.5 and 7.0).

3 http://www.modernmethod.com/sajax/

16 Authors Suppressed Due to Excessive Length

(a) Malicious paths depending on the
User-Agent header

(b) Malicious paths depending on GET
parameters

Fig. 3 – Summary of the information extracted from the Exploit Kits

PExy: The other side of Exploit Kits 17

exploit kits User-Agent

39 Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

35 Mozilla/3.0 (compatible)

15 Opera/9.0 (Windows NT 5.1; U; en) Opera/9.0 [...]

1 Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)

1 Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; [...]

1 Mozilla/5.0 (compatible; Konqueror/3.4; Linux 2.6.8; [...]

Table 2 – The top three and bottom three User-Agents used by exploit kits to
determine which exploit to serve.

4.2 Parameter analysis.

As in the previous case, all the conditions depending on URL parameters have
been correctly detected by PExy. As reported in Figure 3b, there are 5 false
positives (misclassification) and one case with false negatives (misdetection).

In many cases, PExy has been able to correctly reconstruct not only the
correct name of the parameter, but also all of its possible values leading to
different code paths, as shown in Figure 3b.

5 Applications

The output of PExy is a signature that includes supported User-Agents and
HTTP parameters used by the exploit kit. This information can be used in both
an active and a passive way.

Milking. Given a URL pointing to an exploit kit that belongs to a known
family, the signature generated by PExy can be used to forge a number of re-
quests able to milk the malicious content. It is worth noting that the information
extracted by PExy allows forging a set of requests that are targeted to the spe-
cific exploit-kit family. Without this information, the analyzer should perform at
least one request for each potentially targeted browser (brute-force approach),
which if done blindly can lead to thousands of additional requests [2]. Consid-
ering that the number of different browsers that PExy detected in the analyzed
exploit kits is 25, the analyzer enhanced with the results of PExy should perform
at most 25 requests to milk a malicious website.

The information produced by PExy may noticeably reduce the overall num-
ber of requests to be generated by the analyzer, as shown in Table 3. This result
is even more important considering that each request for the same page should
be generated from a different IP address to avoid blacklisting.

Prior to this work, a drive-by download detection system would stop after
getting a malicious payload from a website. With PExy we show that it is possible
to leverage our knowledge on exploit kits and reveal more exploit code. This can
be highly beneficial to analysis systems, by expanding their detected exploits
and pinpointing false negatives.

18 Authors Suppressed Due to Excessive Length

Honeyclient setup. Another important application of PExy is the vulner-
able browser configuration setup. With PExy we are able to determine the exact
settings of a browser, such as its version and its plugins, so that we trigger differ-
ent exploits when visiting an exploit kit. This information is very important to
drive-by analyzers, which if they are not configured properly will never receive
a malicious payload from the visited exploit kit. PExy not only limits the possi-
ble vulnerable browser configurations, but can also provide the least amount of
configurations to trigger an exploit in all analyzed exploit kits.

Total unique User-Agents 25

Maximum User-Agents per EK 9

Average User-Agents per EK 3.38
Table 3 – Advantage on using PExy over brute-force.

6 Limitations

With PExy we study the server-side component of exploit kits, but there is
also client-side code involved in a drive-by download. Instead of focusing on
how the client-side code is fingerprinting the browser, we study the server-side
implications of the fingerprinting. This way we will miss how the URL parameters
get generated from JavaScript, but we will see how they affect the exploit-kit’s
execution flow.

A fundamental limitation of PExy is the availability of exploit-kits’ server-
side source code. With the attackers moving to an Exploit-as-a-Service model of
providing exploit kits, the only legal way to obtain the source code is with law
enforcement takedowns. This is forcing the security researchers to treat so far
exploit kits as a black box. Although PExy was applied in a subset of exploit
kits, we believe that the results can help researchers understand exploit kits in
a better way.

7 Related Work

Exploit kits have become the de facto medium to deliver drive-by downloads.
There have been many techniques proposed to detect drive-by downloads. Cova
et al. [5] proposed an emulation based execution of webpages to extract the
behavior of JavaScript code and the use of machine-learning techniques to dif-
ferentiate anomalous samples. An attack-agnostic approach was introduced in
BLADE [11] based on the intuition that unconsented browser downloads should
be isolated and not executed. Our work differs in that we study the server side
component of exploit kits and not the drive-by downloads that are served.

The Exploit-as-a-Service model for compromising the browser has been stud-
ied by Grier et al. [4]. Their work differs in that they focus on the malicious

PExy: The other side of Exploit Kits 19

binary delivered after the infection, while we focus on the server-side code that
delivers the exploit.

Fingerprinting the browser is an important step in the exploitation process.
Recent work has shown how this is done as part of commercial websites to track
users and for fraud detection [13, 3]. This is different from how the exploit kits
fingerprint the browser, since they are not trying to create a unique ID of the
browser but determine its exact configuration.

Kotov et al. [9] have conducted a preliminary manual analysis of exploit-
kits’ source code describing their capabilities. We focus on understanding how
the client side configuration of the browser affects the server side execution of
exploit kits and how it is possible to extract the most exploits out of an exploit-
kit installation automatically.

8 Conclusion

In this paper we give a deep insight into how exploit kits operate to deliver their
exploits. We build a static analysis system called PExy that is able to analyze an
exploit kit and provide all the necessary conditions to trigger all exploits from an
exploit kit. We show that we can detect automatically all the paths to malicious
output from exploit kits with very few false negatives and false positives. This
information can be valuable to drive-by download analyzers, expanding their
detections to additional exploits. Even the most accurate drive-by download
analyzer needs to be configured with the right browser version and plugins to be
exploited. PExy can give the exact set of configurations that an analyzer needs
to be as exploitable as possible.

Acknowledgements

This work was supported by the Office of Naval Research (ONR) under Grant
N000140911042, the Army Research Office (ARO) under grant W911NF0910553,
and Secure Business Austria.

References

1. A criminal perspective on exploit packs. http://www.team-
cymru.com/ReadingRoom/Whitepapers/2011/Criminal-Perspective-On-Exploit-
Packs.pdf.

2. UA Tracker statistics. http://www.ua-tracker.com/stats.php.

3. G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens, and B. Preneel.
Fpdetective: dusting the web for fingerprinters. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security. ACM, 2013.

4. C. Grier et al. Manufacturing compromise: The emergence of exploit-as-a-service.
In Proc. of the ACM Conference on Computer and Communications Security
(CCS), October 2012.

20 Authors Suppressed Due to Excessive Length

5. M. Cova, C. Kruegel, and G. Vigna. Detection and Analysis of Drive-by-Download
Attacks and Malicious JavaScript Code. In Proc. of the International World Wide
Web Conference (WWW), 2010.

6. C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich, K. Levchenko,
P. Mavrommatis, D. McCoy, A. Nappa, A. Pitsillidis, N. Provos, M. Z. Rafique,
M. A. Rajab, C. Rossow, K. Thomas, V. Paxson, S. Savage, and G. M. Voelker.
Manufacturing Compromise: The Emergence of Exploit-as-a-Service. In Proc. of
the ACM Conference on Computer and Communications Security (CCS), 2012.

7. N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for detecting
web application vulnerabilities. In Security and Privacy, 2006 IEEE Symposium
on, pages 6–pp. IEEE, 2006.

8. A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G. Vigna. Revolver:
An Automated Approach to the Detection of Evasive Web-based Malware. In
USENIX Security, 2013.

9. V. Kotov and F. Massacci. Anatomy of exploit kits. In Engineering Secure Software
and Systems, pages 181–196. Springer, 2013.

10. L. Lu, V. Yegneswaran, P. Porras, and W. Lee. BLADE: An Attack-Agnostic
Approach for Preventing Drive-By Malware Infections. In Proc. of the ACM Con-
ference on Computer and Communications Security (CCS), 2010.

11. L. Lu, V. Yegneswaran, P. Porras, and W. Lee. Blade: an attack-agnostic approach
for preventing drive-by malware infections. In Proceedings of the 17th ACM con-
ference on Computer and communications security, pages 440–450. ACM, 2010.

12. J. Nazario. PhoneyC: A Virtual Client Honeypot. In Proc. of the USENIX Work-
shop on Large-Scale Exploits and Emergent Threats (LEET), 2009.

13. N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna.
Cookieless monster: Exploring the ecosystem of web-based device fingerprinting.
In Security and Privacy (SP), 2013 IEEE Symposium on. IEEE, 2013.

14. N. Provos, P. Mavrommatis, M. Rajab, and F. Monrose. All Your iFRAMEs Point
to Us. In Proc. of the USENIX Security Symposium, 2008.

15. N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu. The
Ghost in the Browser: Analysis of Web-based Malware. In Proc. of the USENIX
Workshop on Hot Topics in Understanding Botnet, 2007.

16. P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle: A Defense Against Heap-
spraying Code Injection Attacks. In Proc. of the USENIX Security Symposium,
2009.

17. Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and S. King.
Automated Web Patrol with Strider HoneyMonkeys: Finding Web Sites That Ex-
ploit Browser Vulnerabilities. In Proc. of the Symposium on Network and Dis-
tributed System Security (NDSS), 2006.

