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Reusable software libraries, frameworks, and components, such as those provided by open source ecosystems
and third-party suppliers, accelerate digital innovation. However, recent years have shown almost exponential
growth in attackers leveraging these software artifacts to launch software supply chain attacks. Past well-
known software supply chain attacks include the SolarWinds, log4j, and xz utils incidents. Supply chain
attacks are considered to have three major attack vectors: through vulnerabilities and malware accidentally or
intentionally injected into open source and third-party dependencies/components/containers; by infiltrating
the build infrastructure during the build and deployment processes; and through targeted techniques aimed
at the humans involved in software development, such as through social engineering. Plummeting trust in
the software supply chain could decelerate digital innovation if the software industry reduces its use of open
source and third-party artifacts to reduce risks. This article contains perspectives and knowledge obtained
from intentional outreach with practitioners to understand their practical challenges and from extensive
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research efforts. We then provide an overview of current research efforts to secure the software supply chain.
Finally, we propose a future research agenda to close software supply chain attack vectors and support the
software industry.
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1 Introduction
The modern world relies on digital innovation in almost every human endeavor, including critical
infrastructure. Digital innovation has accelerated substantially as software is increasingly built
with layers of reusable abstractions, including libraries, frameworks, cloud infrastructure, and
AI modules. This style of software development is considered a software supply chain where
software projects depend on and build upon other software projects. Based upon its analysis of
1,067 commercial code bases across 17 industries [215], Synopsys reports that 96% of code bases
contained open source software and 77% of the code in the code bases were open source software.

Software developers did not anticipate how the software supply chain would become a deliberate
attack vector. The software industry has moved from passive adversaries finding and exploiting
vulnerabilities contributed by honest, well-intentioned developers to a new generation of software
supply chain attacks that target developers directly, bypassing existing defenses. Attackers implant
vulnerabilities directly into open source software components and infect build and deployment
pipelines. In 2024, Sonatype reported that 512,847 malicious open source packages were logged,
reflecting a 156% year-over-year increase [206]. Well-known attacks, such as SolarWinds [60, 204],
log4j [7], and xz utils [64, 84], affected thousands of customers and hundreds of businesses and
government agencies throughout the world. Consequently, the US Executive Order (EO) 14028
[92] and the European Cybersecurity Resilience Act [56] highlight the urgent need to improve
transparency and integrity in open source artifacts to enhance supply chain security.

As shown in Figure 1, software supply chain attacks are considered to have three major attack
vectors. The first is through vulnerabilities and malware accidentally or maliciously injected into
open source and third-party code dependencies, such as components, containers, and AI models.
This attack vector appears in the lower “component” layer in the figure. For example, log4j [7] is an
example of an accidentally injected vulnerability. However, once discovered, attackers exploited
this vulnerability to execute arbitrary code, steal sensitive data like passwords, install ransomware,
establish backdoors, mine cryptocurrency, and take control of affected networks. In what is referred
to as “protestware,” an attacker injected malicious code into npm package node-ipc [1] at the start
of the Russian-Ukraine conflict in 2022. Malicious components are injected into ecosystems, such as
npm, PyPI, and Maven, so that they are downloaded by applications, enabling attackers to exploit.
The malicious code was intended to overwrite arbitrary files dependent upon the geo-location of
the user IP address. Based upon an analysis of real-world attacks and scientific and grey literature,
Ladisa et al. [117] contributed a taxonomy of open source software supply chain attacks that have
the goal of injecting malicious code into open source components. We discuss this attack vector in
Section 3.
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Fig. 1. Software supply chain attack vectors.

Second, attackers conduct software supply chain attacks by infiltrating the build infrastructure
during the build and deployment processes. This attack vector appears in the upper “application”
layer of Figure 1. Attackers launch attacks through the tooling and automation that turns the
code of multiple software projects into the production application. For example, with SolarWinds
[60, 204] the build process was compromised to inject malicious code into the end product that
was signed and distributed to commercial companies, including a range of critical US government
organizations and businesses. We discuss this attack vector in Section 4.

Finally, attackers conduct software supply chain attacks through targeted techniques aimed at
the humans involved in software development, such as through social engineering. This attack
vector appears in the lower “component” and the upper “application” layers of Figure 1 through the
software developers and software maintainers of the components and the application. The humans
involved in software development can be referred to as the software supply chain’s “weak link.” In
the words of Ken Thompson in his Turing award speech [223], “To what extent should one trust a
statement that a program is free of Trojan horses? Perhaps it is more important to trust the people
who wrote the software.” We discuss the humans attack vector in Section 5.

Plummeting trust in the software supply chain may decelerate digital innovation if software
organizations reduce their use of open source and third-party artifacts to reduce risk. If so, these
organizations would need to dedicate their own resources to implement functionality previously
provided by open source and third parties, diverting resources from their proprietary innovation.
Focused research is needed to develop fundamental principles, techniques, and tools to close the
attack vectors in the software supply chain. This article provides an overview of research efforts
to secure the software supply chain and proposes a future research agenda to close the software
supply chain attack vectors and support the software industry.

The rest of this article is structured as follows. Section 2 provides an overview of the methodology
used to obtain the knowledge shared in this article. Sections 3–5 provide an overview of challenges
and research conducted to date for the three major attack vectors previously mentioned. Section 6
provides challenges and research results in other software supply chain directions. In Section 7, we
conclude with our perspective on research directions in software supply chain security.
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2 Perspectives
The authors of this article are members of or affiliated with the US National Science Foundation-
funded Secure Software Supply Chain Center (S3C2; https://s3c2.org/). S3C2 is a large-scale, multi-
institution research enterprise funded in 2022. The center members consist of researchers at
North Carolina State University, Carnegie Mellon, and the University of Maryland, with a close
collaborator at Paderborn University in Germany. Longer-term doctoral student visitors to S3C2
have also contributed to this article.

This article contains perspectives and knowledge obtained from intentional outreach with
practitioners to understand their practical challenges (see Section 2.1) and from extensive research
efforts (see Section 2.2).

2.1 Industry and Government Input on Challenges
Software supply chain security is a pressing practical problem facing the software industry. As a
result, we knew our research needs to be informed by approaches used by and challenges faced by
software practitioners. A central approach S3C2 uses to engage with the industry is conducting three
Secure Software Supply Chain Summits annually. The goals of the Summits are to enable sharing
between industry practitioners having practical experiences and challenges with software supply
chain security; to help form new collaborations between industrial organizations and researchers;
and to identify research opportunities.

Summit participants are recruited from companies and US government agencies, intentionally in
diverse domains with various company maturity levels and sizes. To keep the event small enough
that honest communication between participants can flow, each company or agency can have only
one participant, except for the organization hosting the Summit, which may have two or three
additional participants. The Summits are conducted under the Chatham House Rule, which states
that all participants are free to use the information discussed, but the identity and affiliation of the
speaker(s) and any other participant may be revealed. As such, none of the participating companies
or agencies are identified in this article.

Between 2021 and 2024, we have conducted eight in-person and three virtual Secure Software
Supply Chain Summits: eight with industry and three with US government. In these summits, 131
practitioners from 42 industrial organizations and 15 US government agencies participated. We
have published summaries of the Summits [6, 49, 53, 227, 228, 261].

Additionally, S3C2 hosts a Secure Software Supply Chain Community Day annually, where
practitioners and academics discuss challenges and research in a larger setting (50+ people). Finally,
the researchers and students give presentations and attend events at industrial and government
sites. The presentations serve as research dissemination and vehicles for understanding practical
and research challenges in software supply chain security.

Throughout the article, we refer to the practical knowledge we got from these outreach activities
as Practitioner Challenges.

2.2 Research
Most S3C2 resources are dedicated to conducting fundamental research to solve software supply
chain security challenges. In this article, we share what we have contributed and what we have
learned about other research efforts by conducting this research.

3 Attack Vector: Code Dependencies
Through the code dependencies attack vector, attackers inject vulnerabilities into upstream open
source components such that they can be leveraged at scale to attack upstream projects. Modern
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software products commonly have tens to hundreds of direct and transitive code dependencies,
each of which can have vulnerabilities. Dependency relationships are within single language
ecosystems and across different platforms, such as dependencies between Maven and PyPi packages
to C/C++. To facilitate developers in understanding their direct and transitive dependencies, some
visualization tools such as V-Achilles [98] and [21] have been developed. Remediating known
vulnerabilities from code dependencies is labor-intensive [16, 22, 96, 113] and requires dedicated
personnel. Malicious code dependencies have become increasingly common due to typo-squatting,
dependency confusion, and project take-over attacks [117].

In this section, we provide practitioner challenges, research results, and open research challenges
for the dependency attack vector.

3.1 Practitioner Challenges
In the following three sub-sections, we provide perspective on practitioner challenges related to
code dependencies [6, 49, 53, 227, 228, 261].

3.1.1 Dependency Choice. Every dependency added to an application introduces both value and
risk. Once incorporated into a project, teams rarely replace a dependency, so the initial choice of a
dependency is important. Participants discussed various strategies for choosing dependencies and
the lack of good metrics to aid their choice. The participants discussed the use of OpenSSF Scorecard
[192] security health metrics. OpenSSF Scorecard assesses open source projects for security risks
through 18 (in 2024) automated checks indicating that the development team used security practices,
such as code review, branch protection, and fuzzing, or the project was actively maintained and
vulnerabilities were fixed. Open source developers created Scorecard to help improve the health of
critical projects on which the community depends. Only two participants indicated that they were
using the Scorecard metrics in the component choice process. One participant said that they looked
at Scorecard scores and measured whether or not packages were less likely to have vulnerabilities
if their score was higher and found no relationship. This participant’s observations were consistent
with our studies of the relationship between Scorecard scores and vulnerability count [266]. Several
other participants indicated they were evaluating how they might incorporate Scorecard into their
component choice process.

The most common checks practitioners use before incorporating a component into their devel-
opment are (1) whether the component is actively maintained; and (2) whether the component has
unfixed known vulnerabilities.

The government participants discussed the realism of avoiding software dependencies developed
in foreign countries. Participants discussed efforts to identify and manage when software comes
from embargoed countries. However, these participants acknowledged that determined adversaries
can find ways around those mechanisms.

In summary, practitioners are challenged to find a reliable and repeatable process for making
good component choices.

3.1.2 Dependency Update. Practitioners commonly rely on different strategies and tools when
updating vulnerable dependencies. Practitioners mentioned scanning for vulnerabilities by using
Software Composition Analysis (SCA) tools. Multiple practitioners mentioned feeling over-
whelmed by the number of vulnerabilities in direct and transitive dependencies identified by these
tools. Tooling is available to automatically patch dependencies (e.g., Dependabot’s automated pull
requests). However, auto-patching without human intervention is often not an accepted practice.
Concerns were expressed that the new versions of vulnerable dependencies may have breaking
changes, so testing must be conducted. As a result, practitioners discussed intentionally delaying
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updating their dependencies while passively “watching” that the dependency update did not cause
problems for other organizations.

Even if all vulnerable dependencies were updated, a tool run the next day may identify new
vulnerabilities. As a result, practitioners are challenged to catch up, and they are forced to triage and
prioritize updating vulnerable dependencies. Practitioners desire information about whether the
vulnerability in a component is reachable or exploitable and about the severity of the vulnerability
in the product’s context. Currently, no SCA tool provides sufficient information for prioritization.
However, organizations need a process to stay up to date. A participant suggested that a good
automated test suite that detects breaking changes can make a company more confident when
updating a dependency.

3.1.3 Malicious Commit Detection. Actors in software supply chain attacks (e.g., SushiSwap)
use commits to submit intentionally inject malicious changes to a source repository. Detecting
and discerning these malicious commits is not straightforward. Attackers often use obfuscated
code, steal authentication credentials, or use impersonation strategies to deceive and put malicious
code changes through the system. Multiple practitioners believe a closer look at the committer’s
behavior might help discern malicious behavior. For instance, a committer’s activity, reputation,
and uncommon behavior (e.g., big vs. small changes, critical vs. ancillary fixes) can signal suspicious
or malicious commits. Machine Learning (ML) could be applied to create appropriate tooling.
Overall, the participants did not have satisfactory solutions for detecting malicious commits.

3.2 Research Results
Vulnerable dependencies expose applications to security breaches [7, 55, 64, 86]. Many studies have
been done to find vulnerabilities in dependencies [8, 19, 130, 165, 166, 170, 196, 213]. On average,
vulnerabilities remain undiscovered for approximately 3 years [43] but have different survival
rates [269], highlighting the importance of proactive monitoring and detection of vulnerable
dependencies.

This section summarizes research results related to the attack vector through components.

3.2.1 Dependency Choice. Providing meaningful quantitative measures for practitioners can
help in choosing more secure dependencies. These measures include dependency popularity,
contributor’s reputation, and maintenance [83, 121, 219].

As discussed in Section 3.2.1, the OpenSSF Scorecard metrics can be used in dependency choice.
Zahan et al. [264] analyzed the applicability of Scorecard by observing the resulting security
scores within the npm and PyPI ecosystems. The results of the research indicated that 9 of 18 of
Scorecard’s automated metrics were reliably computable in both ecosystems and more work needed
to be done to improve the automation of the other 9 metrics. Additionally, practitioners desire
a demonstrated relationship between the adoption of security practices and improved security.
In follow-up work, Zahan et al. [266] developed five supervised ML models for npm and PyPI
packages using Scorecard’s security scores as predictors and the number of externally reported
vulnerabilities as dependent variables. Four security practices (Maintained, Code Review, Branch
Protection, and Security Policy) were the most important practices influencing vulnerability count.
However, the low R2 (ranging from 9% to 12%) indicated that better metrics and models are needed
to inform dependency choices.

3.2.2 Dependency Update. If not abandoned or deprecated, new dependencies’ versions are
released to incorporate new features, security patches, bug fixes, and refactor code [15, 26]. Yet
adopting the up-to-date dependencies is not trivial for developers due to breaking changes, lack of
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knowledge, and lack of motivation [45]. As such, dependencies are often outdated across ecosystems,
with 32.2% of dependencies outdated in npm, 45.8% in PyPI, and 63.0% in Maven [210], respectively.

SCA tools provide information on vulnerabilities in direct or transitive dependency, regardless of
whether the vulnerability is reachable or exploitable in the context of an application [77, 185]. The
existence of a vulnerable software dependency does not mean that the corresponding vulnerable
code is being used in a way that makes the application vulnerable [166, 271]. As such, practitioners
may be asked to spend time on vulnerabilities that pose no risk, creating notification fatigue.

Approaches have been developed to assess the reachability [97, 101, 129, 171] and exploitability
[97, 104, 258] of vulnerabilities in the software supply chain. Some SCA tools may provide this
reachability/exploitability information. Imtiaz et al. [97] compared the vulnerability finding of
several SCA tools. Similarly, Prana et al. [171] use commercial SCA tools to analyze the vulnerability
reachability in Java, Python, and Ruby supply chain ecosystems. On the other hand, Liu et al.
[129] use knowledge graph analysis to address the gap in vulnerability reachability analysis for
ecosystems with dynamic dependency resolution like npm. However, more research is needed to
produce tools that accurately provide exploitability and reachability information.

To prevent a project from automatically installing and using the latest release of a dependency,
projects can pin a dependency to a specific version to reduce the risks of unintentionally in-
corporating untested or compromised dependency updates. Still, balancing the predictability of
pinning versus the agility of automatically including dependency updates is difficult for develop-
ers [46]. Work has examined how dependencies are updated, with associated code smells, across
ecosystems [28, 46, 99].

Research has worked on quantifying the amount of time a dependency is out-of-date. Dependency
freshness [39] was one of the first measures, quantifying the difference between the used and
the desired dependency version. Additionally, work has predominantly investigated technical lag
that measures the delay between the used version of the dependency and the latest version of the
dependency in terms of the time difference (time lag) or version difference (version lag) [42, 210, 268].
To understand how dependencies evolve, Rahman et al. [178] introduced Mean-Time-To-Update
and Mean-Time-To-Remediate.

3.2.3 Malicious Commit Detection. Beyond accidentally introduced vulnerabilities in depen-
dencies, a significant concern in software supply chain security is the ability of threat actors to
intentionally commit new malicious packages [193] or updates to existing packages by gaining
access to that package [74]. The xz utils attack [64, 84] is an example involving malicious commits.
Past attacks have been widely discussed, especially malicious package updates [59, 69, 191], under-
mining the trust in software packages after initial adoption. This sub-section summarizes research
conducted to detect malicious packages in the software supply chain.

Research and techniques to detect malicious packages can be classified as rule-based and heuristic
[48, 69, 74, 94, 118, 267], differential analysis [14, 66, 155, 191, 237, 239], ML [94, 119, 154, 193] and
Large Language Model (LLMs) [201, 260, 263, 272] approaches. Rule-based approaches often rely
on predefined rules about package metadata (e.g., package name), suspicious imports, and method
calls. Many studies [48, 69, 74, 267] have focused on detecting static features, such as libraries
that access the network, file system access, features in package metadata, dynamic analysis, or
language-independent features like commit logs and repository metadata to flag packages as
suspicious using heuristic rules. Huang et al. [94] constructed a behavior knowledge base by
analyzing API call sequences and using static and dynamic analysis to classify suspicious behaviors,
focusing on entry points and obfuscated code. Differential analysis involves a comparison of a
previous version with a target version to analyze differences and identify malicious behavior.
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Differential analysis research [66, 155, 191, 237, 239] leverages artifacts, file hashes, and “phantom
lines” to show differences between versions of packages and source code repositories.

Studies [154, 193] have evaluated various supervisedMLmodels to detect malware. Research [201,
260, 263, 272] has also leveraged LLM to detect malicious packages. Zahan et al. presented SecurityAI
[263], a complete malicious code review workflow to detect malicious code using Generative
Pre-Training Transformer (GPT) models, and achieved high accuracy in model performance.
Zhang et al. [272] used the BERT model to understand the semantics of malicious behavior.
Yu et al. [260] used LLM to translate malicious functions from other languages (e.g., C/C++, Python,
and Go) into JavaScript. Singla et al. [201] used GPT and Bard models to characterize software
supply chain failure reports/blogs into the type of compromise, intent, nature, and impact.

Additionally, multiple research studies [220, 239] exist on detecting typosquat attacks in which
the attacker leverages common misspellings a user may incorrectly type or may not perceive in
a URL or package name. Vu et al. [238] studied the PyPI ecosystem to evaluate the effectiveness
of current malware detection tools, including Bandit4Mal [236], and OSSGadget’s OSS Detect
Backdoor [137], using a benchmark dataset. Their analysis revealed consistently high false-positive
rates, over 15%, making automated detection tools impractical for repository administrators, who
require near-zero false positives. Interviews with PyPI administrators and security researchers
highlighted a socio-technical system in which external researchers play a key role in detecting and
reporting malware. The authors recommend strengthening collaboration between administrators
and researchers, aligning their incentives, and improving coordination and tooling to enhance
ecosystem security. Ladisa et al. [120] studied attackers exploiting package managers to achieve
Arbitrary Code Execution in open source software supply chains. The study analyzes seven ecosys-
tems, including npm and PyPI, identifying three install-time and four runtime techniques that
attackers use to execute malicious code.

3.2.4 Dependency Decommission. A significant body of work has researched how to sustain
software, focused on how to keep dependencies alive and recruit new contributors [209, 233]. Still,
the long-term viability of dependencies being updated is unknown and cannot be guaranteed.
Dealing with deprecated functions or API calls during development is not uncommon. Yet, a
more significant concern is not only when feature development stops but when the dependency
is abandoned, turning software reuse from a resource-empowering rapid innovation tool into
a liability. In practice, even popular dependencies become abandoned. For example, in the npm
ecosystem, out of the most popular dependencies with over 10,000 monthly downloads, 3,000
dependencies are abandoned [139]. The response time to fix any security issues in abandoned
packages is uncertain, and leaving end-users potentially vulnerable due to unawareness of the
security issues as there are no active maintainers to fix the issues [267]. Therefore, dealing with the
end-of-life of a software dependency is necessary.

Research has worked on understanding and detecting abandoned dependencies [138, 143]. As
many dependencies are open source projects that rely on volunteer contributions, the abandonment
of open source projects is of particular research interest. Of note, Miller et al. [139] interviewed
practitioners to understand strategies for navigating dependency abandonment. Strategies found in-
cluded forking the dependency, somehow encouraging others tomaintain it, or moving to an alterna-
tive if it exists, often at substantial cost. More research and development should focus on navigating
inevitable situations where projects are no longer maintained, whether through deliberate sunset-
ting strategies or community-based efforts to help developers cope with abandoned dependencies.

3.2.5 Residual and Orphaned Vulnerabilities. Vulnerability fixes may not be propagated to
previous versions, which results in residual vulnerabilities. Yan et al. [254] assessed the attack
surface caused by residual vulnerabilities. Additionally, orphan vulnerabilities happen through
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copying dependencies. Reid et al. [180] conducted a large-scale empirical study of orphaned
vulnerabilities in the software supply chain.

3.2.6 Vulnerability Patch Information. Approaches and tools for vulnerability remediation ben-
efit from patch information. The most common fix information is a code commit that fixes the
vulnerability, often called the “Vulnerability Fixing Commit” (VFC) or simply the “patch link.”
As will be discussed in Section 3.2.8, the data fields in databases, such as the National Vulnera-
bility Database (NVD) [153], are often incomplete, with many vulnerabilities without a patch or
Common Vulnerabilities and Exposures identifier (CVE ID) [112, 135]. For instance, 63% of
security advisories in the GitHub Security Advisory (GHSA) Database for open source software
lack patch links [50]. Similarly, 71% of vulnerabilities in NVD and 46% in Snyk also lacked patch
links [190], making it difficult to trace and apply necessary fixes.

To this end, research efforts have been conducted to provide patch link/VFC information
[50, 88, 123, 146, 147, 187, 190, 218, 280, 281]. A VFC can be enriched following reference links in
the advisories [251]. However, similar techniques suffer from poorly documented security commit
messages and incomplete security advisories limiting their effectiveness. Dunlap et al. [50] have
created a tool called VFCFinder, which uses machine learning to backfill VFCs for a given security
advisory. VFCFinder provides a list of the Top 5 potential VFCs. The VFC is in that list over 96% of
the time. VFCFinder’s top choice is accurate 80% of the time, and if there are fewer than 15 commits
between releases, over 90% of the time.

3.2.7 Vulnerability Remediation. Several works have been introduced to remediate vulnerable
dependencies by avoiding vulnerable dependency inclusion, such as using npm audit fix, De-
pendabot [70], or other developed tools [129, 242, 273, 274]. To avoid resolving vulnerable versions of
dependencies, Mohayeji et al. [140] found that developers often delegated the task of upgrading vul-
nerable dependencies to a secure version to Dependabot and merged them within several days. Oth-
erwise, the developers manually address the vulnerability, which takes longer to complete. Instead
of manually addressing the vulnerability, Liu et al. [129] proposed DTReme, which uses their knowl-
edge graph-based dependency resolver to explore all possible solutions for a single dependency.
With a similar idea, Ranger [273] was proposed to restore secure version ranges of dependencies. On
the other hand, CORAL [274] was proposed to not only find the secure dependencies but also make
sure that they are compatible with the current code base. Similarly, Plumber [242] was proposed
to propagate vulnerability fixes throughout the dependency tree (i.e., finding secure dependencies)
and use these secure dependency paths to remediate the vulnerabilities in the npm ecosystem.
Another approach is to use active learning and regeneration to “fix” vulnerable dependencies [234].

3.2.8 Databases for Research and Tool Development. Vulnerability information is important
for dependency risk evaluation, as it helps identify security risks in third-party dependencies
while guiding tool developers to enhance detection capabilities. Tools like Dependabot [70] and
Renovatebot [184] depend on vulnerability databases to notify developers of known issues in
dependencies. In this sub-section, we discuss existing efforts to construct vulnerability databases.
Vulnerability Databases. Several platforms exist for vulnerability databases to track

vulnerabilities in dependencies. The US government maintains the NVD.1 The Open Source Vul-
nerability (OSV) [76] aggregator compiles vulnerabilities from diverse sources, such as GHSA
[71], PyPI Advisory Database [173], Go Vulnerability Database [240], Rust Advisory Database
[186], OSSFuzz (mostly C/C++) [75], and Global Security Database [9]. The aggregators provide
both human- and machine-readable formats for easier integration into security tooling. Similarly,
platforms like Snyk [203] curate their vulnerability reports by supplementing publicly available
1https://nvd.nist.gov/
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data with their findings. In addition, specialized databases, like SafetyDB [174], focus on specific
ecosystems, such as Python’s PyPI, curating vulnerability data that include CVE IDs and patch
links where available.

From these databases, several vulnerability datasets are crafted for ML-based vulnerability
detection, such as BigVul [57] and Devign [282]. Some datasets use CVE-based labeling, while
others are synthetically/semi-synthetically labeled. However, Croft et al. [40] found that these
datasets have some issues, such as accuracy and uniqueness.

Despite the advances and availability of these databases, the fragmented nature of vulnerability
databases still poses challenges. Not only fragmented, Wu et al. [247, 248] also found that these
databases are often inconsistent with each other, in terms of affected library names, ecosystem, and
versions. They then proposed a method to identify affected libraries and versions accurately.

Other than inconsistencies, public vulnerability datasets/databases also miss some “silent”
vulnerabilities. In academia, a line of research seeks to discover “silent vulnerability fixes”
[146, 212] to find missing vulnerabilities without CVE IDs. For example, Dunlap et al. [52] published
an approach called Differential Alert Analysis that uses commercial-of-the-shelf Static Applica-
tion Security Testing tools to identify when a developer commits code that fixes a vulnerability.
With limited resources, they identified 111 silent security fixes in the npm, Go, PyPI, and Maven
ecosystems. The authors’ subsequent efforts [50] have shown how LLMs, such as CodeBERT, can
further discover silent vulnerability fixes. In addition to missing some vulnerabilities, these public
vulnerability datasets also lack fix information. We discuss some efforts to find missing fixes in
Section 3.2.6.
Malicious Package Databases. Package managers remove malicious packages from the registry

and replace the original metadata with dummy metadata so malicious packages do not create
further risk. As a result, researchers cannot extract, research, and study meaningful information
once a package is removed from the repositories. As a result, only a few malicious packages are
available to study in deprecated mirrors, internet archives, and public research repositories.

Several studies have contributed to constructing malicious package datasets within the npm
and PyPI ecosystems. The Backstabber’s Knife Collection dataset [156] includes 2,829 malicious
packages, covering multiple ecosystems such as npm, PyPI, and RubyGems, identified through
manual analysis and public advisories. Guo et al. [81] created a dataset of 2,416 malicious PyPI
packages using a semi-automated method to obtain code from open databases, IT technology
websites, code hosting websites, and official software repositories. Datadog [115] released a dataset
of 1,397 malicious PyPI packages collected using the GuardDog tool [41], obtained through manual
triaging.TheMALOSS dataset [48] includes 852 npm and PyPI packages, identified throughmetadata
and program analysis. Although prior works [48, 81, 115, 156] constructed malicious package
datasets, the studies did not incorporate neutral package data into their labeled datasets. When a
package has no discovered malicious code, a package is neutral [262]. Labeled benchmark datasets
enable tool developers and researchers to differentiate between malicious and non-malicious
packages in prediction models, thereby reducing false positives. In 2024, Zahan et al. [262] presented
MalwareBench, a labeled dataset of 20,792 malicious and neutral packages of npm and PyPI
ecosystems. MalwareBench incorporates data from existing malicious package datasets [48, 81, 115,
156], as well as the Socket [4] internal malicious dataset and including popular, randomly selected
and newly released npm and PyPI neutral packages.The ground-truth labels for the benchmark were
established using a hybrid approach: researchers manually reviewed and confirmed all malicious
cases flagged by automated tools, while neutral cases were initially identified through automation
and further validated via manual analysis of randomly selected samples [263].
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3.3 Open Research Challenges
This section discusses the challenges we have encountered while conducting research in code
dependencies.

3.3.1 Dependency Choice. Selecting and updating dependencies is not a trivial matter. Depen-
dency updates occasionally break functionality (e.g., by changing APIs) or introduce new bugs,
while poorly maintained or abandoned dependencies may contain vulnerabilities or malicious code.
Developers face difficulties manually assessing dependencies with their transitive dependencies for
security risks. Developers could use security-relevant information (e.g., security-sensitive API calls
[177]) or tools such as Scorecard to assess the security posture of a dependency. Such metrics can
serve as a criterion for dependency selection. However, prior research also showed such metrics
need improvement and often rely on previous, incomplete CVE information. For example, prior
studies [264, 266] have highlighted that measurement tools such as Scorecard [192] require im-
provements and suffer from a lack of consensus on ecosystem-wide standards among ecosystem
managers, tool developers, and users. Future research should focus on developing, improving, and
leveraging dependency measures for practitioners.

3.3.2 Databases for Research and Tool Development. Vulnerability and vulnerable package data
are needed to enable research and tool development.
Existing Vulnerability Data. Though efforts have been made to improve the completeness of

current public vulnerability datasets, the databases still lack information. More research is needed
to integrate currently available tools, such as [52, 212], to add more “silent vulnerabilities” to the
public vulnerability databases. Automatically generating the CVE entries after vulnerable commits
are found is also a research gap. Moreover, varying data completeness and formats across different
platforms reduce the effectiveness of dependency scanning tools. Research is needed to improve
these databases to have a convention on what data has to be available and which format needs to
be used to improve the effectiveness of supply chain analyses.

Existing Malicious Data. We have limited reliable information onmalicious dependencies. Package
ecosystems tend to delete malicious dependencies once reported, and researchers have limited
access. Many dependencies are taken down within minutes of their release. Our initial explorations
of dependencies removed as malicious from npm reveal that many of them are copies of the same
dependency under different names, and almost all of them are new dependencies rather than
updates to existing ones. Prior studies [81, 115, 262, 263] have discussed the lack of diversity in
malicious dependency datasets, limiting practitioners’ ability to assess the performance detection
tool for complicated supply chain attacks.

Many datasets and software supply chain security reports do not distinguish different kinds of
attacks. For example, distinguishing typosquatting from malicious updates to popular dependencies
from dependencies taken down simply as spam (a rapidly increasing category). More detailed
reporting and automated classification are needed to provide a more reliable understanding of
security trends in software supply chains beyond the flashy numbers counting all attacks common in
today’s discourse. Encouraging operators of package managers to report details and share removed
artifacts with researchers could provide a much better understanding.

3.3.3 A Gap between Theory and Practice in Tool Integration. Many researchers advertise their
detection techniques, including automation, and achieve high accuracy in detecting malicious
dependencies. However, such tools rarely acknowledge the unique requirements of their setting in
the Software Development Life Cycle (SDLC) [238]. In most cases, the important criterion is
that a check must provide a “useful signal” and a low false positive rate. Future research needs to
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keep the SDLC in mind. Additionally, researchers need to consider developers’ and administrators’
perspectives while proposing academic or industrial tools for scalability.

3.3.4 Cross-Platform Research. As we discussed in Section 3.2, there are a number of problems
to solve concerning dependency and vulnerability detection, tracking, and response. One of the
common challenges is the lack of a standardized format for data interchange across multiple vul-
nerability and ecosystems API databases. Researchers and clients attempting to collect information
from multiple databases must handle each database or API completely differently. Additionally,
if practitioners want to exchange information between different databases, they need to develop
specific parsers for each unique format. Such a lack of standardization and interoperability com-
plicates the tracking of dependencies and hinders collaboration between different vulnerability
databases and ecosystem efforts. The OSV [76] vulnerability database is an effort in that direction.
However, other databases must make the entries available in OSV format to enable interoperability.
Ecosystem package managers need to work together to provide the same format of metadata for
researchers or clients to use efficiently.

4 Attack Vector: Build Infrastructure
The process and tooling enabling deployment of code, known as the build infrastructure, is another
notable attack vector within the software supply chain. The build infrastructure attack vector
was exploited in December 2020 during the SolarWinds software supply chain attack, injecting
malicious code into the end product. Until recently, build systems have seen relatively little research
attention compared to code dependencies.

4.1 Practitioner Challenges
Build platforms and Continuous Integration and Continuous Deployment (CI/CD) tools have
the potential to enhance software build integrity by establishing documented and consistent build
environments, isolating build processes, and generating verifiable provenance. Most practitioners
feel comfortable in securing the deployment process and are more worried about the build process.
Overall, companies seek guidance on secure build and deployment from the Supply-Chain Levels
for Software Artifacts (SLSA) framework [161]. Most practitioners believe reproducible builds
may not be a practical means for check whether a build has been tampered with as there still
many challenges and concerns with their generation. As of now, only 20% of builds match bit-to-bit
[6, 49, 53, 227, 228, 261].

4.2 Research Results
In this section, we summarize research findings for the build infrastructure attack vector.

4.2.1 Transparency. In software supply chain security, transparency in the build infrastructure is
essential for ensuring traceability and accountability. Transparency allows monitoring and linking
each phase of the build process with specific contributors. Hence, we can detect unauthorized
and malicious commits, aiding in dependency integrity. With a verified and visible build process
pipeline, Security frameworks and technologies such as SLSA and the use of a SBOM emphasize
transparency in build systems to reduce the risks associated with software supply chain attacks.

SLSA. The SLSA framework provides transparency in build systems through the use of transpar-
ent logs, signed artifacts, and auditable processes [160]. SLSA has four levels; as the level increases,
it provides greater controls and transparency in the build and deployment processes. Provenance
generation is a key aspect of SLSA that includes detailed information about the source code, repro-
ducible builds, build systems, dependencies, and environments. The framework also incorporates
strongly authenticated and access-controlled version control, dependency tracking, and the use
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of cryptographic attestations to enhance visibility. Additionally, SLSA’s automation and auditable
records help to reduce human error and improve incident response. Furthermore, integration
with SBOM practices provides a comprehensive view of all components and dependencies within
a software artifact [202]. However, studies have identified challenges in incorporating SLSA in
software projects [217]. By addressing these challenges, SLSA can enhance transparency in the
software supply chain to improve overall transparency and trustworthiness.

4.2.2 Integrity. Being able to see everything that goes on during a build process is not enough
to protect against attacks against the final build artifact. If attackers are able to inject code into the
final build artifact through unconventional means, attackers’ actions may not be captured with
transparency tools alone. Integrity protections are needed at every step of the software supply
chain building process to verify included artifacts and developers’ identity. In this section, we
discuss research conducted to detect whether a piece of software has been tampered with.
In-Toto. Software development involves multiple stages, from source code submission to pack-

aging for distribution, each managed by independent actors in the software supply chain. A
compromise at any step, such as code or CI/CD testing, can allow an attacker to inject malicious
code, potentially harming end users. Torres-Arias et al. [225] designed in-toto to cryptographically
ensure the integrity of the software supply chain that exists between the code in the developers’
source code repository and the code that is shipped in an end product. In-toto is designed to
achieve five security goals: software supply chain layout integrity, artifact flow integrity, step
authentication, implementation transparency, and graceful degradation of security properties. The
goals are accomplished by following a developer-made layout and gathering information about the
inputs and outputs of each defined build step. Each step requires cryptographic signatures made by
trusted developers who are assigned specific roles. The layouts and roles are created at the project
conception but can be changed throughout the development process only with approval from the
project owner. In-toto has achieved widespread adoption, notably as the tool provides the integrity
guarantees used for SLSA provenance.

TUF. While in-toto provides end-to-end verification of a software supply chain for transforming
software from source repository to the end package, it does not address how to securely distribute,
revoke, and replace the public keys used to verify the in-toto layout [225]. Samuel et al. [188]
designed and implemented “The Update Framework (TUF),” a software update framework to
minimize the impact of key compromise. TUF metadata provides information that clients can use
to make updated decisions. TUF by itself does not update the software; rather, it secures the system
that automatically identifies and downloads updates to the software. TUF leverages mechanisms
such as roles, their signatures (public key infrastructure), threshold number of signatures, file
hashes, and file size. All the information is provided as metadata files, which are version-numbered
and have an expiration date. Each role requires a threshold of m out of n signatures for acceptance.
Thus, a single key compromise does not impact the whole system’s security. The Linux Foundation
hosts TUF as part of the Cloud Native Computing Foundation (CNCF) [37], and is used in
production by a growing number of companies like such as Datadog [54], IBM [111], OpenSSF
[163], and the Python Packaging Index [211].

Sigstore. Managing keys to sign software is hard. Newman et al. propose Sigstore [145], a system
to provide baseline artifact signing capabilities that minimize the adoption barrier for developers by
not requiring them to manage long-term signing keys. Sigstore enables user authentication using
artifact and identity logs through three-phase process: Trust Setup, Signing Flow, and Verification
Flow. Trust Setup is achieved by TUF as the root-of-trust. TUF manages key material, rather than
artifacts, and distributes root certificates for Fulcio (Certificate Authority and Identity Log) [198]
and Rekor (Artifact Log) [200]. In the Signing Flow, Sigstore integrates with three systems: an
OIDC [199] provider for identity verification, Fulcio for issuing short-lived certificates, and Rekor
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for logging artifact signatures to minimize key management for signers. The Verification Flow
leverages TUF to ensure that root keys are fresh and valid, then checks that the identity was correctly
verified by the identity log and confirms that the signature matches the artifact, all within the valid
certificate time window. Sigstore has quickly become a critical piece of Internet infrastructure with
more than 2.2M signatures over critical software such as Kubernetes and Distroless [145].
gittuf. gittuf [256] is a sandbox project at the Open Source Security Foundation (OpenSSF),

providing a security layer for Git using concepts introduced by TUF. Git does not manage which
developer keys should be trusted for a commit or tag signatures in a repository. gittuf allows for the
association of trusted keys using Sigstore identities for developers who use gitsign, so developers
can sign their Git commits.

4.2.3 Trust. Trust is paramount for the successful and secure functioning of software supply
chains.

Developer Trust. Trust in developers is critical in the open source ecosystem, where interconnected
communities rely on one another to maintain software. Trust relationships are inherently human,
often placing trust in individuals or small teams responsible for key components of foundational
software infrastructure. Research efforts have focused on analyzing these trust relationships in
open source systems [24], offering a process to decompose trust, identify key relationships, and
define behavior-based indicators.

Modern software installation tools frequently pull dependencies from multiple repositories,
increasing the risk of repository compromise and introducing attacks like dependency confusion
and repository fallback. Moore et al. [142] proposed a novel defensive strategy called articulated
trust and built Artemis, a security framework that enhances trust in software installation tools
by allowing them to specify trusted developers and repositories on a per-dependency basis. The
framework incorporates key techniques like per-dependency repository prioritization, multi-role
delegation, multiple-repository consensus, and key pinning. The framework aids in mitigating
single points of failure and enhances the security of multi-repository systems by introducing
flexible, user-defined trust models.
Software Trust (Reproducible Builds). The SolarWinds attack in 2020 highlighted a large amount

of trust placed in build systems, with attackers injecting malicious logic into the product binary
signed with Solarwinds’ official code signing keys. Reproducible builds provide a strong foundation
to build defenses for arbitrary attacks against build systems by ensuring that given the same source
code, build environment, and build instructions, bitwise-identical artifacts are created.

However, most software builds are not reproducible. Previous research has studied how to auto-
matically localize code and commands producing unreproducible builds [181, 182] and automated
approaches for patching [183]. Still, most of the software industry considers reproducible builds a
long-term goal [27].

To understand the reasons behind it, Fourne et al. [63] conducted 24 semi-structured expert
interviews with participants from the Reproducible-Builds.org project. The research found that
commonly encountered obstacles to reproducible builds include build directory name inclusion
and cryptographic signatures on the technical side, as well as the need for patience and good
social communication on the interaction side. Many interviewees mentioned positive interactions
with upstream projects and other developers, although some specifically noted that upstream
communication required patience. As for helpful factors, most mentioned were being self-effective,
(being determined, possessing the skill-set to progress reproducible builds), and having good
communication with other developers. For transitive dependency problems, concrete technical
documentation could be achieved by the pervasive use of SBOMs to indicate all software included in
building an artifact, so the transitive dependencies could be traced over a dependency graph. Some
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interviewees suggested that the overall awareness and buy-in for reproducible builds were lacking
and that even with the increase in the prevalence of software supply chain attacks, reproducible
builds are not yet widespread.

4.2.4 CI/CD Vulnerabilities. Modern software development has increased in complexity and
several parts of it, such as building, testing and deploying, require automation. As such, CI/CD
pipelines have become essential to help in automating the development process. Yet, these pipelines
introduce new code and dependencies that may introduce security bugs, posing new risks to
software projects [126]. CI/CDs can be plagued by similar security issues found in other domains,
such as caching attacks, which can leak critical data to attackers and allow them to take over
pipelines [78]. Currently, the trend of research in this area has focused on developers’ percep-
tions and secure practices [29, 44, 58]. The ideas here revolve around adding security tools into
the pipeline throughout the development process and not just at the end before the product
gets released.

Insecure practices not only apply to developers creating the pipelines but also CI/CD and code
hosting platforms that enable the creation of them. Prior works have looked into the insecure
usage of secret tokens [79, 136]. These tokens have a variety of uses such as controlling multiple
processes throughout the pipeline (task assignment, task execution, artifact uploading, etc.) and
authenticating to third-party applications. Gu et al. [79] performed a systematic study to uncover
the novel threats of task hijacking, repository privilege escalation, task result hijacking, and artifact
hijacking across seven major CI platforms spanning three major code hosting platforms. These
attacks were made feasible because all code hosting platforms are susceptible to secret leakage due
to improper configurations (resource sharing, over-privileged, improper validity periods).

Even though these studies focus on trying to protect the code as it flows through the pipeline,
they tend to not cover (or handle) the unique problems that arise from specialized pipelines such as
GitHub Actions.

Previous research [18, 109] has tried to find vulnerabilities in GitHub Action pipelines, also
known as GitHub Workflows, using pattern-matching. The current focus has been on GitHub
Actions, a CI/CD integrated directly into GitHub, as it has become widely used due to GitHub
being the most popular platform to host code [232]. However, there are significant challenges in
automatically analyzing these pipelines for security problems. First, GitHub Workflows consist of
jobs, each containing a sequence of steps, leading to a non-linear execution model. In addition, a
job can depend on one or more other jobs, creating a complex interwoven build system.

Automatically analyzing this new execution model for code injection vulnerabilities requires new
analysis techniques that consider the non-linear execution semantics of workflows. A workflow
can also reference third-party Actions and can participate in sensitive operations, such as access to
untrusted input and passing data to dangerous sinks. GitHub also supports three types of Actions:
JavaScript, Composite (combine multiple workflow steps within one action), and Docker. The
flexibility provided poses significant challenges for analyzing GitHub Actions.

Muralee et al. [144] studied if code injection vulnerabilities are prevalent in GitHub Actions
by building a static taint analysis system called Argus. Argus pinpoints potential threats by
tracking the flow of untrusted data from sources to sensitive sinks using a Workflow Intermediate
Representation to address the non-linear execution semantics of workflows. Argus was run on
nearly 2.8 million Workflows (1 million repositories) that utilized over 30,000 Actions. It detected
high and medium impact code injection vulnerabilities in 4,307 workflows, posing a significant risk
of compromising the respective repositories. Additionally, 80 vulnerable Actions were identified,
which rendered any Workflow that uses them vulnerable. This led others to start looking into
actions as if they were dependencies of the build process itself, similar to dependencies of the
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source code. As such, dependency problems (such as using vulnerable dependent packages) were
found to also affect actions [159].

4.3 Open Research Challenges
While some work has been done focusing on build infrastructure, it currently lags behind other
areas of the software supply chain. Here we discuss some of the current research challenges that
remain open for future work.
Transparency. To provide transparency, provenance generation is essential but implementing

provenance and verifying integrity is considered as a complex process. Organizations seek a solution
that enables stakeholders to easily generate provenance, store it securely, and provide verification.
At present, SLSA provides a default open source solution for GitHub but many organizations work
in varied environments, utilizing several Source Code Management and CI/CD systems. To be
effective, provenance generation functionalities need to be accordant with a wide range of CI/CD
platforms beyond just GitHub [67, 217].

For provenance generation to be effective, provenance generation must be compatible with
a wide range of various CI/CD platforms, extending beyond just GitHub Moreover, since SLSA
depends on cryptographic attestations for verification, additional research is necessary to ensure
the secure management of cryptographic keys to prevent any misuse.

Integrating SBOM generation into the build process can be a turning point for adopting SBOM.
Different software ecosystems use various strategies for dependency resolution, complicating the
work of SBOM generation tools. Including SBOM generation inside of package managers provides
better SBOMs that can be used for conducting better vulnerability analyses [17]. However, multiple
languages can contribute to creating a single project, and then a cross-ecosystem approach is
necessary for SBOM generation.
Integrity. As described in Section 4.2.2 great advances have been made in the infrastructure

needed to support code signing and artifact provenance. However, code signing is still in the early
stages of adoption by practitioners and many packages and components are not signed. Increasing
adoption will depend on both technical means, e.g. removing friction in the concrete aspects of the
code signing process, and social acceptance, where it becomes a habit for teams.
Trust. Even if the build code is free of vulnerabilities, build servers could be compromised. Re-

producible Builds provide a strong primitive for protecting against such subversion. Unfortunately,
the code that builds software has many sources of non-determinism that prevent reproducible
builds from being widespread. While significant effort has been made to make core dependencies
reproducible, more is needed to take Reproducible Builds to the last mile.
CI/CD Vulnerabilities. Software threat models need to include the code that builds the code, as

vulnerabilities can also be found in the CI/CD codebase. However, assessing risk in build code can
be challenging. For example, GitHub Actions can execute Actions in containers, introducing unique
vulnerabilities, including privilege escalation and container escape scenarios. Current research has
been limited to GitHub Actions, and there is a need to expand tools to other CI/CD ecosystems and
cross-ecosystem analyses.

5 Attack Vector: Humans
In cybersecurity, attackers do not solely rely on exploiting technical flaws; they increasingly target
the humans behind the technology. In today’s interconnected world, the responsibility for security
no longer rests solely with dedicated defenders like administrators and security specialists. Ordinary
users now bear a significant share in protecting systems. While defenders must be perfect every
time, attackers only need to get lucky once—finding a single vulnerability or exploiting a minor
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mistake to breach the system. Attackers are aware of this imbalance and actively exploit it, making
humans a critical and vulnerable attack vector in the software supply chain.

5.1 Practitioner Challenges
On the practitioners’ side, the 2021 Executive Orders on “America’s Supply Chain” [222] and
“Improving the Nation’s Cybersecurity” [5] significantly impacted software supply chain security
practices, driving the adoption of new approaches, metrics, frameworks such as NIST’s Secure
Software Development Framework (SSDF) [150], OpenSSF’s SLSA [161], Microsoft’s Software
Supply Chain Consumption Framework (S2C2F) [162], OWASP’s SCVS [164], CNCF Founda-
tions’ SSCP [36], and combined mapping Proactive Software Supply Chain Risk Management
(P-SSCRM) [246]. These frameworks rely on widespread industry adoption, standardized metrics,
and active information sharing, such as SBOMs, to be effective. Effective supply chain security
depends on collective efforts and industry-wide adoption. Without broad implementation of frame-
works and practices, progress is limited. Major industry initiatives like those under the Linux
Foundation and OpenSSF highlight the importance of this collaboration.

Summit attendees discussed adapting their cultures post-incidents like SolarWinds, emphasizing
the role of “scenario owners” and regular meetings [261]. Encouraging trusted sources for external
code, like GitHub, and reducing ad hoc fixes helps maintain integrity, although deadline pressures
can still lead to risky decisions. Companies have adopted a “guardrails, not gates” approach to
allow developers to move quickly within secure boundaries [261]. Tools like the “paved path” help
maintain secure workflows with minimal disruption. Automation of vulnerability fixes reduces
the burden on developers, enabling scalable security without relying on individual adherence to
secure coding practices. Building a strong security culture requires company-wide commitment,
with security seen as a shared responsibility.

5.2 Research Results
5.2.1 Supporting Developers. Implementing software supply chain security is a complex en-

deavor, involving many stakeholders and requiring developers to navigate challenges like es-
tablishing trust in third-party components and ensuring that external code is vulnerability-free
and current. The reliance on open source components amplifies these challenges, as companies
inherit unique security risks by incorporating code from potentially unvetted contributors. In
the recent 2024 Tidelift “State of the Open Source Maintainer Report” [224], only 14% of open
source maintainers reported they implemented formal processes or standards to prioritize the order
in which pull requests and issues are addressed for most or all projects they maintain. Research
into the area of open source components in 25 in-depth interviews with developers, architects,
and engineers [244] finds that many companies have basic policies or best practices for including
external code, but developers express a need for more resources, such as dedicated teams or tools,
to better audit and secure these components. The authors underline the importance of companies
contributing back to the open source ecosystem as a way to ensure mutual security for everyone
rather than treating it solely as a free supply chain.

The complexities of software supply chain security mirror broader challenges in the development
of security and privacy software, where, despite positive intentions, unintended consequences
can be introduced. In a study involving 14 expert interviews with security and privacy software
creators [179], researchers explored how these creators address the unintended impacts of their
tools. They found that such consequences are often overlooked or handled in an ad hoc manner,
usually based on user feedback, which places the burden on users to identify and report issues. To
better address these challenges, the researchers recommend that developers proactively anticipate
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potential negative impacts by increasing awareness, promoting accountability within organizations,
and utilizing systematic toolkits to foresee and mitigate these risks.

5.2.2 Open Source Ecosystem. Open source software underpins much of modern technology,
comprising the majority of the software supply chain in both consumer and critical infrastructure:
a 2023 Synopsys report found that 96% of 1,700 codebases included open source components,
accounting for 76% of the code [214]. Similarly, a 2021 Sonatype report noted that over 37 million
open source components are used by 27 million developers across major ecosystems like Java,
JavaScript, Python, and .NET [205]. However, decentralized development and open collaboration in
these projects introduce challenges, such as code from unknown contributors, limited resources for
reviews, and difficulties in onboarding new contributors. The recent 2024 Tidelift “State of the Open
Source Maintainer Report” [224] reported that 60% of maintainers are not paid for their work and
are spending almost three times more time (11%) on security work than they reported in 2021 (4%).

In a study involving 27 in-depth, semi-structured interviews with project owners, maintainers,
and contributors [245], researchers examined the behind-the-scenes processes of open source
projects, including their guidance, policies, incident handling, and challenges encountered. The
findings include a wide variation in security measures and motivations across projects: Larger
projects develop more structured security and trust processes as they scale, while smaller projects
handle security on an ad hoc basis due to limited resources and frequent turnover. The research
underscores the need for tailored support for open source projects, especially smaller ones with
fewer contributors and resources. On the human side of open source, broader support is needed to
prevent issues like project abandonment or hostile takeovers, exemplified by the xz-utils case.

Further research examined the challenges of secure code secret management in collaborative
development environments like GitHub and GitLab. Secrets, such as API keys or passwords, are
unintentionally leaked to public repositories, leading to serious security risks. In a mixed-methods
study involving a survey of 109 developers and 14 in-depth interviews [110], 30.3% of participants
had encountered secret leaks in the past.

5.2.3 Academia. Researchers in software supply chain security encounter complex ethical
dilemmas: disclosing vulnerabilities in no longer maintained software can either help mitigate risks
or unintentionally expose users still relying on it, studying data obtained from leaks raises issues
around privacy and consent, and conducting security research with human participants requires
reflections about informed consent, privacy, and the potential harm to participants. Recent work has
significantly shaped how the computer security field approaches ethical research practices [108],
influencing guidelines like those used by USENIX Security for evaluating the ethics of submitted
papers [231]. The work explores the intersection of moral philosophy and computer security ethics
through the creation and analysis of security-themed moral dilemmas inspired by trolley problems.
Rather than defining right or wrong, the researchers’ goal is to encourage meaningful discussions
among security researchers about the ethical dimensions of their decisions.

5.3 Open Research Challenges
Going forward, the widespread adoption of software supply chain security approaches such as
frameworks, standardized metrics, and active information sharing, will be required for them to
be effective. Humans will remain a necessary part of securing the software supply chain, also
just due to regulations and policies that require their involvement. Ensuring these approaches are
user-friendly will help drive broader acceptance across the industry and widespread adoption.
In the future, more advanced phishing and spear-phishing attacks using large language models
to craft highly convincing messages will be a rising threat, targeting one of the most vulnerable
elements to compromise the software supply chain: humans. How can humans keep up? Possible
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approaches could include improving training, more restricted environments with fewer privileges,
or even deploying LLMs as a counter-defense approach. Looking ahead, as organizations strengthen
technological defenses like dependency management and build security, insider threats will likely
persist as a major risk.The increasing complexity of internal systems, coupled with limited detection
measures and threat models, results in the need for more advanced behavioral monitoring and
adaptive security protocols for potential internal threats.

6 Other Software Supply Chain Directions
In this section, we discuss cross-cutting topics in software supply-chain security that are not directly
related to the three attack vectors.

6.1 SBOM
In May 2021, the White House EO 14028 [5] declared the generation of a SBOM as a mandatory arti-
fact for critical software sold to the US government. An SBOM is a nested inventory of “ingredients”
that make up the software component or product and helps to identify and keep track of third-party
components of a software system [261] to provide transparency and visibility. The primary goal
of the SBOM is to prevent attacks such as those targeting SolarWinds [204] and Log4j [7] and
to enable faster reaction when an attack occurs. SBOM transparency aids in making informed
purchasing decisions. SBOM provides essential risk information, such as licenses, dependencies,
vulnerabilities, and misconfigurations, so that organizations can understand the legal and security
exposure of the software. Software developers need to understand where particular security vulner-
abilities are located in the dependency tree. Most importantly, SBOMs allow companies to control
risk by enabling earlier identification and mitigation of vulnerable systems or license-infringing
source code.

Despite its many benefits, SBOM generation still faces challenges with automation, particularly
in handling the large number of components that are typically part of modern software [72].
State-of-the-art SBOM generation tools are lacking in generating accurate SBOMs [175, 259]. That
is, current SBOMs do not contain the exact set of dependencies in the software and frequently
report a wrong dependency version [175]. Research is striving to understand which are the current
problems in SBOM generation [13, 17, 38, 176, 259] to achieve a complete and correct SBOM.

6.1.1 Practitioner Challenges. While SBOMs have received notable policy attention from the US
government, software producers have yet to implement them fully. The Linux Foundation’s SBOM
readiness survey [128] in 2022 on 412 worldwide organizations showed gaps in familiarity with,
production planning for, and consumption of SBOMs.

In our Summits, practitioners consistently express a desire to leverage the SBOM for security
[53]. By this, they mean they do not want SBOMs only to be generated for compliance reasons
but to aid in the security of their products. Industry practitioners stated the benefits of inventory
disambiguation and believe that SBOMs can help establish customer trust by providing increased
transparency and integrity in their deliverables. Customers can look for extraneous content and
identify unwanted third-party dependencies.

However, most of the discussions about SBOM revolved around concerns. There were comments
and concerns that the EO only stated that SBOMs should be generated and did not describe what
should be done with that data or provide an articulated problem statement for which SBOMs are a
solution. One of the biggest hurdles of SBOMs is the overall immaturity of tooling relative to SBOM
consumption. Most industrial participants felt the current state of SBOM was of a “compliance-
check-the-box” [226]. Stalnaker et al. [208] found that practitioners are concerned about the future
of SBOMs becoming more than a minimal compliance requirement. A Summit participant did an
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audit of available SBOMs. They noted that nearly none met the National Telecommunications
and Information Administration (NTIA) minimum requirements [152].

Both industry and government practitioners cited questions about the mechanics of sharing
SBOMs. SBOMs can be large. Additionally, if multiple groups within an organization or multiple
government agencies use a product, how many times does the SBOM need to be shared? In a 2024
summit, sharing seemed to be evolving to a commitment that the software producer could rapidly
share/send an SBOM if asked for it rather than proactively sending the SBOM for all products.

Finally, practitioners are concerned that the use of an SBOM to identify vulnerabilities in the
components will yield many vulnerabilities in areas of the components that are not used by the
product and, therefore, not reachable or exploitable. In 2021, NTIA introduced Vulnerability
Exploitability Exchange (VEX) [35]. VEX [35] is a form of security advisory in a standardized,
machine-readable format used to convey information about the exploitability of vulnerabilities in
software products in the context of the product in which they are used. However, in the Summits,
practitioners indicated the lack of adoption of VEX due to concerns about self-declared exploitability
statements rather than automated, trustable, objective means for declaring whether a vulnerability
was exploitable in the context of the product.

6.1.2 Generation. Issues faced during SBOM generation include deficiencies in generated
SBOMs, lack of generalizability of tools, incompatibility in standards, and privacy concerns [20, 38,
107, 208]. After more than 2 years and attention from the industry, many tools to produce SBOMs
have been created with widely different outputs [168]. Quality expectations for SBOMs have not
been agreed upon.

Causes of low-quality SBOMs have been investigated, focusing on single ecosystems. Software
ecosystems vary greatly in their approaches to dependency management. Researchers have adopted
language-specific methodologies to study SBOM production, uncovering unique issues related to
each language [13, 175]. For example, Rabbi et al. [175] presented a quantitative and qualitative
comparison of four SBOM generation tools: ORT, cnn, syft, and cdxgen and evaluated using 50
popular open source npm projects. The analysis highlights cnn as the most reliable tool, providing
component names, versions, and dependencies, making it suitable for software supply chain
security. In contrast, tools like ORT and syft lack dependency reporting, while cdxgen’s inconsistent
performance raises concerns about its reliability in real-world applications. However, the cross-
language SBOMs—those created for programs utilizing multiple languages—remain an under-
explored area. Moreover, SBOM generation tools implement custom heuristics to solve challenges
posed by dependency-solving approaches. A differential analysis of SBOMs generated by four
widely used tools across seven software ecosystems highlights significant challenges in identifying
dependencies [259].

6.1.3 Consumption. Currently, SBOMs are produced but largely not consumed [265]. How
might they be consumed to aid security? Consider an application A with an SBOM (�$"� and
a vulnerability database feed (VDB) that contains information about known vulnerabilities
in software and software dependencies. In an ideal world, a software consumer runs a function
5 ((�$"�,+��) to learn if application A is vulnerable to a known vulnerability, likely in one of its
dependencies. Ideally, this function would identify whether the dependency with the vulnerability
was used, how it was used, and whether this specific use is exploitable. Using this information, the
software consumer can put in place mitigation or update to a newer version of the application A—or
attest that the vulnerability is not security-relevant for the application, such as through a VEX [35]
statement. Mitigation, such as selective sandboxing of dependencies, can be particularly effective
if the application’s source code is unavailable, patches are unavailable, or patch deployment is
logistically challenging. The developer of application A can also run a similar process for all of
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the application A’s dependencies and proactively update dependency versions or apply patches
as needed.

Unfortunately, this ideal world is not reality. The current process is messy and error-prone,
exacerbated by the low quality of SBOMs and missing data [175]. As a result, even if the software
consumer attempted to consider 5 ((�$"�,+��), taking action on the results would cause sig-
nificant manual effort for both themselves and the developer of application A, while not actually
improving security in most cases [17].

Missing dynamic components inside of the SBOM and lack of SBOM integration in security
pipelines are limiting factors for adoption. Attacks such as Log4Shell actively exploited Java dynamic
class loading. Sharma et al. [194] show that a complete SBOM effectively mitigates this kind
of attack.

6.1.4 Sharing. Another reason for the delay in SBOM adoption is privacy concerns. Companies
are worried that exposing SBOMs for their software will also provide attackers with information
about potential entry points. Attendees of the software supply chain security summit discussed
different approaches to overcome the privacy disclosure problem, e.g., recipient-based SBOMs
containing partial information. Xia et al. [249] proposed a blockchain-based solution using verifiable
credentials. However, they also acknowledge that blockchain is another limiting factor for adoption
and that this technology faces scalability challenges in real-world scenarios. Privacy is not the
only obstacle in SBOM sharing. If vendors provide SBOM only in a single format, the software
producer has to manage information from different formats to a single SBOM. This operation is not
automated and error-prone, posing a barrier to SBOM adoption [265].

6.1.5 VEX Use. VEX [35] information can be represented inside an existing SBOM, or in a
dedicated VEX addendum. This addendum is a security advisory indicating the status of known
vulnerabilities affecting a product (or products). The VEX could greatly improve the SBOM efficacy
for security. A developer can include a VEX statement to communicate to a customer that their
application is not vulnerable to the vulnerability in the vulnerable dependency. However, from
the software supply chain Summits emerged a consensus that the manual nature of creating VEX
information will significantly limit its value [261].

Integrating static and dynamic analysis tools [62, 169] into the build process may provide the
necessary automation for the production of VEX. By feeding tools with reliable and detailed
information about vulnerabilities and their specifics, such as where the vulnerability is located
in the dependency and what kind of data may trigger it, tools can test whether the vulnerability
is reachable/exploitable. However, manual effort is currently required to identify which specific
portion of the code contains the vulnerability and how to reach that part. Security patches contain
useful information that can be used to identify vulnerable elements in the code and how they are
triggered. However, this information was largely ignored. In 2024, Dunlap et al. [51] used security
patches with LLM models to map security advisories to their vulnerable functions. Moreover,
the automated production of proper VEX may enable more advanced vulnerability mitigation
techniques, such as additional input sanitation or local sandboxing [235].

Novel techniques are needed to make the production of VEX automated, accurate, and trustable.
Future research can focus on automating dependency selection by including information on vul-
nerability and other security metrics. Doing so requires higher-quality vulnerability, metadata,
and code information. Key research directions include prioritizing the selection of dependencies,
using techniques to extract dependency information automatically, and building practical tools for
presenting this data to developers.
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6.2 Practitioner Challenge: Self-Attestation and Provenance
The US EO requires the chief executive officer (CEO) of government contractors to submit a
form attesting to (1) conformity with secure software development practices; and (2) the integrity
and provenance of open source software used within any portion of a product. The form of the
self-attestation is administered through and the US National Coordinator for Critical Infrastructure
Security and Release and the Office of Management and Budget.2 In the software supply chain
context, provenance refers to not only the identity that created each dependency and transitive
dependency but also the process through which each software component was built. For example,
provenance is a key part of the SLSA framework [161], and systems such as in-toto3 [225] can be
used to capture and communicate provenance information. Industrial participants shared concerns
about ambiguity in self-attestation requirements. However, many participants agreed that the
SSDF and attestation are far more foundational to security than the SBOM. However, according to
Summit attendees, concerns about the burden of a CEO attesting the specifications have caused
organizations to deploy their products as open source, since open source software is exempt from
self-attestation.

6.3 LLM and Software Supply Chains
LLMs are increasingly leveraged across the software development lifecycle for different tasks.
Hence, LLMs have become a part of the software supply chain, similar to code dependencies,
build infrastructure, and humans. Several prior works have leveraged LLMs for different soft-
ware tasks, including code generation [122], vulnerability detection [127, 133, 172, 270], malicious
package detection [263] and even exploring LLMs as potential attack vectors [149, 195, 252].
Huang et al. [95] performed a literature review and provided an overview of the roles of stake-
holders, incorporated components, and various types of risk associated with the LLM supply
chain. The study identified four primary categories of LLM supply chain risks: security, privacy,
delivery, and legal risks. Furthermore, the authors developed a taxonomy of these risks and pro-
posed corresponding mitigation strategies. In another study, Balayn et al. [12] interviewed 71
participants from 10 private organizations to analyze stakeholders’ perceptions of AI explainabil-
ity and transparency. The study highlighted stakeholders’ information needs and the challenges
they encounter, emphasizing the importance of considering the “who,” “what,” and “why” in
explainable AI (XAI) practices. Additionally, the research offers methodological guidance and
lessons for future studies focusing on (XAI). In this section, we discussed the challenges practi-
tioners face when using LLMs, current research leveraging LLMs, and future research directions
for LLMs.

6.3.1 Practitioner Challenges. Within the last year, LLM-based systems, such as ChatGPT, have
been increasingly used for automated code generation, testing, program repair, and summarization.
According to a recent industry summit [229], participants stated that generative AI is in use to reduce
developers’ workload by fixing easy vulnerabilities. Participants also mentioned that LLMs could
resolve 7.5% of reviewer comments automatically. However, participants also expressed concerns
that the public’s accelerated use of LLM can lead to large-scale data exfiltration. Practitioners
frequently pull LLM output into their product and contribute their own proprietary data into
LLM’s training phase through their queries. As a result, despite generative AI’s benefits, companies
hesitate to adopt LLMs due to trust issues, particularly concerns about hallucinations and insecure
coding impact on development.

2https://www.cisa.gov/resources-tools/resources/secure-software-development-attestation-form
3https://in-toto.io/
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6.3.2 Code Generation. LLMs such as GitHub Copilot4 and CodeGeeX5 have revolutionized
the coding tasks including code completion [80, 134], code evaluation [89, 279], repair [103, 157],
implementing encryption schemes [61], and code translation [116, 216]. While LLMs are capable
of code generation, they also suffer from insecure code generation [31, 34, 243]. Existing models
can unintentionally introduce security flaws or generate code that does not comply with the
required standards [102, 255] or even actually contain security vulnerabilities [124, 167]. GitHub
Copilot-generated 40% of programs had security vulnerabilities [167], with similar issues noted
in other state-of-the-art LLMs [65, 124, 148]. However, compared to commonly utilized platforms
by developers, such as Stack Overflow, current results indicate that LLMs might produce less
vulnerable code [82].

LLMs often rely on third-party dependencies to enhance functionality. However, the LLM’s
supply chain may contain compromised components that introduce vulnerabilities into the final
models, leading to potential LLM supply chain security risk [114]. Additionally, since LLMs are
trained on public and open repositories, these models can unintentionally propagate existing
vulnerabilities by replicating insecure patterns and selecting vulnerable dependencies [10]. However,
both industry and academia have contributed to mitigating the security risks. Proposed solutions
include frameworks [85, 141] and AI tools [2, 3] specifically designed to reduce these risks and
address security concerns effectively.

6.3.3 Vulnerability Detection. Prior research has shown that LLMs can be more effective than
standard static analysis techniques for predicting software vulnerabilities with higher accuracy
[11, 23, 105, 263, 270]. Singla et al. [201] analyzed previous security failure reports using LLM and
achieved an average accuracy of 68% in categorizing breaches. Khare et al. [106] compared the
performance of LLMs (GPT-4 and CodeLlama) to deep learning models (DeepDFA and LineVul),
finding that LLMs demonstrated similar accuracy. However, deep-learning models have limitations
in real-world applications, where LLMs offer better interpretability and explanation. Additionally,
open source LLMs have been utilized to better align security advisories with vulnerable functions.
The approach shows a 173% increase in precision with only an 18% decrease in recall compared to
automated methods [51]. This improvement in precision supports more accurate security analysis
and threat mitigation. Then studies have compared the effectiveness of LLMs in vulnerability
detection with conventional methods and discovered that transformer-based LLMs surpass not only
traditional static tools [93, 132, 250, 276] but also exceed the performance of deep learning models
[68, 221]. Frameworks with the integration of deep learning and LLM are capable of achieving
92.65% accuracy [158]. However, for certain languages such as Java, LLMs do not exceed the
performance of the existing tools [33]. Moreover, issues like false positives [275] and hallucinations
[207], unconstrained training datasets, and complex model parameters diminish the performance of
LLMs. To overcome the challenges, recent studies proposed different methodologies and frameworks
that leverage LLMs to enhance vulnerability detection across different programming contexts,
outperforming traditional or static analysis tools [47, 73, 125].

6.3.4 LLMs as Attack Vector. In software supply chain security, LLMs are considered a prominent
source of introducing new vulnerabilities that can be exploited as attack vectors, which requires a
thorough review during the LLMs training phase [30, 257]. LLMs can be utilized as an attack vector
through prompt injection [131], Malicious Programming Prompt [87] and third-party APIs [278]
integration. Prior research studies highlight the methods and implications of these attacks [230,
253]. For example, the Sandwich attack [230], showed how LLMs can be exploited as attack vectors,

4https://github.com/features/copilot
5https://codegeex.cn/en-US
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allowing adversaries to manipulate state-of-the-art models into generating harmful or misaligned
responses. Although LLMs can be used for vulnerability management and automate the analysis
of security failure, the models also pose risks due to their reliance on potentially insecure code,
data quality issues, and privacy concerns [241]. Research demonstrated that LLMs can effectively
generate tactics, techniques, and procedures for interpreted malware [277] and security tests [276],
highlighting LLMs potential to both identify and exploit vulnerabilities in systems’ dependencies.

6.3.5 LLM’s Performance and Scalability. While ongoing research is necessary to effectively
leverage LLMs in areas like code generation, vulnerability detection, and mitigating LLM attack
vectors, future studies should also focus on improving LLM performance holistically, enabling
their application across a wide range of domains beyond just software supply chain security. For
example, prior research often highlights the high cost associated with using LLMs [263], especially
for large-scale analysis. LLMs also suffer in analyzing large files and modules due to inherent
limitations in token usage and contextual understanding and their ability to maintain context
across separate segments of a large file and modules. Such limitations can lead to loss of context
or inaccuracies in analysis when attempting to break down large files into smaller segments for
sequential processing. Interdisciplinary research is needed to improve the efficiency and cost-
effectiveness of LLMs in handling large fileswhile ensuring interoperability across differentmodules.
Future research also needs to focus on mode collapse [197] and hallucination [100] to improve LLM
performance [25, 197].

6.4 Practitioner Challenge: Supply Chain Standards, Guidelines, and Frameworks
Software security standards, guidelines, and frameworks, including 800-218 SSDF [150], NIST
800-161 [151], SLSA [161], and S2C2F [162], have emerged to guide what organizations can do to
reduce software supply chain risk. Compliance with the EO requires attestation to most SSDF tasks,
making the SSDF an important standard.The other most mentioned framework used by participants
was SLSA [161] security framework. Some practitioners still have difficulty deciding what to be
guided by with the numerous standards, guidelines, and frameworks available. The P-SSCRM
[246] provides the union of nine software supply chain frameworks and a mapping between these
nine frameworks.

6.5 Software Supply Chain Security Measurement
The US Federal Cybersecurity Research and Development Strategic Plan [90] highlights software
security measurements as a research priority. However, effectively measuring software security
remains a complex challenge due to the unpredictable and context-dependent nature of software
systems [32, 91, 189]. At present, development teams are making security-critical dependency
selection decisions under time pressure and with limited information. Identifying, aggregating and
disseminating useful software supply chain security metrics and insights from the sources described
above could support practitioners in their assessment and selection needs. We have identified three
requirements for providing this support; metrics curation, data publication, and periodic review.
Metrics curation requires evaluating industry experience and research progress to identify the
data and metrics most relevant to practitioner decision-making in software supply chain security.
Data publication involves collecting and presenting the curated data so that software development
teams can apply research findings in their own contexts. Providing current data and metrics for
individual dependencies and their ecosystems moves analysis from being research-focused to being
practice-focused. Periodic review is driven by the dynamic nature of the supply chain and the
attacks against it. As the problems of and solutions for protecting the supply chain evolve, “state of
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the practice” advice must also evolve. We plan a “Software Supply Chain Security Dashboard” to
accommodate practitioner data needs and an annual report to address the need for periodic review.

7 Conclusions
Software supply chain security is a diverse and challenging topic that requires sustained attention
and effort from both industry and academia.The last several years have seen an explosion of interest
following the SolarWinds [60, 204] and log4j [7] incidents. In this article, we have described three key
attack vectors: (1) code dependencies (including both intentional and unintentional vulnerabilities),
(2) build infrastructure, and (3) humans. For each attack vector, we detailed significant efforts by
both industry and academia. For example, in industry, SCA tools, SBOMs, and OpenSSF Scorecard
are gaining traction to address code dependencies and SLSA, in-toto, and TUF are helping to secure
build processes. Academic research has contributed to these efforts (e.g., originally developing in-
toto and TUF). More primarily and the focus of our own research, academic research has developed
novel analysis tools (e.g., to enhance vulnerability information and discover vulnerabilities in build
configuration), performed empirical studies that have measured existing tools (e.g., SCA tools) and
ecosystems (e.g., npm, PyPI, GitHub Actions), and interviewed practitioners to gain deeper insight
into underlying challenges and motivations to adopt solutions.

While significant progress has been made, our summits with industry and government highlight
the need for continued research. Managing vulnerabilities in dependencies is hard : vulnerability
information ismessy, and practitioners spend significant time both determining if code dependencies
need to be updated and updating them. Developers also need help choosing dependencies such
that they avoid both malicious libraries (e.g., on npm and PyPI) as well as under-maintained and
abandoned libraries. The build side of the supply chain has equally hard challenges. Legacy build
environments are pervasive and hard to change. We simultaneously lack robust analysis tools for
the code and configuration that builds software, and the ability to retrofit build environments to
provide provenance and transparency. Software projects are also riddled with non-determinism in
both project code and build code, preventing build reproducibility.

The recent xz-utils attack [64, 84] is also a stark reminder that current efforts have only touched
the surface of the problem. Most notably, it is unclear if any existing security practice could have
meaningfully prevented or even detected the xz-utils attack. Paying careful attention to the human
factor in the software supply chain is as important now as ever. Simultaneously, the use of LLMs
for both code generation and application functionality is introducing new risks, highlighting the
need to treat LLM models as component in the software supply chain. However, LLMs have their
own nuances that will require novel threat models and novel solutions.
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