
Wild Extensions: Discovering and Analyzing
Unlisted Chrome Extensions

Aidan Beggs and Alexandros Kapravelos

North Carolina State University
{awbeggs,akaprav}@ncsu.edu

Abstract. With browsers being a ubiquitous, if not required, method
to access the web, they represent a unique and universal threat vec-
tor. Browsers can run third-party extensions virtually invisibly in the
background after a quick install. In this paper, we explore the abuse of
browser extensions that achieve installations via suspicious methods. We
scan the web for links to extension installations by performing a web
crawling of the Alexa top 10,000 websites with recursive sub-page depth
of 4 and leverage other tools to search for artifacts in the source code
of webpages. We discover pages that have links to both listed and un-
listed extensions, many times pointing to multiple different extensions
that share the same name. Using this data, we were able to find 1,097
unlisted browser extensions ranging from internal directory lookup tools
to hidden Google Docs extensions that pose a serious threat to their 127
million users.

Keywords: browser extensions · JavaScript · browser security

1 Introduction

Although they run largely in the background, extensions can be quite useful
to the end user. Performing everything from letting users manage their email,
to helping people manage their banking and crypto accounts, to blocking inva-
sive ads (one of their most popular uses), extensions can ease the web browsing
experience for many users. Upon installation, extensions will request the user
for various permissions [9], however, many users have been conditioned to click
”accept” without careful analysis of the permissions they are granting [10]. A
small subset of the explicit permissions which some extensions request are as
follows: ”Read and modify your browsing history”, ”Access your browsing ac-
tivity”, ”Read and modify all your data on all websites you visit”, ”Manage
your apps, extensions, and themes”, ”Manipulate privacy-related settings”, and
”Access data you copy and paste.” Some of these permissions grant consider-
ably more power to extensions than many general users realize. For instance, the
”Read and modify all your data on all websites you visit” permission may be
marketed as necessary for ad-blocking software. In contrast, a malicious vendor
could leverage this to hijack bank account information, but still force Chrome

2 Aidan Beggs and Alexandros Kapravelos

to render a bank account page that appears as normal. Research has been con-
ducted to explore methods for classifying and eliciting malicious behavior from
browser extensions [7,13].

Chrome extensions can broadly be broken up into two categories: listed and
unlisted. Google has mandated that all extensions, listed or unlisted, be hosted
on the Chrome web store, likely in an attempt to curb extension abuse [8].
As a result, we define ”listed extensions” as those which may be found by a
direct search, and ”unlisted extensions” as those which only be accessed via a
direct link, from an external advertisement or elsewhere. In this paper, we focus
primarily on the security issues which use of unlisted extensions pose to users,
in contrast to previous work done analyzing listed extensions and all extensions.

Chrome extension analysis is a category of applications for which for the
most part, analysis has been largely overlooked. From the perspective of many,
extensions appear to be nothing more than small plugins which help automate
many users’ day-to-day activities. In reality however, the potential for large-scale
data and privacy breaches under the guise of innocent extensions is quite feasi-
ble. Although extensions must undergo vetting by Google before making it onto
their web store, large-scale in-depth vetting of aforementioned extensions is an
infeasible task given the vast scale of extensions submissions to the Chrome web
store. In an attempt to increase the ease of filtering potentially malicious exten-
sions, Google has cracked down on obfuscated code in extensions submissions,
among other preventative measures [11]. Unfortunately, the potential for wide-
spread abuse of user’s privacy via installed extensions is much more nuanced than
the typical patterns for malicious applications. The distinction between benign
intended and malicious behavior is often blurred. As a result, making this dis-
tinction is not a process that can be easily automated, even with the policies
which Google has in place regarding extension submission. Extension behaviors,
such as exfiltration of user data may appear clearly malicious in certain contexts,
however how does one distinguish between malicious tracking and an extension
which is meant to verify that a user’s pages are safe to visit? Clearly, even with
manual analysis, this distinction is difficult to draw. Automating the process,
even more so.

In this paper, we found 7,069 extensions by crawling the web, of which 1,097
were unlisted. On these extensions, we performed analysis to determine whether
unlisted extensions are a feasible attack vector for such privacy abuses, and
attempted to analyze the effectiveness of Google’s attempts to reduce the preva-
lence of privacy abuse and malicious behavior in the extensions which are hosted
on their web store. We focused simultaneously on the low-level methods which
such extensions may use to circumvent traditional prevents, in addition to the
high-level social engineering and advertisement campaign techniques that such
extension creators may use to disseminate malicious extensions.

In summary, we frame our key contributions as follows:

– We discover novel suspicious practices that can lead the users to install
extensions that are not discoverable on Chrome’s webstore.

Wild Extensions: Discovering and Analyzing Unlisted Chrome Extensions 3

– We identified 7,069 extensions that are publicly linked from websites and
1,097 extensions that are not searchable via Chrome’s webstore. Some of
these unlisted extensions have millions of users, for a total of 127 million
users among found unlisted extensions alone.

– We provide insights about unlisted extensions and show that they pose a
significant threat to users, as we find many of them to use techniques includ-
ing partial code obfuscation, advertisement injection, and various security
vulnerabilities which may be exploited external to the extension.

2 Related Work

Our extension analysis work primarily leveraged Mystique [7], a technology for
automating analysis of extension privacy leakages. The reasons for which Mys-
tique was a good fit for our analysis were twofold: to correlate prevalence of
privacy leakage with unlisted extensions, and because the Mystique platform
captures a large number of web requests upon visiting various websites, which
were used for later analysis. Mystique is available through a web interface [2],
which we leveraged for this work.

Previous work on browser extension analysis has focused on developing novel
techniques for analyzing extensions and detecting particular types of abuse com-
ing from extensions. One line of work has focused on advertisement injections
that the extensions might employ to monetize from their userbase [13,19,21].
Another threat that the users face from extensions is the increased fingerprint-
ability that might occur when the adversary can identify the installed extensions
of the users [16,18,17,15,12,14]. By having access to the visited pages of the user,
extensions also pose a privacy threat, which has been explored in depth in the
past [20,6,7]. Our work differs in that we aim to explore how users discover
and install extensions. None of the previous work, except the internal tools that
Google is using, had access to these unlisted extensions that we discovered in this
paper. This affects the users security, as what has been studied before is not the
complete picture of what the users are exposed when installing extensions. We
hope that our work will motivate future researchers to expand their extension
analysis to include also unlisted extensions.

3 Design

3.1 Crawling Setup

Before creation of our custom setup as described below, we attempted to find an
existing crawling tool which met our requirements. Unfortunately, our specific
needs were not met by any existing crawling framework. A large part of our
crawling needs included the following:
– A large level of flexibility with regards to re-enqueuing sites
– Ability to run crawling in a highly parallelized setup

4 Aidan Beggs and Alexandros Kapravelos

– Ability to evaluate Javascript on visited sites before scraping HTML (this
was extremely important: if we simply scraped the HTML before evaluating
the Javascript, Javascript obfuscation could be effectively used against our
crawling setup. Because we evaluate Javascript, our browser will do a large
part in de-obfuscating such Javascript by running it
As we found no such pre-existing framework that met all of the above-

mentioned needs, we created our own. We used Docker to containerize workers
utilizing an RQ [4] work queue to handle job distribution. Each worker made
use of Selenium [5] to drive a PhantomJS [3] headless browser, visiting each
page, checking for extensions, and re-queueing links found on the page to be
queried later. Kubernetes was used to deploy these workers in parallel, with
each worker communicating with a stateful MongoDB server hosted elsewhere,
to save relevant data for later mining and analysis. The complete architecture
of our crawling setup can be found in Figure 1.

In the Fall of 2018, we performed a crawl starting with the Alexa top 10k
websites, using the architecture described in Figure 1. We recursively visited
hyperlinks found on these pages until a sufficient depth was reached, resulting in
approximately one million pages crawled. We weighted pages in other domains
higher when evaluating the links to recursively search, to attain a breadth as
high as possible. This was done in order to have the highest possible chance of
finding unlisted extensions.

Sites with a high prevalence of extension-based advertisements were identified
throughout the course of crawling. Later, these sites were visited by hand over
the course of multiple sessions, in an attempt to leverage as many extensions as
possible through manual analysis. The reason for which these extensions were
searched for by hand was the obfuscation types of advertisements and prevalence
of these extensions. Each page that held advertisements did so in a cyclical
nature: a few advertisements appeared to be hosted for a few days, then after
those days had passed, new advertisements were hosted. In addition, the level
of user interaction and the variability in the type of user interaction which was
required to navigate through these advertisements, and thus eventually chance
upon an extension advertisement, was substantially higher than the level for
which automation of advertisement interaction via Selenium would have been
feasible. As a result, navigating to these pages every few days and finding the
new extensions via advertisements that were then available on these pages was
the preferred method of extension extraction from advertisements.

3.2 Unlisted Crawling Setup

Compilation of all extensions found via automated crawling and manually nav-
igated advertisement areas, followed by removal of duplicate/dead extensions,
yielded 7,069 extensions. Classifications of all found extensions as listed exten-
sions (able to be found via a search in the Chrome Web Store) or unlisted
extensions (only reachable via a direct link, and not reachable via a search by
name) was achieved by using an automated script, again leveraging PhantomJS
with a Selenium driver, in the same Docker environment as before. For every

Wild Extensions: Discovering and Analyzing Unlisted Chrome Extensions 5

Parse Raw HTML Results

Selenium Driver

Store/Classify Found
Extensions/Requeue

Further Jobs

Data Collection
Work Queue

Data Collection Worker Pods

MongoDB
Archives

Found
Extension Data

Alexa Top 10k
Domains

Post-Process
Data

Graphical/Analytical
Results

Analyze Privacy
Leaks

Export
Data

Re-queued
Sites

Manually
Visited Sites PublicWWW

Mystique

Privacy
Leaking

Extensions
Unlisted/Listed

Extension
Data

Final
Extension

Classifications

Fig. 1. The extension crawling system. Jobs are distributed automatically using a work
queue. Docker containers running headless PhantomJS and controlled with a Selenium
script load pages, search for extensions, and then re-queue further pages of interest.

extension that was previously found, the name was extracted from the extension
page, and subsequently searched on the Chrome webstore. Search results were
filtered to extensions, and precautions were taken to ensure that the results page
loaded enough results such that the extension would load, if it were truly listed.
Then, the results page was parsed with BeautifulSoup, searching to see whether
the extension was returned in the search results, by link to the extension page.
If the extension was not found in the results page upon searching for that ex-
tension, it was added to the list of unlisted extensions. In total, 1,097 unlisted
extensions were found, out of the original 7,069 discovered extensions.

3.3 Duplicate Crawling Setup

Upon completion of crawling for all extensions and filtering for unlisted ex-
tensions, we additionally searched for ”duplicated” extensions. Duplicated ex-
tensions were classified as extensions for which multiple extensions advertising
the exact same thing, oftentimes with near-identical images, descriptions, and
with inconsistent unlisted/listed statuses, were uploaded to the Chrome web

6 Aidan Beggs and Alexandros Kapravelos

store. One such example of duplicated extensions which we found is Improve

YouTube! (Open-Source for YouTube)1,2, with 12,671 users and 205,704 users
respectively.

These types of duplicated extensions are considered as a possible attack vec-
tor for introducing malicious behaviors to users (perhaps introducing benign
extensions listed on the store, and then pushing unlisted versions of the very
same extensions, with near-identical descriptions/icons, via advertisements).

The methodology for classifying duplicated extensions is as follows: for every
extension found in the overall group of extensions (including both listed and un-
listed extensions), the same PhantomJS/Selenium combination navigated to the
page, and found the name of the extension, the page being parsed via Beautiful-
Soup. As with the unlisted algorithm, the name of the extension was searched
on the web store, and similar results were collected. The criteria for marking
an extension as duplicated were simply finding whether there are one or more
extensions with the same name in the returned results.

Consider two cases: extension A is found in the initial crawl, and searched
on the web store as part of the duplicated classification. If A is listed, the search
will yield extensions A, B, and C, assuming B/C have the same name as A.
As a result, extensions A, B, and C will all be added to the duplicate list as
part of the same group. If A is an unlisted extension however, the search will
simply yield B and C. Despite this, extensions A, B, and C will all be added to
the duplicate list. Thus, whether or not A is listed, special care will be taken
to ensure that it gets added to the duplicate list, along with found extensions
of matching names. In total, out of the original 7,069 extensions, we found 461
instances of these ”duplicate extensions”.

3.4 Extension Metadata Capture

After the groups of all extensions, groups of unlisted extensions, and groups of
duplicate extensions were processed, we ran one last crawl of all extensions to
capture relevant metadata on the found extensions, that would be used for later
analysis. To perform this scraping, the same Docker container with PhantomJS
and Selenium was used, visiting the extension page of all the found extensions.
For each extension, the HTML of the store page was processed with Beautiful-
Soup [1], and the following list of attributes for each extension was extracted:
– Extension Name
– Extension ID/URL
– Extension Category
– Number of Extension Users

3.5 Offline Analysis

Upon completion of grouping extensions into groups by all extensions, unlisted
extensions and duplicate extensions, in addition to scraping pertinent metadata

1https://chrome.google.com/webstore/detail/lodjfjlkodalimdjgncejhkadjhacgki
2https://chrome.google.com/webstore/detail/bnomihfieiccainjcjblhegjgglakjdd

https://chrome.google.com/webstore/detail/lodjfjlkodalimdjgncejhkadjhacgki
https://chrome.google.com/webstore/detail/bnomihfieiccainjcjblhegjgglakjdd

Wild Extensions: Discovering and Analyzing Unlisted Chrome Extensions 7

on each extension, we performed offline analysis of the found extensions. First,
all of the extension sources were downloaded locally, for closer evaluation. Pri-
marily, analysis was performed using a Jupyter notebook running Python 3.6, for
repeatability and modularity of analysis. The types of offline analysis performed
were, in summary, as follows:

– Permissions requested, by our extension types
– User Distribution, by our extension types
– Mystique analysis of all found extensions, and cross-referencing between pri-

vacy leaks and our extension types
– Analysis of permissions requested vs. permission used, by our extension types
– Isolation of likely candidates for suspicious extension behavior, and per-

extension source analysis

4 Evaluation

4.1 Summary

In the Fall of 2018, we visited approximately one million pages and saved relevant
data pertaining to them in an attempt to search for unlisted, and potentially
malicious, Chrome extensions. In our evaluation of these pages, we found ap-
proximately 7,069 extensions with cumulative installs totaling approximately
600,346,707 users. In addition, we found 1,097 unlisted extensions, with cumu-
lative installs totaling over 127 million users.

For all evaluation of extensions, extensions with less than 100 users were
not considered. We found that due to the fact that such extensions with such
few users were not widely spread extensions, and that most extensions with
such few users would not make a useful attack vector for an agent attempting
to carry out malicious actions, they could be safely ignored for the purposes
of this analysis, not to mention that they would likely skew analysis of data.
In total, 1,097/7,069 of all found extensions were ignored for the purposes of
extension analysis. An observant reader may notice that the number of ignored
extensions here is exactly equivalent to the number of unlisted extensions we
found (1,097). This coincidence exists independently from any sort of correlation
between number of ignored extensions and found unlisted extensions: the set of
found unlisted extensions and the set of ignored extensions are non-equivalent,
in addition to being non-disjoint.

4.2 Extension Permissions

Every extension released on the Chrome web store includes a file called ”man-
ifest.json” in its root directory. This file contains key information about the
extension, such as the name, description, other metadata, and as will be an-
alyzed here, the permissions which the extension requests. One such example
”manifest.json” file may look as follows:

8 Aidan Beggs and Alexandros Kapravelos

1 {

2 "update_url": "https://clients2.google.com/service/update2/crx",

3

4

5 "name": "Loadr - Daily Links",

6 "description": "Your favorite bookmarks, only one click away.",

7 "version": "1.0.7.1",

8 "manifest_version": 2,

9

10 "options_page": "options.html",

11

12 "permissions": [

13 "bookmarks",

14 "contextMenus",

15 "tabs",

16 "storage",

17 "chrome://favicon/",

18 "alarms",

19 "notifications"

20],

21

22 "icons": {

23 "16": "img/icon.png",

24 "48": "img/icon.png"

25 },

26

27 "browser_action": {

28 "default_icon": "img/icon.png",

29 "default_title": "Loadr - Daily Links"

30 },

31

32 "background": {

33 "scripts": ["js/background.js"]

34 }

35

36 }

Listing 1.1. Example manifest.json file

As one can see, formatted as a JSON file, the key ”permissions” contains
every permission which this Chrome request needs, or at least claims to need, to
function. A full list of permissions which may be requested and a brief descrip-
tion for each is available at https://developer.chrome.com/apps/declare_

permissions. We parsed the ”manifest.json” file for all found extensions, and
compiled the resulting permissions requested by extension type. Figure 2 shows
the proportion of all extensions, by group (all, unlisted, duplicated), for the
most popular permissions requested. This correlation was done in an attempt
to see if unlisted/duplicated extensions requested certain permissions at higher
rates of incidence than the permissions being requested among all extensions,

https://developer.chrome.com/apps/declare_permissions
https://developer.chrome.com/apps/declare_permissions

Wild Extensions: Discovering and Analyzing Unlisted Chrome Extensions 9

to see if perhaps unlisted/duplicated extensions were requested more intrusive
permissions during the course of potential privacy abuses.

Only permissions that were requested by at least 5% of extensions in at
least one group are included. The permission proportions are sorted by the ”all”
group, but displayed in the same order for the other groups. The permissions
displayed in Figure 2, in order by bar from left to right, are as follows:

1 ['tabs', 'storage', 'contextMenus', 'webRequest', 'activeTab',
2 'notifications', 'http://*/*', 'https://*/*', '<all_urls>',
3 'webRequestBlocking', 'cookies', 'unlimitedStorage',
4 'webNavigation', 'alarms', 'identity', 'management',
5 'background', 'clipboardWrite', 'webview']

Listing 1.2. Permissions from Figure 2

0 10
0.0

0.1

0.2

0.3

0.4

0.5

all

0 10

unlisted

0 10

duplicated

Fig. 2. Proportion of all extensions which request a given permission, by group.

4.3 User Distribution

In this section, we performed post-processing on the metadata found for each
extension. This was done in an attempt to correlate number of users/user distri-
bution among all, unlisted, and duplicated extensions, and to see if distribution
tendencies vary by extension grouping.

Figure 3 shows the distribution of users across all extensions in each group
of extensions for all users. The average number of users in each group was as
follows:
– All: 118,505

10 Aidan Beggs and Alexandros Kapravelos

– Unlisted: 128,961
– Duplicated; 158,114

In Figure 3, each graph is a CDF of the number of users of extensions. In
other words, for any given x-value (number of users), the y-value represents the
probability that any given extension will have less than or equal to this many
users (again, filtered such that only extensions with 100 users or more are con-
sidered.) This representation gives us an easy way to visualize the distribution of
a large number of users across a large amount of extensions, and to see potential
patterns/similarities across data sets.

0.0 0.5 1.0
1e7

0.0

0.2

0.4

0.6

0.8

1.0
all

0.0 0.5 1.0
1e7

unlisted

0.0 0.5 1.0
1e7

duplicated

Fig. 3. CDF of number of users, by extension group, for all extensions.

As stated above, Figure 3 shows the CDF of users for all extensions. This
figure shows that for extensions with a below-average number of users, there
is very little difference between users in the ”all”, ”unlisted”, and ”duplicated”
groups. For extensions with an above-average number of users, this trend holds
for the most part, with the exception of a deviation among found ”duplicated”
extensions. Such above-average user extensions appear to correlate closely for
the ”all” and the ”unlisted” groups, however the ”duplicate” group appears to
have substantially fewer outliers on the upper end of the spectrum, as evidenced
by the dip upwards and lack of trend line past approximately 0.5e7 users. This
may be due in part to the fact that there are certain Google extensions3, which
have a large number of users, are clearly legitimate, and would not show up
in the duplicated extensions category. Beyond this however, the lack of outliers
among the upper range for duplicated extensions would imply that duplicated
extensions that do well perform more consistently. This may be due in part to
the advertising campaigns for such extensions that we ran into during the course
of our web crawling (the average duplicate extension is likely to do better, as
a group willing to spend the time to create duplicate extensions is also likely

3An example would be this extension: https://chrome.google.com/webstore/

detail/save-to-google-drive/gmbmikajjgmnabiglmofipeabaddhgne?hl=en

https://chrome.google.com/webstore/detail/save-to-google-drive/gmbmikajjgmnabiglmofipeabaddhgne?hl=en
https://chrome.google.com/webstore/detail/save-to-google-drive/gmbmikajjgmnabiglmofipeabaddhgne?hl=en

Wild Extensions: Discovering and Analyzing Unlisted Chrome Extensions 11

willing to put the time in to advertise it widely), although such campaigns do
not entirely explain this phenomenon.

4.4 Mystique Analysis

In this section, we ran all found extensions through the Mystique web API [2],
and ran analysis on the results. We leveraged the Mystique API via a simple
script which uploaded all found extensions to the front-end site, interacted with
the results via the REST API which we were given access to, and wrote the
results to a local file for later offline analysis. In running this analysis, we at-
tempted to correlate extension group with prevalence of privacy leak/violations,
according to Mystique. As with before, extensions with under 100 users were not
considered, as data may be skewed by such extensions. In Table 1, we detail the
results of such analysis:

Table 1. Mystique results, by extension group

Extension Group Flagged Extensions Total Extensions Flagged Percentage

All Extensions 160 3851 4.15%

Unlisted Extensions 25 750 3.33%

Duplicate Extensions 15 223 6.73%

At the α = 0.01 level, there is statistically significant evidence to suggest
that each group differs meaningfully from the original Mystique result of 2.13%
of extensions flagged. In other words, there is a very low chance that this differ-
ence happened purely by chance, and thus, there is a high probability that this
difference exists as a result of meaningful differences between these groups.

There are multiple factors to which this statistically significant difference
may be attributed to. It is likely that the sample populations differ meaningfully
between the extensions analyzed in the course of this paper and the extensions
analyzed via Mystique. Mystique extensions were crawled via the web store,
whereas our extensions were found organically in the wild. Thus, it makes sense
that we ran into a higher incidence of privacy leaking extensions, as organic
extensions in the wild are a much more effective attack vector than simply public-
facing extensions on the web store.

4.5 Permission Usage Analysis

When a user installs an extension, they are notified of all pertinent permissions
that an extension requests to have the ability to use, and must accept all per-
missions before the extension may be installed. At a later date, if the extension
updates its permissions and required more/more powerful permissions the ex-

12 Aidan Beggs and Alexandros Kapravelos

tension will be automatically disabled until the user verifies the new permissions
as acceptable4.

A commonly seen method for exposing users to malicious behavior among
applications that auto-update is as follows:

1. Create a benign application, generally one that has a legitimate use
2. Distribute your application to a large user base through widespread adver-

tising/other techniques
3. Update your application to include malicious code, thus pushing malicious

behavior to all users who had previously downloaded the benign application

This verification poses a problem to anyone trying to carry out the above at-
tack, as it will provide an explicit warning to the user that their extension is
requesting more permissions. For many users who don’t bother to check such
warnings immediately, this will simply delay the timing with which they receive
the updated extension. This delay and warning serves to reduce the effectiveness
of a potentially malicious extension payload being carried out with this strat-
egy. As a result, some extensions may preemptively request such permissions
ahead of time, in preparation for use at a future time. If a user accepts permis-
sions at install time, even if they are not currently used, the user will receive no
warning/confirmation upon updating to a version of the extension that uses the
aforementioned permissions.

In this section, we analyzed the prevalence of which extensions declared per-
missions that were never used across extension groups, in an attempt to see if
this was a common occurrence, and to see if certain groups of extensions did this
at a higher rate.

Table 2. Used/Declared percentage of extension permissions, by group

Permission All Extensions Unlisted Extensions Duplicated Extensions

tabs 992 / 1013 = 97.9% 123 / 127 = 96.9% 57 / 59 = 96.6%

webRequest 386 / 496 = 77.8% 49 / 69 = 71.0% 24 / 35 = 68.6%

webNavigation 153 / 238 = 64.3% 23 / 43 = 53.5% 10 / 14 = 71.4%

downloads 67 / 79 = 84.8% 5 / 8 = 62.5% 3 / 4 = 75.0%

cookies 287 / 391 = 73.4% 63 / 83 = 75.9% 28 / 40 = 70.0%

identity 116 / 125 = 92.8% 20 / 24 = 83.3% 2 / 2 = 100.0%

As can be seen from Table 2, a significant number of extensions do not use all
of the permissions for which they request access. As a result, any such extension
could begin using these permissions at any time, for any purpose, malicious or
otherwise. In addition, this can be done without notifying the user that the extent
of permission utilization of the extension has changed. Such automatic update
pushing, especially when extensions can request a broad swath of permissions

4https://developers.chrome.com/extensions/permission_warnings#update_

permissions

https://developers.chrome.com/extensions/permission_warnings#update_permissions
https://developers.chrome.com/extensions/permission_warnings#update_permissions

Wild Extensions: Discovering and Analyzing Unlisted Chrome Extensions 13

upon installation, is an attack vector for which a malicious extension could very
reasonably, and very suddenly, attack a large number of users.

4.6 Privacy Violation Case Study

Although in Section 4.4 we analyzed privacy leaks in a batch format, we decided
to do some further processing on Mystique results to further identify signatures
of privacy leaks among extensions. Mystique saves all of the web requests made
in the course of evaluating an extension for privacy leaks and through its web-
facing API we were able to download all such web requests made, for each of
our extensions, in JSON format.

In our analysis, we found two signatures of XMLHttpRequests being made
that leaked identifying information about the user. The signatures were as fol-
lows, with customized data replaced with placeholders:

1 https://api.amplitude.com/httpapi?api key=(SHA 256 HASH)&event=%5B%7B%22user id%22%3
↪→ A%22(SHA 256 HASH)%22%2C%22event type%22%3A%22%5BSession%5D%20
↪→ PageVisit%22%2C%22event properties%22%3A%7B%22host%22%3A%22(PAGE URL)
↪→ %22%2C%22url%22%3A%22https%3A%2F%2F(PAGE URL)%2F%22%2C%22title
↪→ %22%3A%22(PAGE URL)%22%2C%22options enableInject%22%3Atrue%2C%22
↪→ options enableGoogleProducts%22%3Afalse%2C%22options enabledGoogleDiscounts
↪→ %22%3Afalse%2C%22plugin version%22%3A%222.1.3%22%2C%22plugin source%22%3A
↪→ %22sp%22%2C%22plugin browser%22%3A%22ch%22%2C%22plugin utm source%22%3
↪→ Anull%2C%22plugin utm campaign%22%3Anull%2C%22plugin utm term%22%3Anull%2
↪→ C%22plugin utm content%22%3Anull%7D%7D%5D

2

3 https://api.mixpanel.com/track/?data=(B64 ENCODED IDENTIFYING INFORMATION)%3D
↪→ %3D&ip=1& =1524125554902

Listing 1.3. Examples of XMLHttpRequests which leak User Data

As can be seen in Listing 1.3, in the instance of the ”api.amplitude.com”
link, various identifying information about the user is passed in the URL. In
addition, an API key and the last site that the user came from was passed as
well. This signature showed up with some elements of the URL added/removed
from request to request, however the majority of the request was similar enough
to safely group it as likely a part of an extension from the same entity. Again,
the instance of the ”api.mixpanel.com” link which is shown in Listing 1.3 simply
encodes some relevant information about the user (Chrome version, extension
version, extension id, etc.) in base64 encoding before sending it as part of the
URL. The most interesting observation about the api.mixpanel.com API specif-
ically is that the extension id of the extension from which the request came from
is included in the request. Although we found multiple URLs in our list that
sent requests to the API, the fact that the extension id is passed alongside some
other user data implies that there are multiple extensions from a single entity,
all leaking data to this API.

In all, we found 29 instances of user privacy leaking simply between these two
signatures, which implies there are a small handful of groups making numerous
extensions which operate in very similar ways in the context of privacy-leaking
behavior.

14 Aidan Beggs and Alexandros Kapravelos

4.7 Extensions as a Backdoor

In terms of privacy violations and malicious behavior of extensions, there are
two clear categories in which extensions fall:

– Extensions which intentionally leak and/or violate user’s privacy
– Extensions which contain vulnerability which may lead to leaks/violations

of user’s privacy

All of the above analysis has pertained to the first category of extension:
extensions which intentionally leak and/or violate user’s privacy. This is what
we would traditionally classify as a ”malicious” extension. In this section, we
will investigate a different type of path to perform malicious actions on a user:
vulnerable extensions.

For most, the violations which ”Extensions which intentionally leak and/or
violate user’s privacy” commit do not rise to the same level as those committed
by viruses and what would be considered by most as ”traditionally malicious”.
That being said, we still found such privacy violations of interest, for multiple
reasons. Despite operating in the gray area of ”malicious behavior”, these exten-
sions nonetheless exhibit a clear violation of not only Google’s extension policies,
but the user’s expectation of privacy when they install such an extension. As
a result, these extensions represent an important yet fine line between benign
and malicious behavior: a line which may be crossed at any time among such
extensions, and thus nonetheless poses a very credible security threat.

In the course of our investigation into duplicated extensions, we singled out
a few extensions that met multiple criteria for closer source code analysis. The
conditions which we searched for included:

– Relatively large user base
– Duplicated extension, according to the criteria listed in earlier sections
– Mystique privacy leaks in one or more instances of the duplicated extension
– Relatively small number of reviews, compared to its user base
– Preferably, obtained via an online ad campaign

Upon finding multiple such candidates, we zeroed in on a single extension
to audit in depth, and to built a potential outline of the attack vector which
any such extension may utilize. Through analysis of this extension, we came
to several interesting conclusions. Previous versions of this extension appear
to feature advertisement injection, and sending user data to external sources.
This functionality appears to have been removed in more recent versions of
this extension, perhaps signifying that Google’s updated screening process for
extensions has been an effective means of filtering out such extension behaviors.

The most interesting aspect of this extension, aside from the privacy breaches
in previous versions of the extension, appears to be an (allegedly) unintentional
security vulnerability which existed in all versions of this extension before March
2018. Found independently5, this vulnerability would allow any webpage exploit-
ing this vulnerability to implement a Universal Cross-site Scripting (UXSS) at-
tack on any other webpage. This allows the attacker to perform an XSS attack on

5https://bugs.chromium.org/p/project-zero/issues/detail?id=1555

https://bugs.chromium.org/p/project-zero/issues/detail?id=1555

Wild Extensions: Discovering and Analyzing Unlisted Chrome Extensions 15

any website by tricking the extension into loading JavaScript code in a new tab
with a URL of the attacker’s choosing. Although this issue was fixed in March
20186, this bug was present dating all the way back to 2016, affecting over 400k
users of this extension alone. Even if unintentional, this vulnerability represents
a significant security risk, in addition to being incredibly difficult to detect.

This type of vulnerability opens up another potentially interesting avenue of
attack for a malicious user. By either creating an extension with intentional but
hidden security vulnerabilities or auditing the source code that is easily available
for any extension on the Chrome web store, a malicious user can target massive
swaths of users that visit their webpage. Even worse, they can carry out their
exploit all while likely avoiding detection via obfuscated exploit code on their
website, due to the fact that the extension does not have overtly malicious code
itself.

The mitigation techniques for this type of exploit are not entirely straightfor-
ward. To mitigate this variety of attack, an auditing system that considers this
line of attack is needed for popular extensions. Google does not publicly release
any information about the nature of rigor that extensions go under before being
accepted to the web store/before updates are accepted, but the time commit-
ment required to audit such a large number of applications, many with largely
minified code bases, approaches an insurmountable task.

4.8 Minification or Obfuscation?

In this section, we will consider Google’s policy for what level of minification is
accepted for web store extensions, to what level these requirements are upheld,
and finally, the potential security implications of failure to uphold such require-
ments. As per Google’s own requirements [11], obfuscated code is not permitted,
and minified code is only permitted when it exclusively relies on the following
techniques:
– Removal of whitespace, newlines, code comments, and block delimiters
– Shortening of variable and function names
– Collapsing the number of JavaScript files

This policy was put in place in an attempt to make manual code review easier.
Unfortunately, the line between ”minification” and ”obfuscation” is blurry. One
example of this blurry line can be found in Listing 1.4

1 if (!y) var O = a,
2 T = [0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334],
3 C = function(e, t) {
4 return T[t] + 365 ∗ (e − 1970) + O((e − 1969 + (t = +(1 < t))) / 4) − O((e − 1901 + t) /

↪→ 100) + O((e − 1601 + t) / 400)
5 };
6 P = function(e) {
7 for (var t = ”\””, n = 0, o = e.length, i = !S || 10 < o, r = i && (S ? e.split(””) : e), a; n < o;

↪→ n++) switch (a = e.charCodeAt(n), a) {
8 case 8:
9 case 9:

10 case 10:
11 case 12:

6https://bugs.chromium.org/p/chromium/issues/detail?id=827288

https://bugs.chromium.org/p/chromium/issues/detail?id=827288

16 Aidan Beggs and Alexandros Kapravelos

12 case 13:
13 case 34:
14 case 92:
15 t += A[a];
16 break;
17 default:
18 if (32 > a) {
19 t += ”\\u00” + j(2, a.toString(16));
20 break
21 }
22 t += i ? r[n] : e.charAt(n);
23 }
24 return t + ”\””
25 }, N = function(e, t, n, o, i, r, a) {
26 var d, s, p, c, l, u, , f, g, y, I, S, T, A, R, M;
27 try {
28 d = t[e]
29 } catch (e) {}
30 if (”object” == typeof d && d)
31 if (s = m.call(d), s != ”[object Date]” || b.call(d, ”toJSON”)) ”function” == typeof d.toJSON

↪→ && (s != k && s != x && s != E || b.call(d, ”toJSON”)) && (d = d.toJSON(e));
32 else if (d > −1 / 0 && d < 1 / 0) {
33 if (C) {
34 for (l = O(d / 864e5), p = O(l / 365.2425) + 1970 − 1; C(p + 1, 0) <= l; p++);
35 for (c = O((l − C(p, 0)) / 30.42); C(p, c + 1) <= l; c++);
36 l = 1 + l − C(p, c), u = (d % 864e5 + 864e5) % 864e5, = O(u / 36e5) % 24, f = O(u / 6e4

↪→) % 60, g = O(u / 1e3) % 60, y = u % 1e3
37 } else p = d.getUTCFullYear(), c = d.getUTCMonth(), l = d.getUTCDate(), = d.

↪→ getUTCHours(), f = d.getUTCMinutes(), g = d.getUTCSeconds(), y = d.
↪→ getUTCMilliseconds();

38 d = (0 >= p || 1e4 <= p ? (0 > p ? ”−” : ”+”) + j(6, 0 > p ? −p : p) : j(4, p)) + ”−” + j(2,
↪→ c + 1) + ”−” + j(2, l) + ”T” + j(2,) + ”:” + j(2, f) + ”:” + j(2, g) + ”.” + j(3, y) +
↪→ ”Z”

39 } else d = null;
40 if (n && (d = n.call(t, e, d)), null === d) return ”null”;
41 if (s = m.call(d), s == ”[object Boolean]”) return ”” + d;
42 if (s == k) return d > −1 / 0 && d < 1 / 0 ? ”” + d : ”null”;
43 if (s == x) return P(”” + d);
44 if (”object” == typeof d) {
45 for (A = a.length; A−−;)
46 if (a[A] === d) throw h();
47 if (a.push(d), I = [], R = r, r += i, s == E) {
48 for (T = 0, A = d.length; T < A; T++) S = N(T, d, n, o, i, r, a), I.push(S === w ? ”null” :

↪→ S);
49 M = I.length ? i ? ”[\n” + r + I.join(”,\n” + r) + ”\n” + R + ”]” : ”[” + I.join(”,”) + ”]” :

↪→ ”[]”
50 } else v(o || d, function(e) {
51 var t = N(e, d, n, o, i, r, a);
52 t !== w && I.push(P(e) + ”:” + (i ? ” ” : ””) + t)
53 }), M = I.length ? i ? ”{\n” + r + I.join(”,\n” + r) + ”\n” + R + ”}” : ”{” + I.join(”,”) + ”

↪→ }” : ”{}”;
54 return a.pop(), M
55 }
56 };

Listing 1.4. Minified browser extension code that is unreadable.

The snippet in Listing 1.4 appears to fit well into either category, it is not
easily understandable. Although not clearly obfuscated, such extraneous func-
tions and long convoluted equations approximates code obfuscation, as opposed
to minification. In either case, the purpose of the code is not intuitive, not even
after careful observation. Even if not objectively obfuscation, this code appears
to go against the spirit of Google’s policies, which are intended to make extension
source code more understandable. Such extensions pose three options:

Wild Extensions: Discovering and Analyzing Unlisted Chrome Extensions 17

– Google does not consider such ”gray areas” of obfuscation as suspicious
– Google has not analyzed this extension well enough to notice this code
– Google genuinely has the resources to examine every instance of such exten-

sions, and has verified them to be without malicious behavior
As discussed in Section 4.7, even intuitive extension code can house non-straightforward
vulnerabilities that can lead to wide-scale exploitation of users.

In either scenario, and due to the large prevalence of such code snippets
across extensions on the web store, lack of understanding about the extensions
that Google themselves purports to verify is a potential source of vulnerability
for any user who installs extensions from the web store.

5 Limitations

The largest limitations that we faced during the course of this research were as
follows:
– Limitations on reproducibility
– Limitations on crawling speed and depth
– Difficulty automating the scraping of ad campaigns
– Automated analysis of found extensions

Reproducibility. As the internet contains many moving parts, even when con-
trolling for as many initial conditions as possible, one will end up with drastically
different results when crawling the web. We controlled for everything possible to
maximize the reproducibility of our work, however random chance means that
it is difficult to quantify the level to which we succeeded. Our goal was to cast
a wide net in our search for extensions to analyze, and as a result (taken in
conjunction with the rapidly changing nature of the web and of advertisement
campaigns) it is difficult to quantify the degree of reproducibility for our crawler.
Crawling. For our experiment, we leveraged the maximum level of resources
which were available. It is likely that a group with access to greater resources
(even Google themselves) would be able to find a larger number of extensions in
the wild, both listed and unlisted. As the relevance of crawled domains becomes
lower and lower, the likelihood of finding prominent extensions decreases. Groups
which wish to distribute their extensions to the largest possible user base, have it
in their best interest to reach as many extensions for their extensions as possible.
As the amount of sites crawled reaches an inflection point, the crawler receives
diminishing returns from additional crawls, due to the poorer quality/user counts
of extensions found thereafter. Furthermore, we are confident that the degree to
which we ran our crawler and the quality/userbase of extensions which were
found are a good representation of the extension population of interest.
Advertisements. During our experiment, we found many extensions of in-
terest via advertisement campaigns. Many advertisement sites, although easily
navigable by humans (intentionally so, to gain maximum traction), prove im-
mensely difficult to navigate automatically via crawler. Most advertisement sites
we found are set up such that for a human (who may easily pick up context clues
about where and what to click), navigation through such sites is second nature.

18 Aidan Beggs and Alexandros Kapravelos

Through techniques, such as heavy code obfuscation, automated scraping of such
sites quickly becomes a monumental task. For the purposes of this research, vis-
iting such sites manually every few days and clicking through a few dozen times
proved sufficient to deliver interesting results. Nonetheless, this is a clear short-
coming of our crawler, and this topic would yield enough to merit a research
paper of its own.

Automated Extension Analysis. One category of analysis which we per-
formed was automated analysis of extensions which we found. This was done
largely by either:

– Scraping all found extensions for relevant, well-defined data
– Using existing metadata to narrow down extensions of interest for manual

investigation

Although utilizing both of these strategies yielded interesting and novel results,
there is room for building on the work done here. Mystique provides a means
of investigating potential privacy abuses in Chrome extensions, although does
not provide the ability to classify purely malicious behaviours in extensions. As
such, the results found here have great potential to be combined with Mystique
as a means of classifying purely malicious extension behaviors.

6 Conclusion

In this paper we presented our work on discovering unlisted/suspicious Chrome
extensions, and brief work on analyzing the found extensions. In total, we found
1,097 unlisted Chrome extensions, and 461 of the ”duplicate but different” ex-
tensions mentioned above. Based on these findings, we analyzed these extensions
in an attempt to identify suspicious behaviors. We also attempted to identify a
correlation between whether or not an extensions was unlisted, and the type-
s/intrusiveness of permissions which were requested by it. Finally, we compared
the ”duplicate but different” extensions across the population to discover differ-
ences in behaviors across these ”duplicates” and to correlate these differences to
malicious behaviors in the extensions themselves.

As the web becomes increasingly accessible to the general public, the num-
ber Chrome extension users becomes larger as well. In this paper, we analyzed
the potential routes that a malicious extension could take to exploit a user’s
privacy. In addition, we discussed the steps which Google has taken to prevent
such attacks. We have also assessed the effectiveness of these various counter-
measures, and potential responses from a malicious agent. We segregated the
extensions identified via crawling into three categories (all, unlisted, duplicated),
and performed various analyses comparing each category, including leveraging
the Mystique platform to analyze privacy leaks across extension types.

In addition to our statistical comparisons, we have provided two case studies
of specific points of interest with extensions. The first case study analyzed the
efficacy of Google’s new anti-obfuscation policy, and the degree to which it is
enforced and is effective. Secondly, we analyzed the potential for the use of

Wild Extensions: Discovering and Analyzing Unlisted Chrome Extensions 19

extensions as a dormant backdoor, which may be later leveraged by a site taking
advantage of the backdoor to cause harm or to exploit the user.

Although we have discussed multiple possible resolutions available to Google
to reduce the incidence of such exploitative techniques, educated and informed
user action is an equally valuable tool in curbing this malicious behavior. By
debunking the idea that extensions are inherently safe because Google hosts them
and helping the user realize that the permissions which an extension requests
are indeed quite important and making such information more easily readable
for users, Google can increase the power of their users to take control of their
own privacy. As a result, they can empower users to protect themselves from
malicious extension behavior.

It is our hope that our research into the extension ecosystem will motivate
others to explore this under-analyzed field, which has potential for large impacts
should a malicious agent target it.

Acknowledgements

We would like to thank our shepherd Kapil Singh and the anonymous reviewers
for their insightful comments and feedback. This work was supported by the Of-
fice of Naval Research (ONR) under grant N00014-17-1-2541, by DARPA under
agreement number FA8750-19-C-0003 and by the National Science Foundation
(NSF) under grant CNS-1703375.

References

1. Beautiful Soup: We called him Tortoise because he taught us. https://www.

crummy.com/software/BeautifulSoup/

2. Mystique Extension Analysis Engine. https://mystique.csc.ncsu.edu/

3. PhantomJS - Scriptable Headless Browser. http://phantomjs.org/

4. RQ: Simple jobs queues for Python. http://python-rq.org/

5. Selenium - Web Browser Automation. https://www.seleniumhq.org/

6. Aggarwal, A., Viswanath, B., Zhang, L., Kumar, S., Shah, A., Kumaraguru, P.: I
spy with my little eye: Analysis and detection of spying browser extensions. In: Pro-
ceedings of the IEEE European Symposium on Security and Privacy (EuroS&P)
(2018)

7. Chen, Q., Kapravelos, A.: Mystique: Uncovering information leakage from browser
extensions. In: Proceedings of the ACM Conference on Computer and Communi-
cations Security (CCS) (2018)

8. Google: Alternative Extension Distribution Options - Google Chrome. https://
developer.chrome.com/apps/external_extensions

9. Google: Chrome Permission Warnings. https://developer.chrome.com/apps/

permission_warnings

10. Google: Declare Permissions and Warn Users - Google Chrome. https:

//developers.chrome.com/extensions/permission_warnings#permissions_

with_warnings

https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://mystique.csc.ncsu.edu/
http://phantomjs.org/
http://python-rq.org/
https://www.seleniumhq.org/
https://developer.chrome.com/apps/external_extensions
https://developer.chrome.com/apps/external_extensions
https://developer.chrome.com/apps/permission_warnings
https://developer.chrome.com/apps/permission_warnings
https://developers.chrome.com/extensions/permission_warnings#permissions_with_warnings
https://developers.chrome.com/extensions/permission_warnings#permissions_with_warnings
https://developers.chrome.com/extensions/permission_warnings#permissions_with_warnings

20 Aidan Beggs and Alexandros Kapravelos

11. Google Security Blog: Trustworthy Chrome Extensions, by Default. https:

//security.googleblog.com/2018/10/trustworthy-chrome-extensions-by-

default.html

12. Gulyas, G.G., Some, D.F., Bielova, N., Castelluccia, C.: To extend or not to extend:
On the uniqueness of browser extensions and web logins. In: Proceedings of the
2018 Workshop on Privacy in the Electronic Society. WPES’18 (2018)

13. Kapravelos, A., Grier, C., Chachra, N., Kruegel, C., Vigna, G., Paxson, V.: Hulk:
Eliciting Malicious Behavior in Browser Extensions. In: Proceedings of USENIX
Security Symposium (2014)

14. Sanchez-Rola, I., Santos, I., Balzarotti, D.: Extension breakdown: Security anal-
ysis of browsers extension resources control policies. In: Proceedings of USENIX
Security Symposium (2017)

15. Sjösten, A., Van Acker, S., Sabelfeld, A.: Discovering browser extensions via web
accessible resources. In: Proceedings of the ACM on Conference on Data and Ap-
plication Security and Privacy (CODASPY) (2017)

16. Starov, O., Nikiforakis, N.: Extended Tracking Powers: Measuring the Privacy
Diffusion Enabled by Browser Extensions. In: Proceedings of the 26th International
World Wide Web Conference (WWW) (2017)

17. Starov, O., Nikiforakis, N.: Extended tracking powers: Measuring the privacy diffu-
sion enabled by browser extensions. In: Proceedings of the International Conference
on World Wide Web (WWW) (2017)

18. Starov, O., Nikiforakis, N.: XHOUND: quantifying the fingerprintability of browser
extensions. In: Proceedings of the IEEE Symposium on Security and Privacy (2017)

19. Thomas, K., Bursztein, E., Grier, C., Go, G., Jagpal, N., Kapravelos, A., Mccoy,
D., Nappa, A., Paxson, V., Pearce, P., Provos, N., Abu Rajab, M.: Ad Injection
at Scale: Assessing Deceptive Advertisement Modifications. In: Proceedings of the
IEEE Symposium on Security and Privacy (2015)

20. Weissbacher, M., Mariconti, E., Suarez-Tangil, G., Stringhini, G., Robertson, W.,
Kirda, E.: Ex-ray: Detection of history-leaking browser extensions. In: Proceedings
of the ACM Annual Computer Security Applications Conference (ACSAC) (2017)

21. Xing, X., Meng, W., Lee, B., Weinsberg, U., Sheth, A., Perdisci, R., Lee, W.: Un-
derstanding malvertising through ad-injecting browser extensions. In: Proceedings
of the International Conference on World Wide Web (WWW) (2015)

https://security.googleblog.com/2018/10/trustworthy-chrome-extensions-by-default.html
https://security.googleblog.com/2018/10/trustworthy-chrome-extensions-by-default.html
https://security.googleblog.com/2018/10/trustworthy-chrome-extensions-by-default.html

	Wild Extensions: Discovering and Analyzing Unlisted Chrome Extensions

