
CSC 405
Computer Security

Web Security

Alexandros Kapravelos
akaprav@ncsu.edu

(Derived from slides by Giovanni Vigna and Adam Doupe)

1

2

https://airma.sh

3

https://docs.google.com/file/d/1cbYXdz0kgagSPWWCNwue8HGXCaMr1r25/preview

How would you defend against this
attack?

4

http://go.ncsu.edu/airmash

http://go.ncsu.edu/airmash

HTML – Forms
• A form is a component of a Web page that has

form controls, such as text fields, buttons,
checkboxes, range controls, or color pickers
– Form is a way to create a complicated HTTP request

• action attribute contains the URI to submit the
HTTP request
– Default is the current URI

• method attribute is the HTTP method to use in the
request
– GET or POST, default is GET

5

HTML – Forms
• Children input tags of the form are transformed into

either query URL parameters or HTTP request body
• Difference is based on the method attribute

– GET passes data in the query
– POST passes data in the body

• Data is encoded as either
“application/x-www-form-urlencoded” or
“multipart/form-data”
– GET always uses “application/x-www-form-urlencoded”
– POST depends on enctype attribute of form, default is

“application/x-www-form-urlencoded”
– "multipart/form-data" is mainly used to upload files, so we

will focus on “application/x-www-form-urlencoded”

6

HTML – Forms
• Data sent as name-value pairs

– Data from the input tags (as well as others)
<input type="text" name="foo"
value="bar">

• Name is taken from the input tag’s name
attribute

• Value is taken either from the input tag’s
value attribute or the user-supplied input
– Empty string if neither is present

7

application/x-www-form-urlencoded
• All name-value pairs of the form are

encoded
• form-urlencoding encodes the name-value

pairs using percent encoding
– Except that spaces are translated to + instead

of %20
• foo=bar

• Multiple name-value pairs separated by
ampersand (&)

8

application/x-www-form-urlencoded
<form action="http://example.com/grades/submit">

 <input type="text" name="student" value="bar">

 <input type="text" name="class">

 <input type="text" name="grade">

 <input type="submit" name="submit">

</form>

http://example.com/grades/submit?student=Wolf+Pack&
class=csc+591&grade=A%2B&submit=Submit

9

application/x-www-form-urlencoded
<form action="http://example.com/grades/submit" method="POST">

 <input type="text" name="student" value="bar">

 <input type="text" name="class">

 <input type="text" name="grade">

 <input type="submit" name="submit">

</form>

POST /grades/submit HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:34.0) Gecko/20100101 Firefox/34.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded

Content-Length: 68

student=Wolf+Pack&class=csc+591&grade=A%2B&submit=Submit

10

Web Applications
• It was quickly realized that the way the web was

structured allowed for returning dynamic responses
• Early web was intentionally designed this way, to allow

organizations to offer access to a database via the web
• Basis of GET and POST also confirm this

– GET "SHOULD NOT have the significance of taking an
action other than retrieval"

• Safe and idempotent
– POST

• Annotation of existing resources; posting a message to a bulletin
board, newsgroup, mailing list, or similar group of articles,
providing a block of data, such as the result of submitting a form,
to a data-handling process; and extending a database through an
append operation

11

Web Applications
• Server-side code to dynamically create an

HTML response
• How does this differ from a web site?
• In the HTTP protocol we've looked at so

far, each request is distinct
– Server has client IP address and User-Agent

12

Maintaining State
• HTTP is a stateless protocol
• However, to write a web application we would like

maintain state and link requests together
• The goal is to create a "session" so that the web

application can link requests to the same user
– Allows authentication
– Rich, full applications

• Three ways this can be achieved
– Embedding information in URLs
– Using hidden fields in forms
– Using cookies

13

Embedding Information in Cookies
• Cookies are state information that is passed between a

web server and a user agent
– Server initiates the start of a session by asking the user

agent to store a cookie
– Server or user agent can terminate the session

• Cookies first defined by Netscape while attempting to
create an ecommerce application

• RFC 2109 (February 1997) describes first
standardization attempt for cookies

• RFC 2965 (October 2000) tried to standardize cookies
2.0

• RFC 6265 (April 2011) describes the actual use of
cookies in the modern web and is the best reference

14

Embedding Information in Cookies
• Cookies are name-value pairs (separated

by "=")
• Server includes the "Set-Cookie" header

field in an HTTP response
– Set-Cookie: USER=foo;

• User agent will then send the cookie back
to the server using the "Cookie" header on
further requests to the server
– Cookie: USER=foo;

15

Embedding Information in Cookies
• Server can ask for multiple cookies to be

stored on the client, using multiple
"Set-Cookie" headers
– Set-Cookie: USER=foo;

– Set-Cookie: lang=en-us;

16

Embedding Information in Cookies
• Server can sent several attributes on the cookie, these

attributes are included in the Set-Cookie header line, after
the cookie itself, separated by ";"
– Path

• Specifies the path of the URI of the web server that the cookies are valid
– Domain

• Specifies the subdomains that the cookie is valid
– Expires or Max-Age

• Used to define the lifetime of the cookie, or how long the cookie should
be valid

– HttpOnly
• Specifies that the cookie should not be accessible to client-side scripts

– Secure
• Specifies that the cookie should only be sent over secure connections

17

Embedding Information in Cookies
• Example cookie headers from curl request to

www.google.com
– curl -v http://www.google.com

• Set-Cookie:
PREF=ID=db9539b9b7353be5:FF=0:TM=1421424672:LM=14
21424672:S=OqGXMZZhmeyihyKi; expires=Sun,
15-Jan-2020 16:11:12 GMT; path=/;
domain=.google.com

• Set-Cookie:
NID=67=bs1lLyrXtfdUj79IlcuqR7_MWEsyNdLWU_FpGKwlWR
9QpEzi3UrVV2UGO6LBW3sJNk9mlLcYIJns3PG3NUu-M3pT9qD
-V4F8oyyJ_UJnCGKDUDGbllL9Ha8KGufv0MUv;
expires=Sat, 18-Jul-2020 16:11:12 GMT; path=/;
domain=.google.com; HttpOnly

18

• Set-Cookie:
PREF=ID=db9539b9b7353be5:FF=0:TM=1
421424672:LM=1421424672:S=OqGXMZZh
meyihyKi; expires=Sun, 15-Oct-2019
16:11:12 GMT; path=/;
domain=.google.com
– expires is set two years in the future
– path is / which means to send this cookie to

all subpaths of www.google.com/
– domain is .google.com, which means to send

this cookie to all subdomains of .google.com
• Includes www.google.com, drive.google.com, …

19

• Set-Cookie:
NID=67=bs1lLyrXtfdUj79IlcuqR7_MWEs
yNdLWU_FpGKwlWR9QpEzi3UrVV2UGO6LBW
3sJNk9mlLcYIJns3PG3NUu-M3pT9qD-V4F
8oyyJ_UJnCGKDUDGbllL9Ha8KGufv0MUv;
expires=Sat, 18-Jul-2015 16:11:12
GMT; path=/; domain=.google.com;
HttpOnly
– HttpOnly is a security feature, which means

only send this cookie in HTTP, do not allow
JavaScript code to access the cookie

20

Embedding Information in Cookies
• The server can request the deletion of cookies

by setting the "expires" cookie attribute to a
date in the past

• User agent should then delete cookie with that
name

• Set-Cookie: USER=foo; expires=Thu,
15-Jan-2020 16:11:12 GMT;
• User agent will then delete the cookie with name "USER"

that is associated with this domain
– Proxies are not supposed to cache cookie headers

• Why?

21

Embedding Information in Cookies
• User agent is responsible for following the

server's policies
– Expiring cookies
– Restricting cookies to the proper domains and

paths
• However, user agent is free to delete

cookies at any time
– Space/storage restrictions
– User decides to clear the cookies

22

Modern Sessions
• Sessions are used to represent a time-limited interaction of a

user with a web server
• There is no concept of a "session" at the HTTP level, and

therefore it has to be implemented at the web application
level
– Using cookies
– Using URL parameters
– Using hidden form fields

• In the most common use of sessions, the server generates a
unique (random and unguessable) session ID and sends it to
the user agent as a cookie

• On subsequent requests, user agent sends the session ID to
the server, and the server uses the session ID to index the
server's session information

23

Designing Web Applications
• In the early days of the web, one would write a "web

application" by writing a custom web server that
received HTTP requests, ran custom code based on
the URL path and query data, and returned a
dynamically created HTML page
– The drawback here is that one would have to keep the web

server up-to-date with the latest HTTP changes (HTTP/1.1
spec is 175 pages)

• Generally decided that it was a good idea to separate
the concerns into a web server, which accepted HTTP
request and forwarded relevant requests to a web
application
– Could develop a web application without worrying about

HTTP

24

Web Application Overview

HTTP Request

HTTP Response

Web
Server

Client

Web
Application

25

Common Gateway Interface (CGI)

• standard protocol for web servers to execute programs
• request comes in
• web server executes CGI script
• script generates HTML output
• often under cgi-bin/ directory
• environmental variables are used to pass information to

the script
– PATH_INFO
– QUERY_STRING

26

Active Server Pages (ASP)
• Microsoft's answer to CGI scripts
• First version released in 1996
• Syntax of a program is a mix of

– Text
– HTML Tags
– Scripting directives (VBScript Jscript)
– Server-side includes (#include, like C)

• Scripting directives are interpreted and executed at
runtime

• Will be supported "a minimum of 10 years from the
Windows 8 release date"
– October 26th, 2022

27

ASP Example
<% strName = Request.Querystring("Name")

 If strName <> "" Then %>

Welcome!

<% Response.Write(strName)

 Else %>

You didn't provide a name...

<% End If %>

28

Web Application Frameworks
• As the previous Request.Querystring example

shows, frameworks were quickly created to
assist web developers in making web
applications

• Frameworks can help
– Ease extracting input to the web application

(query parameters, form parameters)
– Setting/reading cookies
– Sessions
– Security
– Database

29

Web Application Frameworks
• Important to study web application

frameworks to understand the (security)
pros and cons of each

• Some vulnerability classes are only
present in certain frameworks

30

PHP: Hypertext Preprocessor
• Scripting language that can be embedded in HTML pages to

generate dynamic content
– Basic idea is similar to JSP and ASP

• Originally released in 1995 as a series of CGI scripts as C
binaries

• PHP 3.0 released June 1998 is the closest to current PHP
– "At its peak, PHP 3.0 was installed on approximately 10% of the

web servers on the Internet" -
http://php.net/manual/en/history.php.php

• PHP 4.0 released May 2000
• PHP 5.0 released July 2004

– Added support for objects
• PHP 5.6 released August 2014 (still supported)
• PHP 7.2 released in November 2017 is the latest version

31

http://www.php.net/ChangeLog-5.php#5.6.33

PHP – Popularity

http://news.netcraft.com/archives/2013/01/31/php-just-grows-grows.html

32

source: https://w3techs.com/
33

https://w3techs.com/

PHP
• The page is parsed and interpreted on each

page request
– Can be run as CGI, so that a new copy of the

PHP interpreter is run on each request
– Or the PHP interpreter can be embedded into the

web server
• mod_php for apache

• Completely new language
– C-like in syntax
– Custom designed to build web applications
– Language grew organically over time

34

PHP – Example
<!DOCTYPE html>

<html>

 <head>

 <title>PHP Hello World</title>

 </head>

 <body>

 <?php echo '<p>Hello World</p>'; ?>

 </body>

</html>

35

PHP – Features
• Dynamically typed
• String variable substitution
• Dynamic include/require
• Superglobals
• Variable variables
• register_globals

36

PHP – String Variable Substitution
<?php

echo 'this is a simple string';

echo 'Variables do not $expand $either';

$juice = "apple";

echo "He drank some $juice juice.";

$juices = array("apple", "orange", "koolaid1" => "purple");

echo "He drank some $juices[0] juice.";

echo "He drank some $juices[1] juice.";

echo "He drank some $juices[koolaid1] juice.";

echo "This works: {$juices['koolaid1']}";

http://php.net/manual/en/language.types.string.php

37

PHP – Dynamic include/require
<?php

/**

* Front to the WordPress application. This file doesn't do anything, but loads

* wp-blog-header.php which does and tells WordPress to load the theme.

*

* @package WordPress

*/

/**

* Tells WordPress to load the WordPress theme and output it.

*

* @var bool

*/

define('WP_USE_THEMES', true);

/** Loads the WordPress Environment and Template */

require(dirname(__FILE__) . '/wp-blog-header.php');

38

wp-blog-header.php
<?php

/**

* Loads the WordPress environment and template.

*

* @package WordPress

*/

if (!isset($wp_did_header)) {

 $wp_did_header = true;

 require_once(dirname(__FILE__) . '/wp-load.php');

 wp();

 require_once(ABSPATH . WPINC . '/template-loader.php');

} 39

allow_url_include

• PHP setting to allow http and ftp urls to
include functions

• Must enable allow_url_fopen as well
– This setting allows calling fopen on a url

• Remote file is fetched, parsed, and
executed

40

PHP - Superglobals
<?php

if ('POST' != $_SERVER['REQUEST_METHOD']) {

 header('Allow: POST');

 header('HTTP/1.1 405 Method Not Allowed');

 header('Content-Type: text/plain');

 exit;

}

$comment_post_ID = isset($_POST['comment_post_ID']) ? (int) $_POST['comment_post_ID'] : 0;

$post = get_post($comment_post_ID);

if (empty($post->comment_status)) {

 /**

 * Fires when a comment is attempted on a post that does not exist.

 * @since 1.5.0

 * @param int $comment_post_ID Post ID.

 */

 do_action('comment_id_not_found', $comment_post_ID);

 exit;

}

// get_post_status() will get the parent status for attachments.

$status = get_post_status($post);

$status_obj = get_post_status_object($status);

Wordpress – wp-comments-post.php 41

PHP – Variable Variables
<?php

$a = 'hello';

$$a = 'world';

echo "$a $hello";

echo "$a ${$a}";

http://php.net/manual/en/language.variables.variable.php

42

PHP – register_globals
• "To register the EGPCS (Environment, GET,

POST, Cookie, Server) variables as global
variables."

• PHP will automatically inject variables into
your script based on input from the HTTP
request
– HTTP request variable name is the PHP variable

name and the value is the PHP variable's value
• Default enabled until 4.2.0 (April 2002)
• Deprecated as of PHP 5.3.0
• Removed as of PHP 5.4.0 43

PHP – register_globals
<html>

 <head> <title>Feedback Page</title></head>

 <body>

 <h1>Feedback Page</h1>

 <?php

 if ($name && $comment) {

 $file = fopen("user_feedback", "a");

 fwrite($file, "$name:$comment\n");

 fclose($file);

 echo "Feedback submitted\n";

 }

 ?>

 <form method=POST>

 <input type="text" name="name">

 <input type="text" name="comment">

 <input type="submit" name="submit" value="Submit">

 </form>

 </body>

</html>

44

PHP – register_globals
<?php

// define $authorized = true only if user is authenticated

if (authenticated_user()) {

 $authorized = true;

}

// Because we didn't first initialize $authorized as false, this might be

// defined through register_globals, like from GET auth.php?authorized=1

// So, anyone can be seen as authenticated!

if ($authorized) {

 include "/highly/sensitive/data.php";

}

?>

source: http://php.net/manual/en/security.globals.php
45

http://php.net/manual/en/security.globals.php

