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HTML — Forms

* A formis a component of a Web page that has
form controls, such as text fields, buttons,
checkboxes, range controls, or color pickers

— Form is a way to create a complicated HTTP request

 action attribute contains the URI to submit the
HTTP request

— Default is the current URI

 method attribute is the HTTP method to use in the
request
— GET or POST, default is GET



HTML — Forms

e Children input tags of the form are transformed into
either query URL parameters or HTTP request body

e Difference is based on the method attribute

— GET passes data in the query
— POST passes data in the body

« Data is encoded as either
“application/x-www-form-urlencoded” or
“multipart/form-data”

— GET always uses “application/x-www-form-urlencoded”
— POST depends on enctype attribute of form, default is
“application/x-www-form-urlencoded”

— "multipart/form-data" is mainly used to upload files, so we
will focus on “application/x-www-form-urlencoded”



HTML — Forms

« Data sent as name-value pairs

— Data from the input tags (as well as others)
<input type="text" name="foo0"
value="bar">

bar

 Name is taken from the input tag’'s name
attribute

* Value is taken either from the input tag's
value attribute or the user-supplied input
— Empty string if neither is present
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application/x-www-form-urlencoded

* All name-value pairs of the form are
encoded

 form-urlencoding encodes the name-value
pairs using percent encoding

— Except that spaces are translated to + instead
of %20

e foo=bar

* Multiple name-value pairs separated by
ampersand (&)
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application/x-www-form-urlencoded

<form action="http://example.com/grades/submit">
<input type="text" name="student" value="bar">
<input type="text" name="class">
<input type="text" name="grade">
<input type="submit" name="submit">

</form>
bar | Submit |
Wolf Pack csc 591 A+ | Submit |

http://example.com/grades/submit?student=Wolf+Pack&
class=csc+591&grade=A%2B&submit=Submit
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application/x-www-form-urlencoded

<form action="http://example.com/grades/submit" method="POST">
<input type="text" name="student" value="bar">
<input type="text" name="class">
<input type="text" name="grade">
<input type="submit" name="submit">
</form>

Wolf Pack csc 591 A+ !Submﬁl

POST /grades/submit HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.10; rv:34.0) Gecko/20100101 Firefox/34.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded

Content-Length: 68

student=Wolf+Pack&class=csc+591&grade=A%2B&submit=Submit
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Web Applications

It was quickly realized that the way the web was
structured allowed for returning dynamic responses

« Early web was intentionally designed this way, to allow
organizations to offer access to a database via the web

 Basis of GET and POST also confirm this

— GET "SHOULD NOT have the significance of taking an
action other than retrieval"
« Safe and idempotent

— POST

« Annotation of existing resources; posting a message to a bulletin
board, newsgroup, mailing list, or similar group of articles,
providing a block of data, such as the result of submitting a form,
to a data-handling process; and extending a database through an

append operation
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Web Applications

» Server-side code to dynamically create an
HTML response

« How does this differ from a web site?

* In the HT TP protocol we've looked at so
far, each request is distinct
— Server has client IP address and User-Agent

12
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Maintaining State

HTTP is a stateless protocol

However, to write a web application we would like
maintain state and link requests together

The goal is to create a "session" so that the web
application can link requests to the same user

— Allows authentication

— Rich, full applications

Three ways this can be achieved

— Embedding information in URLs

— Using hidden fields in forms

— Using cookies

13
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Embedding Information in Cookies

« Cookies are state information that is passed between a
web server and a user agent

— Server initiates the start of a session by asking the user
agent to store a cookie

— Server or user agent can terminate the session

« Cookies first defined by Netscape while attempting to
create an ecommerce application

« RFC 2109 (February 1997) describes first
standardization attempt for cookies

. 2RI(:)C 2965 (October 2000) tried to standardize cookies

« RFC 6265 (April 2011) describes the actual use of
cookies in the modern web and is the best reference

14
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Embedding Information in Cookies

» Cookies are name-value pairs (separated
by ||=|I

» Server includes the "Set-Cookie" header
field in an HTTP response

— Set-Cookie: USER=fo00;

» User agent will then send the cookie back
to the server using the "Cookie" header on
further requests to the server
— Cookie: USER=foo0;

15
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Embedding Information in Cookies

» Server can ask for multiple cookies to be
stored on the client, using multiple
"Set-Cookie" headers
— Set-Cookie: USER=fo00;

— Set-Cookie: lang=en-us;

16
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Embedding Information in Cookies

« Server can sent several attributes on the cookie, these
attributes are included in the Set-Cookie header line, after
the cookie itself, separated by "; "

— Path
» Specifies the path of the URI of the web server that the cookies are valid

— Domain
» Specifies the subdomains that the cookie is valid
— Expires or Max-Age
. gsed Ii_:g define the lifetime of the cookie, or how long the cookie should
e vali

— HttpOnly

« Specifies that the cookie should not be accessible to client-side scripts

— Secure
» Specifies that the cookie should only be sent over secure connections

17
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Embedding Information in Cookies

« Example cookie headers from curl request to
www.google.com
— curl -v http://www.google.com

 Set-Cookie:
PREF=ID=db9539b9b7353be5:FF=0:TM=1421424672:LM=14
21424672 :5=09GXMZZhmeyihyKi; expires=Sun,
15-Jan-2020 16:11:12 GMT; path=/;
domain=.google.com

 Set-Cookie:
NID=67=bsl1llLyrXtfdUj79I1cuqR7_ MWEsSyNdLWU FpGKwlWR
9QpEzi3UrVvV2UGO6LBW3sINkOmlLcYIJIns3PG3NUu-M3pT9gD
-V4F8oyyJ UJInCGKDUDGb11L9Ha8KGufveMUv;
expires=Sat, 18-Jul-2020 16:11:12 GMT; path=/;
domain=.google.com; HttpOnly

18
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e Set-Cookie:
|PREFEFD=db9539b9b7353be5:FF=@:TM=1
421424672 :1LM=1421424672 :5=0qGXMZZh

meyihyKi;”exp1res=Sun, IS—UCT—ZGT§|
:11:12 GMT; |

Eghain=.google.com

— expires is set two years in the future

— path is/ which means to send this cookie to
all subpaths of www.google.com/

— domain Is .google.com, which means to send
this cookie to all subdomains of .google.com
* Includes www.google.com, drive.google.com, ...

19
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e Set-Cookie:
NID=67=bs1llLyrXtfdUj79I1cugR7 MWEs
yNdLWU FpGKwlWR9QpEzi3UrVV2UGO6LBW
3sINkOm1lLcYIJns3PG3NUu-M3pT9gD-V4F
8oyyJ UJInCGKDUDGb11L9Ha8KGufveOMUyv ;
expires=Sat, 18-Jul-2015 16:11:12
GMT; path=/; domain=.google.com;
HttpOnly

— HttpOnly is a security feature, which means
only send this cookie in HTTP, do not allow
JavaScript code to access the cookie
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Embedding Information in Cookies

* The server can request the deletion of cookies
by setting the "expires" cookie attribute to a
date in the past

* User agent should then delete cookie with that
name

 Set-Cookie: USER=foo; expires=Thu,
15-Jan-2020 16:11:12 GMT,;

« User agent will then delete the cookie with name "USER"
that is associated with this domain

— Proxies are not supposed to cache cookie headers
¢ Why?

21
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Embedding Information in Cookies

» User agent is responsible for following the
server's policies
— EXpiring cookies
— Restricting cookies to the proper domains and
paths

 However, user agent is free to delete
cookies at any time
— Space/storage restrictions
— User decides to clear the cookies

22
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Modern Sessions

* Sessions are used to represent a time-limited interaction of a
user with a web server

* There is no concept of a "session" at the HTTP level, and
therefore it has to be implemented at the web application
level

— Using cookies
— Using URL parameters
— Using hidden form fields

* In the most common use of sessions, the server generates a
unique (random and unguessable) session ID and sends it to
the user agent as a cookie

« On subsequent requests, user agent sends the session ID to
the server, and the server uses the session ID to index the
server's session information
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Designing Web Applications

 In the early days of the web, one would write a "web
application"” by writing a custom web server that
received HTTP requests, ran custom code based on
the URL path and query data, and returned a
dynamically created HTML page

— The drawback here is that one would have to keep the web
server up-to-date with the latest HTTP changes (HTTP/1.1

spec is 175 pages)

« Generally decided that it was a good idea to separate
the concerns into a web server, which accepted HTTP
request and forwarded relevant requests to a web
application

— Could develop a web application without worrying about
HTTP

24



Web Application Overview

HTTP Request

—
= HTTP Response

Web
Application

Web
Server

Client
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Common Gateway Interface (CGl)

« standard protocol for web servers to execute programs
* request comes in

« web server executes CGl script

 script generates HTML output

« often under cgi-bin/ directory

« environmental variables are used to pass information to

the script
- PATH_INFO
- QUERY_STRING
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Active Server Pages (ASP)

* Microsoft's answer to CGl scripts
* First version released in 1996
« Syntax of a program is a mix of
— Text
— HTML Tags
— Scripting directives (VBScript Jscript)
— Server-side includes (#include, like C)

« Scripting directives are interpreted and executed at
runtime

« Will be supported "a minimum of 10 years from the
Windows 8 release date”
— October 26™", 2022

27



ASP Example

<% strName = Request.Querystring("Name™)
If strName <> "" Then %>

<% Response.Write(strName)
Else %>

<b>You didn't provide a name...</b>
<% End If %>

28



Web Application Frameworks

* As the previous Request.Querystring example
shows, frameworks were quickly created to
assist web developers in making web
applications

* Frameworks can help

— Ease extracting input to the web application
(Qquery parameters, form parameters)

— Setting/reading cookies
— Sessions

— Security

— Database

29



Web Application Frameworks

* Important to study web application
frameworks to understand the (security)
pros and cons of each

* Some vulnerability classes are only
present in certain frameworks

30



PHP: Hypertext Preprocessor

« Scripting language that can be embedded in HTML pages to
generate dynamic content
— Basic idea is similar to JSP and ASP

 Originally released in 1995 as a series of CGl scripts as C
binaries

 PHP 3.0 released June 1998 is the closest to current PHP

— "At its peak, PHP 3.0 was installed on approximately 10% of the
web servers on the Internet" -
http://php.net/manual/en/history.php.php

 PHP 4.0 released May 2000

 PHP 5.0 released July 2004
— Added support for objects

 PHP 5.6 released August 2014 (still supported)
« PHP 7.2 released in November 2017 is the latest version

31
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PHP — Popularity

PHP Trend (Logarithmic Scale)
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http://news.netcraft.com/archives/2013/01/31/php-just-grows-grows.html
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Most popular server-side programming languages

change since

© W3Techs.com usage 1 December 2017
1. PHP 83.1% +0.1%

2. ASP.NET 14.1% -0.1%

3. Java 2.5%

4. static files 1.4%
5. ColdFusion 0.6%

percentages of sites

source: https://w3techs.com/
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* The page is parsed and interpreted on each
page request

— Can be run as CGl, so that a new copy of the
PHP interpreter is run on each request

— Or the PHP interpreter can be embedded into the
web server
 mod_php for apache
« Completely new language
— C-like in syntax
— Custom designed to build web applications
— Language grew organically over time
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PHP — Example

<IDOCTYPE html>
<html>
<head>
<title>PHP Hello World</title>
</head>
<body>
‘<?php echo '<p>Hello World</p>'; ?>‘
</body>
</html>

35



PHP — Features

* Dynamically typed

» String variable substitution
* Dynamic include/require
» Superglobals

 Variable variables

* register globals
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PHP — String Variable Substitution

<?php
echo 'this is a simple string';

echo 'Variables do not $expand $either’;

$juice = "apple”;

echo "He drank some $juice juice.";

$juices = array("apple", "orange", "koolaidl" => "purple");
echo "He drank some $juices[@] juice.";
echo "He drank some $juices[1] juice.";

echo "He drank some $juices[koolaidl] juice.";

echo "This works: {$juices['koolaidl']}";

http://php.net/manual/en/language.types.string.php
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PHP — Dynamic include/require

<?php

/>I<>I<

* Front to the WordPress application. This file doesn't do anything, but loads
* wp-blog-header.php which does and tells WordPress to load the theme.

*

* @package WordPress
*/

/>I<>I<
* Tells WordPress to load the WordPress theme and output it.

*

* @var bool
*/
define( 'WP_USE_THEMES', true);

/** Loads the WordPress Environment and Template */

require( dirname( _ FILE__ ) . '/wp-blog-header.php' );
38



wp-blog-header.php

<?php
/>I<>I<

* Loads the WordPress environment and template.

*

* @package WordPress
*/

if ( lisset($wp_did header) ) {
$wp did_header = true;
require_once( dirname(__FILE ) . "/wp-load.php' );
wp();

require_once( ABSPATH . WPINC . '/template-loader.php' );



allow url include

* PHP setting to allow http and ftp urls to
include functions

* Must enable allow url fopen as well
— This setting allows calling fopen on a url

 Remote file is fetched, parsed, and
executed

40
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PHP - Superglobals

<?php
if ( 'POST' != ¢ SERVER['REQUEST METHOD'] ) {
header('Allow: POST');
header('HTTP/1.1 405 Method Not Allowed');
header('Content-Type: text/plain');
exit;
}
$comment_post ID = isset($_POST['comment post ID']) ? (int) $_POST['comment_post ID'] : ©;

$post = get_post($comment_post_ID);
if ( empty( $post->comment_status ) ) {
/x*
* Fires when a comment is attempted on a post that does not exist.
* @since 1.5.0
* @param int $comment post ID Post ID.
*/
do_action( 'comment_id_not_found', $comment_post_ID );
exit;
}
// get_post_status() will get the parent status for attachments.
$status = get_post_status($post);
$status_obj = get_post_status_object($status);

Wordpress — wp-comments-post.php 41



PHP — VVariable Variables

<?php
$a = 'hello’';
$$a = 'world';

echo "$a $hello”;
echo "$a ${%a}l";

http://php.net/manual/en/language.variables.variable.php
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PHP — register globals

* "To register the EGPCS (Environment, GET,
POST, Cookie, Server) variables as global
variables."

* PHP will automatically inject variables into
your script based on input from the HTTP
request

— HTTP request variable name is the PHP variable
name and the value is the PHP variable's value

» Default enabled until 4.2.0 (April 2002)
* Deprecated as of PHP 5.3.0
 Removed as of PHP 5.4.0 43




PHP — register globals

<html>
<head> <title>Feedback Page</title></head>
<body>
<hl>Feedback Page</hl>
<?php
if ($name && $comment) {
$file = fopen("user_feedback", "a");
fwrite($file, "$name:$comment\n");
fclose($file);
echo "Feedback submitted\n";
}
?>
<form method=POST>
<input type="text" name="name"><br>
<input type="text" name="comment"><br>
<input type="submit" name="submit" value="Submit">
</form>
</body>
</html>
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PHP — register globals

<?php
// define $authorized = true only if user is authenticated
if (authenticated user()) {

$authorized = true;

// Because we didn't first initialize $authorized as false, this might be
// defined through register globals, like from GET auth.php?authorized=1
// SO0, anyone can be seen as authenticated!
if ($authorized) {

include "/highly/sensitive/data.php";

source: http://php.net/manual/en/security.globals.php

45


http://php.net/manual/en/security.globals.php

