NC STATE UNIVERSITY

CSC 405
Computer Security

Web Security

Alexandros Kapravelos
akaprav@ncsu.edu

(Derived from slides by Giovanni Vigna and Adam Doupe)

NC STATE UNIVERSITY

https://airma.s

Secure | https://

194 playersonline

AIR

GAME
Closest Free For All

PLAY AS GUEST SIGN IN

H ol
More games 2t PN

d o3l Discussion Privacy Contact

NC STATE UNIVERSITY

»
f De:tmﬁdihn-ﬁ D Helwnafais
F

¥ B Drisissafiam

https://docs.google.com/file/d/1cbYXdz0kgagSPWWCNwue8HGXCaMr1r25/preview

NC STATE UNIVERSITY

How would you defend against this
attack?

http://go.ncsu.edu/airmash

http://go.ncsu.edu/airmash

HTML — Forms

* A formis a component of a Web page that has
form controls, such as text fields, buttons,
checkboxes, range controls, or color pickers

— Form is a way to create a complicated HTTP request

 action attribute contains the URI to submit the
HTTP request

— Default is the current URI

 method attribute is the HTTP method to use in the
request
— GET or POST, default is GET

HTML — Forms

e Children input tags of the form are transformed into
either query URL parameters or HTTP request body

e Difference is based on the method attribute

— GET passes data in the query
— POST passes data in the body

« Data is encoded as either
“application/x-www-form-urlencoded” or
“multipart/form-data”

— GET always uses “application/x-www-form-urlencoded”
— POST depends on enctype attribute of form, default is
“application/x-www-form-urlencoded”

— "multipart/form-data" is mainly used to upload files, so we
will focus on “application/x-www-form-urlencoded”

HTML — Forms

« Data sent as name-value pairs

— Data from the input tags (as well as others)
<input type="text" name="foo0"
value="bar">

bar

 Name is taken from the input tag’'s name
attribute

* Value is taken either from the input tag's
value attribute or the user-supplied input
— Empty string if neither is present

NC STATE UNIVERSITY

application/x-www-form-urlencoded

* All name-value pairs of the form are
encoded

 form-urlencoding encodes the name-value
pairs using percent encoding

— Except that spaces are translated to + instead
of %20

e foo=bar

* Multiple name-value pairs separated by
ampersand (&)

NC STATE UNIVERSITY

application/x-www-form-urlencoded

<form action="http://example.com/grades/submit">
<input type="text" name="student" value="bar">
<input type="text" name="class">
<input type="text" name="grade">
<input type="submit" name="submit">

</form>
bar | Submit |
Wolf Pack csc 591 A+ | Submit |

http://example.com/grades/submit?student=Wolf+Pack&
class=csc+591&grade=A%2B&submit=Submit

NC STATE UNIVERSITY

application/x-www-form-urlencoded

<form action="http://example.com/grades/submit" method="POST">
<input type="text" name="student" value="bar">
<input type="text" name="class">
<input type="text" name="grade">
<input type="submit" name="submit">
</form>

Wolf Pack csc 591 A+ !Submﬁl

POST /grades/submit HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.10; rv:34.0) Gecko/20100101 Firefox/34.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded

Content-Length: 68

student=Wolf+Pack&class=csc+591&grade=A%2B&submit=Submit

10

Web Applications

It was quickly realized that the way the web was
structured allowed for returning dynamic responses

« Early web was intentionally designed this way, to allow
organizations to offer access to a database via the web

 Basis of GET and POST also confirm this

— GET "SHOULD NOT have the significance of taking an
action other than retrieval"
« Safe and idempotent

— POST

« Annotation of existing resources; posting a message to a bulletin
board, newsgroup, mailing list, or similar group of articles,
providing a block of data, such as the result of submitting a form,
to a data-handling process; and extending a database through an

append operation

11

Web Applications

» Server-side code to dynamically create an
HTML response

« How does this differ from a web site?

* In the HT TP protocol we've looked at so
far, each request is distinct
— Server has client IP address and User-Agent

12

NC STATE UNIVERSITY

Maintaining State

HTTP is a stateless protocol

However, to write a web application we would like
maintain state and link requests together

The goal is to create a "session" so that the web
application can link requests to the same user

— Allows authentication

— Rich, full applications

Three ways this can be achieved

— Embedding information in URLs

— Using hidden fields in forms

— Using cookies

13

NC STATE UNIVERSITY

Embedding Information in Cookies

« Cookies are state information that is passed between a
web server and a user agent

— Server initiates the start of a session by asking the user
agent to store a cookie

— Server or user agent can terminate the session

« Cookies first defined by Netscape while attempting to
create an ecommerce application

« RFC 2109 (February 1997) describes first
standardization attempt for cookies

. 2RI(:)C 2965 (October 2000) tried to standardize cookies

« RFC 6265 (April 2011) describes the actual use of
cookies in the modern web and is the best reference

14

NC STATE UNIVERSITY

Embedding Information in Cookies

» Cookies are name-value pairs (separated
by ||=|I

» Server includes the "Set-Cookie" header
field in an HTTP response

— Set-Cookie: USER=fo00;

» User agent will then send the cookie back
to the server using the "Cookie" header on
further requests to the server
— Cookie: USER=foo0;

15

NC STATE UNIVERSITY

Embedding Information in Cookies

» Server can ask for multiple cookies to be
stored on the client, using multiple
"Set-Cookie" headers
— Set-Cookie: USER=fo00;

— Set-Cookie: lang=en-us;

16

NC STATE UNIVERSITY

Embedding Information in Cookies

« Server can sent several attributes on the cookie, these
attributes are included in the Set-Cookie header line, after
the cookie itself, separated by "; "

— Path
» Specifies the path of the URI of the web server that the cookies are valid

— Domain
» Specifies the subdomains that the cookie is valid
— Expires or Max-Age
. gsed Ii_:g define the lifetime of the cookie, or how long the cookie should
e vali

— HttpOnly

« Specifies that the cookie should not be accessible to client-side scripts

— Secure
» Specifies that the cookie should only be sent over secure connections

17

NC STATE UNIVERSITY

Embedding Information in Cookies

« Example cookie headers from curl request to
www.google.com
— curl -v http://www.google.com

 Set-Cookie:
PREF=ID=db9539b9b7353be5:FF=0:TM=1421424672:LM=14
21424672 :5=09GXMZZhmeyihyKi; expires=Sun,
15-Jan-2020 16:11:12 GMT; path=/;
domain=.google.com

 Set-Cookie:
NID=67=bsl1llLyrXtfdUj79I1cuqR7_ MWEsSyNdLWU FpGKwlWR
9QpEzi3UrVvV2UGO6LBW3sINkOmlLcYIJIns3PG3NUu-M3pT9gD
-V4F8oyyJ UJInCGKDUDGb11L9Ha8KGufveMUv;
expires=Sat, 18-Jul-2020 16:11:12 GMT; path=/;
domain=.google.com; HttpOnly

18

NC STATE UNIVERSITY

e Set-Cookie:
|PREFEFD=db9539b9b7353be5:FF=@:TM=1
421424672 :1LM=1421424672 :5=0qGXMZZh

meyihyKi;”exp1res=Sun, IS—UCT—ZGT§|
:11:12 GMT; |

Eghain=.google.com

— expires is set two years in the future

— path is/ which means to send this cookie to
all subpaths of www.google.com/

— domain Is .google.com, which means to send
this cookie to all subdomains of .google.com
* Includes www.google.com, drive.google.com, ...

19

NC STATE UNIVERSITY

e Set-Cookie:
NID=67=bs1llLyrXtfdUj79I1cugR7 MWEs
yNdLWU FpGKwlWR9QpEzi3UrVV2UGO6LBW
3sINkOm1lLcYIJns3PG3NUu-M3pT9gD-V4F
8oyyJ UJInCGKDUDGb11L9Ha8KGufveOMUyv ;
expires=Sat, 18-Jul-2015 16:11:12
GMT; path=/; domain=.google.com;
HttpOnly

— HttpOnly is a security feature, which means
only send this cookie in HTTP, do not allow
JavaScript code to access the cookie

20

Embedding Information in Cookies

* The server can request the deletion of cookies
by setting the "expires" cookie attribute to a
date in the past

* User agent should then delete cookie with that
name

 Set-Cookie: USER=foo; expires=Thu,
15-Jan-2020 16:11:12 GMT,;

« User agent will then delete the cookie with name "USER"
that is associated with this domain

— Proxies are not supposed to cache cookie headers
¢ Why?

21

NC STATE UNIVERSITY

Embedding Information in Cookies

» User agent is responsible for following the
server's policies
— EXpiring cookies
— Restricting cookies to the proper domains and
paths

 However, user agent is free to delete
cookies at any time
— Space/storage restrictions
— User decides to clear the cookies

22

NC STATE UNIVERSITY

Modern Sessions

* Sessions are used to represent a time-limited interaction of a
user with a web server

* There is no concept of a "session" at the HTTP level, and
therefore it has to be implemented at the web application
level

— Using cookies
— Using URL parameters
— Using hidden form fields

* In the most common use of sessions, the server generates a
unique (random and unguessable) session ID and sends it to
the user agent as a cookie

« On subsequent requests, user agent sends the session ID to
the server, and the server uses the session ID to index the
server's session information

23

Designing Web Applications

 In the early days of the web, one would write a "web
application"” by writing a custom web server that
received HTTP requests, ran custom code based on
the URL path and query data, and returned a
dynamically created HTML page

— The drawback here is that one would have to keep the web
server up-to-date with the latest HTTP changes (HTTP/1.1

spec is 175 pages)

« Generally decided that it was a good idea to separate
the concerns into a web server, which accepted HTTP
request and forwarded relevant requests to a web
application

— Could develop a web application without worrying about
HTTP

24

Web Application Overview

HTTP Request

—
= HTTP Response

Web
Application

Web
Server

Client

25

NC STATE UNIVERSITY

Common Gateway Interface (CGl)

« standard protocol for web servers to execute programs
* request comes in

« web server executes CGl script

 script generates HTML output

« often under cgi-bin/ directory

« environmental variables are used to pass information to

the script
- PATH_INFO
- QUERY_STRING

26

Active Server Pages (ASP)

* Microsoft's answer to CGl scripts
* First version released in 1996
« Syntax of a program is a mix of
— Text
— HTML Tags
— Scripting directives (VBScript Jscript)
— Server-side includes (#include, like C)

« Scripting directives are interpreted and executed at
runtime

« Will be supported "a minimum of 10 years from the
Windows 8 release date”
— October 26™", 2022

27

ASP Example

<% strName = Request.Querystring("Name™)
If strName <> "" Then %>

<% Response.Write(strName)
Else %>

You didn't provide a name...
<% End If %>

28

Web Application Frameworks

* As the previous Request.Querystring example
shows, frameworks were quickly created to
assist web developers in making web
applications

* Frameworks can help

— Ease extracting input to the web application
(Qquery parameters, form parameters)

— Setting/reading cookies
— Sessions

— Security

— Database

29

Web Application Frameworks

* Important to study web application
frameworks to understand the (security)
pros and cons of each

* Some vulnerability classes are only
present in certain frameworks

30

PHP: Hypertext Preprocessor

« Scripting language that can be embedded in HTML pages to
generate dynamic content
— Basic idea is similar to JSP and ASP

 Originally released in 1995 as a series of CGl scripts as C
binaries

 PHP 3.0 released June 1998 is the closest to current PHP

— "At its peak, PHP 3.0 was installed on approximately 10% of the
web servers on the Internet" -
http://php.net/manual/en/history.php.php

 PHP 4.0 released May 2000

 PHP 5.0 released July 2004
— Added support for objects

 PHP 5.6 released August 2014 (still supported)
« PHP 7.2 released in November 2017 is the latest version

31

http://www.php.net/ChangeLog-5.php#5.6.33

PHP — Popularity

PHP Trend (Logarithmic Scale)

1,000,000,000 B Hostnames

I-I E TC MF T B Active Sites

| IP Addresses

100,000,000 B Computers

10.000.000

1,000,000

100,000

Jan 2002 Jan 2004 Jan 2006 Jan 2008 Jan 2010 Jan 2012

http://news.netcraft.com/archives/2013/01/31/php-just-grows-grows.html

32

NC STATE UNIVERSITY

Most popular server-side programming languages

change since

© W3Techs.com usage 1 December 2017
1. PHP 83.1% +0.1%

2. ASP.NET 14.1% -0.1%

3. Java 2.5%

4. static files 1.4%
5. ColdFusion 0.6%

percentages of sites

source: https://w3techs.com/

33

https://w3techs.com/

NC STATE UNIVERSITY

* The page is parsed and interpreted on each
page request

— Can be run as CGl, so that a new copy of the
PHP interpreter is run on each request

— Or the PHP interpreter can be embedded into the
web server
 mod_php for apache
« Completely new language
— C-like in syntax
— Custom designed to build web applications
— Language grew organically over time

34

PHP — Example

<IDOCTYPE html>
<html>
<head>
<title>PHP Hello World</title>
</head>
<body>
‘<?php echo '<p>Hello World</p>'; ?>‘
</body>
</html>

35

PHP — Features

* Dynamically typed

» String variable substitution
* Dynamic include/require
» Superglobals

 Variable variables

* register globals

36

PHP — String Variable Substitution

<?php
echo 'this is a simple string';

echo 'Variables do not $expand $either’;

$juice = "apple”;

echo "He drank some $juice juice.";

$juices = array("apple", "orange", "koolaidl" => "purple");
echo "He drank some $juices[@] juice.";
echo "He drank some $juices[1] juice.";

echo "He drank some $juices[koolaidl] juice.";

echo "This works: {$juices['koolaidl']}";

http://php.net/manual/en/language.types.string.php

37

NC STATE UNIVERSITY

PHP — Dynamic include/require

<?php

/>I<>I<

* Front to the WordPress application. This file doesn't do anything, but loads
* wp-blog-header.php which does and tells WordPress to load the theme.

*

* @package WordPress
*/

/>I<>I<
* Tells WordPress to load the WordPress theme and output it.

*

* @var bool
*/
define('WP_USE_THEMES', true);

/** Loads the WordPress Environment and Template */

require(dirname(_ FILE__) . '/wp-blog-header.php');
38

wp-blog-header.php

<?php
/>I<>I<

* Loads the WordPress environment and template.

*

* @package WordPress
*/

if (lisset($wp_did header)) {
$wp did_header = true;
require_once(dirname(__FILE) . "/wp-load.php');
wp();

require_once(ABSPATH . WPINC . '/template-loader.php');

allow url include

* PHP setting to allow http and ftp urls to
include functions

* Must enable allow url fopen as well
— This setting allows calling fopen on a url

 Remote file is fetched, parsed, and
executed

40

NC STATE UNIVERSITY

PHP - Superglobals

<?php
if ('POST' != ¢ SERVER['REQUEST METHOD']) {
header('Allow: POST');
header('HTTP/1.1 405 Method Not Allowed');
header('Content-Type: text/plain');
exit;
}
$comment_post ID = isset($_POST['comment post ID']) ? (int) $_POST['comment_post ID'] : ©;

$post = get_post($comment_post_ID);
if (empty($post->comment_status)) {
/x*
* Fires when a comment is attempted on a post that does not exist.
* @since 1.5.0
* @param int $comment post ID Post ID.
*/
do_action('comment_id_not_found', $comment_post_ID);
exit;
}
// get_post_status() will get the parent status for attachments.
$status = get_post_status($post);
$status_obj = get_post_status_object($status);

Wordpress — wp-comments-post.php 41

PHP — VVariable Variables

<?php
$a = 'hello’';
$$a = 'world';

echo "$a $hello”;
echo "$a ${%a}l";

http://php.net/manual/en/language.variables.variable.php

42

NC STATE UNIVERSITY

PHP — register globals

* "To register the EGPCS (Environment, GET,
POST, Cookie, Server) variables as global
variables."

* PHP will automatically inject variables into
your script based on input from the HTTP
request

— HTTP request variable name is the PHP variable
name and the value is the PHP variable's value

» Default enabled until 4.2.0 (April 2002)
* Deprecated as of PHP 5.3.0
 Removed as of PHP 5.4.0 43

PHP — register globals

<html>
<head> <title>Feedback Page</title></head>
<body>
<hl>Feedback Page</hl>
<?php
if ($name && $comment) {
$file = fopen("user_feedback", "a");
fwrite($file, "$name:$comment\n");
fclose($file);
echo "Feedback submitted\n";
}
?>
<form method=POST>
<input type="text" name="name">

<input type="text" name="comment">

<input type="submit" name="submit" value="Submit">
</form>
</body>
</html>

44

PHP — register globals

<?php
// define $authorized = true only if user is authenticated
if (authenticated user()) {

$authorized = true;

// Because we didn't first initialize $authorized as false, this might be
// defined through register globals, like from GET auth.php?authorized=1
// SO0, anyone can be seen as authenticated!
if ($authorized) {

include "/highly/sensitive/data.php";

source: http://php.net/manual/en/security.globals.php

45

http://php.net/manual/en/security.globals.php

