
CSC 405
Computer Security

Reverse Engineering
Part 2

Alexandros Kapravelos
akaprav@ncsu.edu

Anti-Disassembly
• Against static analysis (disassembler)

• Confusion attack
– targets linear sweep disassembler
– insert data (or junk) between instructions and

let control flow jump over this garbage
– disassembler gets desynchronized with true instructions

Anti-Disassembly
• Advanced confusion attack

– targets recursive traversal disassembler
– replace direct jumps (calls) by indirect ones (branch functions)
– force disassembler to revert to linear sweep, then use previous

attack

Anti-Debugging
• Against dynamic analysis (debugger)

– debugger presence detection techniques
• API based
• thread/process information
• registry keys, process names, …

– exception-based techniques

– breakpoint detection
• software breakpoints
• hardware breakpoints

– timing-based and latency detection

Anti-Debugging
Debugger presence checks

• Linux
– a process can be traced only once

if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0)
 exit(1);

• Windows
– API calls

OutputDebugString()
IsDebuggerPresent()

 ... many more ...

– thread control block
• read debugger present bit directly from process memory

Anti-Debugging
Exception-based techniques

SetUnhandledExceptionFilter()

After calling this function, if an exception occurs in a process
that is not being debugged, and the exception makes it to the
unhandled exception filter, that filter will call the exception filter
function specified by the lpTopLevelExceptionFilter parameter. [
source: MSDN]

– Idea
set the top-level exception filter, raise an unhandled exception,

continue in the exception filter function

Anti-Debugging
Breakpoint detection

– detect software breakpoints
• look for int 0x03 instructions

if ((*(unsigned *)((unsigned)<addr>+3) & 0xff)==0xcc)
 exit(1);

• checksum the code
if (checksum(text_segment) != valid_checksum)
 exit(1);

– detect hardware breakpoints
• use the hardware breakpoint registers for computation

Reverse Engineering
• Goals

– focused exploration
– deep understanding

• Case study
– copy protection mechanism
– program expects name and serial number
– when serial number is incorrect, program exits
– otherwise, we are fine

• Changes in the binary
– can be done with hexedit or radare2

Reverse Engineering
• Focused exploration

– bypass check routines
– locate the point where the failed check is reported
– find the routine that checks the password
– find the location where the results of this routine are used
– slightly modify the jump instruction

• Deep understanding
– key generation
– locate the checking routine
– analyze the disassembly
– run through a few different cases with the debugger
– understand what check code does and develop code that

creates appropriate keys

Malicious Code Analysis
Static analysis vs. dynamic analysis

• Static analysis
– code is not executed
– all possible branches can be examined (in theory)
– quite fast

• Problems of static analysis
– undecidable in general case, approximations necessary
– binary code typically contains very little information

• functions, variables, type information, …
– disassembly difficult (particularly for Intel x86 architecture)
– obfuscated code, packed code
– self-modifying code

Malicious Code Analysis
• Dynamic analysis

– code is executed
– sees instructions that are actually executed

• Problems of dynamic analysis
– single path (execution trace) is examined
– analysis environment possibly not invisible
– analysis environment possibly not comprehensive

• Possible analysis environments
– instrument program
– instrument operating system
– instrument hardware

Malicious Code Analysis
• Instrument program

– analysis operates in same address space as sample
– manual analysis with debugger
– Detours (Windows API hooking mechanism)

– binary under analysis is modified
• breakpoints are inserted
• functions are rewritten
• debug registers are used

– not invisible, malware can detect analysis
– can cause significant manual effort

Malicious Code Analysis
• Instrument operating system

– analysis operates in OS where sample is run
– Windows system call hooks

– invisible to (user-mode) malware
– can cause problems when malware runs in OS kernel
– limited visibility of activity inside program

• cannot set function breakpoints

• Virtual machines
– allow to quickly restore analysis environment
– might be detectable (x86 virtualization problems)

Malicious Code Analysis
• Instrument hardware

– provide virtual hardware (processor) where sample
can execute (sometimes including OS)

– software emulation of executed instructions
– analysis observes activity “from the outside”

– completely transparent to sample (and guest OS)
– operating system environment needs to be provided
– limited environment could be detected
– complete environment is comprehensive, but slower

– Anubis uses this approach

Stealthiness
• One obvious difference between machine and emulator

→ time of execution

• Time could be used to detect such system
→ emulation allows to address these issues
→ certain instructions can be dynamically modified to return

innocently looking results
→ for example, RTC (real-time clock) - RTDSC instruction

Challenges
• Reverse engineering is difficult by itself

– a lot of data to handle
– low level information
– creative process, experience very valuable
– tools can only help so much

• Additional challenges
– compiler code optimization
– code obfuscation
– anti-disassembly techniques
– anti-debugging techniques

Your Security Zen
A Deep Dive into Database

Attacks [Part III]: Why Scarlett

Johansson’s Picture Got My

Postgres Database to Start

Mining Monero

source: https://www.imperva.com/blog/2018/03/deep-dive-database-attacks-scarlett-johanssons-picture-used-for-crypto-mining-on-postgre-database/

