
CSC 405
Computer Security

Web Security

Alexandros Kapravelos
akaprav@ncsu.edu

(Derived from slides by Giovanni Vigna and Adam Doupe)

1

Web Security homework

2

• Currently being setup & tested
• Three parts

– 10 levels of web security issues
– Two bonus parts

• Pentest OpenMRS for a research project
• Secret assignment!

– The bonus parts are your last chance to recover if you didn’t do
well in previous assignments!

• 3 weeks to finish it
– but START EARLY
– this will help you do better in HackPack CTF on 4/12

Logistics

• No class next week (4/9)
– but there will be an online class uploaded on mediasite
– use the lecture time for solving web security levels before the

CTF
• Hackpack CTF on 04/12

– This counts as your sixth and final homework
• Do not forget about the final exam on 04/16

– Same format as the midterm

3

4
source: https://xkcd.com/327/

https://xkcd.com/327/

5
source: https://xkcd.com/327/

https://xkcd.com/327/

6
source: https://xkcd.com/327/

https://xkcd.com/327/

7
source: https://xkcd.com/327/

https://xkcd.com/327/

SQL Injection
• SQL injection might happen when queries are built using the

parameters provided by the users
– $query = “select ssn from employees where

name = ‘” + username + “’ ”

• By using special characters such as ‘ (tick), -- (comment), +
(add), @variable, @@variable (server internal variable), %
(wildcard), it is possible to:
– Modify queries in an unexpected way
– Probe the database schema and find out about stored procedures
– Run commands (e.g., using xp_commandshell in MS SQL Server)

8

 An Example Web Page

9

The Form
<form action="login.asp" method="post">

 <table>

 <tr><td>Username:</td>

 <td><input type="text" name="username"></td></tr>

 <tr><td>Password:</td>

 <td><input type=password name="password"></td></tr>

 </table>

 <input type="submit" value="Submit">

 <input type="reset" value="Reset">

</form>

10

The Login Script
… <% function Login(connection) {
 var username = Request.form("username");
 var password = Request.form("password");
 var rso = Server.CreateObject("ADODB.Recordset");
 var sql = "select * from pubs.guest.sa_table \

 where username = ‘” + username + "‘ and \
 password = ‘" + password + "‘";

 rso.open(sql, connection); //perform query
 if (rso.EOF) //if record set empty, deny access
 { rso.close();
 %> <center>ACCESS DENIED</center> <%
 } else { //else grant access
 %> <center>ACCESS GRANTED</center> <%
 // do stuff here ...

11

The ‘ or 1=1 -- Technique
• Given the SQL query string:

 "select * from pubs.guest.sa_table \
 where username = ‘” + username + "‘ and \
 password = ‘" + password + "‘";

• By providing the following username:
‘ or 1=1 --

• the user name (and any password) results in the string:
select * from sa_table where username=‘’ or 1=1 --’ and
password= ‘’
– The conditional statement “username=‘’ or 1=1 --” is true whether

or not username is equal to ‘’
– The “--” makes sure that the rest of the SQL statement is interpreted

as a comment and therefore and password =‘’ is not evaluated

12

Injecting SQL Into Different Types of
Queries

• SQL injection can modify any type of query such as
– SELECT statements

• SELECT * FROM accounts WHERE user=‘${u}’ AND pass=‘${p}’
– INSERT statements

• INSERT INTO accounts (user, pass) VALUES(‘${u}’, ‘${p}’)
– Note that in this case one has to figure out how many values to insert

– UPDATE statements
• UPDATE accounts SET pass=‘${np}’ WHERE user= ‘${u}’ AND

pass=‘${p}’
– DELETE statements

• DELETE * FROM accounts WHERE user=‘${u}’

13

Identifying SQL Injection

• A SQL injection vulnerability can be identified in different
ways
– Negative approach: special-meaning characters in the query will

cause an error (for example: user=“ ’ ”)
– Positive approach: provide an expression that would NOT cause

an error (for example: “17+5” instead of “22”, or a string
concatenation)

14

The UNION Operator
• The UNION operator is used to merge the results of two separate

queries
• In a SQL injection attack this can be exploited to extract

information from the database
• Original query:

– SELECT id, name, price FROM products WHERE
brand=‘${b}’

• Modified query passing ${b}=“foo’ UNION…”:
– SELECT id, name, price FROM products WHERE brand=‘foo’

UNION SELECT user, pass, NULL FROM accounts -- ‘
• In order for this attack to work the attacker has to know

– The structure of the query (number of parameters and types have to be
compatible: NULL can be used if the type is not known)

– The name of the table and columns

15

Determining Number and Type of
Query Parameters

• The number of columns in a query can be determined
using progressively longer NULL columns until the
correct query is returned
– UNION SELECT NULL
– UNION SELECT NULL, NULL
– UNION SELECT NULL, NULL, NULL

• The type of columns can be determined using a similar
technique
– For example, to determine the column that has a string type one

would execute:
• UNION SELECT ‘foo’, NULL, NULL
• UNION SELECT NULL, ‘foo’, NULL
• UNION SELECT NULL, NULL, ‘foo’

16

Determining Table and Column Names
• To determine table and column names one has to rely on

techniques that are database-specific
– Oracle

• By using the user_objects table one can extract information about the tables
created for an application

• By using the user_tab_column table one can extract the names of the
columns associated with a table

– MS-SQL
• By using the sysobjects table one can extract information about the tables in

the database
• By using the syscolumns table one can extract the names of the columns

associated with a table
– MySQL

• By using the information_schema one can extract information about the
tables and columns

17

Second-Order SQL Injection
• In a second-order SQL injection, the code is injected into an

application, but the SQL statement is invoked at a later point
in time
– e.g., Guestbook, statistics page, etc.

• Even if application escapes single quotes, second order SQL
injection might be possible
– Attacker sets user name to: john’--, application safely escapes

value to john’’-- (note the two single quotes)
– At a later point, attacker changes password (and “sets” a new

password for victim john):

update users set password=’hax’ where
database_handle(“username”)=‘john’--‘

18

register.php
<?php

session_start();

$sql = "insert into users (username, password) values ('" .

mysql_real_escape_string($_POST['name']) . "', '" .

mysql_real_escape_string($_POST['password']) . "');";

mysq_query($sql);

$user_id = mysql_insert_id();

$_SESSION['uid'] = $user_id;

19

change_password.php
<?php

session_start();

$new_password = $_POST['password'];

$res = mysql_query("select username, password from users where

id = '" . $_SESSION['uid'] . "';");

$row = mysql_fetch_assoc($result);

$query = "update users set password = '" .

mysql_real_escape_string($new_password) . "' where username = '"

.$row['username']."' and password = '".$row['password']."';";

mysql_query($query);

20

Blind SQL Injection

• A typical countermeasure is to prohibit the display of
error messages: However, a web application may still be
vulnerable to blind SQL injection

• Example: a news site
– Press releases are accessed with pressRelease.jsp?id=5
– A SQL query is created and sent to the database:

• select title, description FROM pressReleases where
id=5;

– All error messages are filtered by the application

21

Blind SQL Injection
• How can we inject statements into the application and exploit

it?
– We do not receive feedback from the application so we can use a

trial-and-error approach
– First, we try to inject pressRelease.jsp?id=5 AND 1=1
– The SQL query is created and sent to the database:

• select title, description FROM pressReleases where id=5
AND 1=1

– If there is a SQL injection vulnerability, the same press release
should be returned

– If input is validated, id=5 AND 1=1 should be treated as the value

22

Blind SQL Injection
• When testing for vulnerability, we know 1=1 is always true

– However, when we inject other statements, we do not have any
information

– What we know: If the same record is returned, the statement must
have been true

– For example, we can ask server if the current user is “h4x0r”:
• pressRelease.jsp?id=5 AND user_name()=‘h4x0r’

– By combining subqueries and functions, we can ask more complex
questions (e.g., extract the name of a database table character by
character)
• pressRelease.jsp?id=5 AND SUBSTRING(user_name(), 1,
1) < '?’

23

SQL Injection Solutions

• Developers should never allow client-supplied data to
modify SQL statements

• Stored procedures
– Isolate applications from SQL
– All SQL statements required by the application are stored

procedures on the database server
• Prepared statements

– Statements are compiled into SQL statements before user input
is added

24

SQL Injection Solutions:
Stored Procedures

• Original query:
– String query = “SELECT title, description from pressReleases WHERE

id= “+ request.getParameter(“id”);
– Statement stat = dbConnection.createStatement();
– ResultSet rs = stat.executeQuery(query);

• The first step to secure the code is to take the SQL
statements out of the web application and into the DB
– CREATE PROCEDURE getPressRelease @id integer AS SELECT title,

description FROM pressReleases WHERE Id = @id

25

SQL Injection Solutions:
Stored Procedures

• Now, in the application, instead of string-building SQL, a
stored procedure is invoked. For example, in Java:
CallableStatements cs = dbConnection.prepareCall(

“{call getPressRelease(?)}”);

cs.setInt(1,

Integer.parseInt(request.getParameter(“id”)));

ResultSet rs = cs.executeQuery();

26

SQL Injection Solutions:
Prepared Statements

• Prepared statements allow for the clear separation of what is
to be considered data and what is to be considered code

• A query is performed in a two-step process:
– First the query is parsed and the location of the parameters

identified (this is the “preparation”)
– Then the parameters are bound to their actual values

• In some cases, prepared statements can also improve the
performance of a query

27

SQL Injection Solutions:
Prepared Statements

$mysqli = new mysqli("localhost", "my_user", "my_pass", ”db");
$stmt = $mysqli->stmt_init();
$stmt->prepare("SELECT District FROM City WHERE Name=?"));
$stmt->bind_param("s", $city);
/* type can be “s” = string, “i” = integer … */

$stmt->execute();
$stmt->bind_result($district);
$stmt->fetch();
printf("%s is in district %s\n", $city, $district);
$stmt->close();}

28

