CSC 405 Computer Security

Linux Security

Alexandros Kapravelos <u>akaprav@ncsu.edu</u>

Unix / Linux

- Started in 1969 at AT&T / Bell Labs
- Split into a number of popular branches
 BSD, System V (commercial, AT&T), Solaris, HP-UX, AIX
- Inspired a number of Unix-like systems
 - Linux, Minix
- Standardization attempts
 - POSIX, Single Unix Specification (SUS), Filesystem Hierarchy Standard (FHS), Linux Standard Base (LSB), ELF

OS Security

- Kernel vulnerability
 - usually leads to complete system compromise
 - attacks performed via system calls

NC STATE UNIVERSITY

Kernel vulnerabilities

#	CVE ID	CWE ID	# of Exploits	Vulnerability Type(s)	Publish Date	Update Date	Score	Gained Access Level	Access	Complexity	Authentication	Conf.	Integ.	Avail.
1 <u>C\</u>	VE-2017-12762	<u>119</u>		Overflow	2017-08-09	2017-08-25	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
In /driv and 4.	vers/isdn/i4l/isdn_r 4-stable tree.	net.c: A user-	controlled buffer is	s copied into a local buffer of o	constant size using	strcpy without a le	ength check	which can cause a buffer ov	erflow. This a	ffects the Linux I	kernel 4.9-stable tree	, 4.12-stable	e tree, 3.18-st	able tree,
2 <u>C</u>	VE-2017-11176	416		DoS	2017-07-11	2017-08-07	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
The m have u	iq_notify function i unspecified other i	n the Linux ke npact.	ernel through 4.11	.9 does not set the sock point	er to NULL upon e	entry into the retry I	logic. During	a user-space close of a Net	link socket, it	allows attackers	to cause a denial of	service (use	-after-free) o	r possibly
3 <u>C\</u>	VE-2017-8890	<u>415</u>		DoS	2017-05-10	2017-05-24	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
The in	et_csk_clone_lock	function in n	net/ipv4/inet_conn	ection_sock.c in the Linux ker	nel through 4.10.1	5 allows attackers	to cause a d	lenial of service (double free)) or possibly	have unspecified	l other impact by leve	eraging use o	of the accept	system call.
4 <u>C\</u>	VE-2017-7895	<u>189</u>			2017-04-28	2017-05-11	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
The N reques	FSv2 and NFSv3 sts, related to fs/nf	server implen sd/nfs3xdr.c a	nentations in the L and fs/nfsd/nfsxdr.	inux kernel through 4.10.13 la.c.	ack certain checks	for the end of a bu	uffer, which a	Illows remote attackers to trig	gger pointer-	arithmetic errors	or possibly have uns	pecified othe	er impact via	crafted
5 <u>C\</u>	VE-2017-0648	<u>264</u>		Exec Code	2017-06-14	2017-07-07	9.3	None	Remote	Medium	Not required	Complete	Complete	Complete
An ele compr	vation of privilege omise, which may	vulnerability require refla	in the kernel FIQ of shing the operatin	debugger could enable a loca g system to repair the device.	l malicious applica Product: Android.	tion to execute arb Versions: Kernel-3	oitrary code v 3.10. Android	vithin the context of the kerned ID: A-36101220.	el. This issue	is rated as High	due to the possibility	of a local pe	ermanent dev	/ice
6 <u>C\</u>	VE-2017-0605	<u>264</u>		Exec Code	2017-05-12	2017-05-19	9.3	None	Remote	Medium	Not required	Complete	Complete	Complete
An ele compr	vation of privilege omise, which may	vulnerability require refla	in the kernel trace shing the operatin	subsystem could enable a lo g system to repair the device.	cal malicious appli Product: Android.	cation to execute a Versions: Kernel-3	arbitrary code 3.10, Kernel-	e within the context of the ke 3.18. Android ID: A-3539970	rnel. This iss 04. Reference	ue is rated as Cr es: QC-CR#1048	itical due to the poss 480.	ibility of a loo	cal permaner	t device
7 <u>C\</u>	VE-2017-0564	<u>264</u>		Exec Code	2017-04-07	2017-07-10	9.3	None	Remote	Medium	Not required	Complete	Complete	Complete
An ele compr	evation of privilege romise, which may	vulnerability require refla	in the kernel ION shing the operatin	subsystem could enable a loc g system to repair the device.	al malicious applic Product: Android.	ation to execute a Versions: Kernel-3	rbitrary code 3.10, Kernel-	within the context of the ker 3.18. Android ID: A-3427620	nel. This issu)3.	ie is rated as Crit	ical due to the possil	pility of a loca	al permanent	device
8 <u>C\</u>	VE-2017-0563	<u>264</u>		Exec Code	2017-04-07	2017-07-10	9.3	None	Remote	Medium	Not required	Complete	Complete	Complete
An ele compr	evation of privilege romise, which may	vulnerability require refla	in the HTC touchs shing the operatin	screen driver could enable a lo g system to repair the device.	ocal malicious app Product: Android.	lication to execute Versions: Kernel-	arbitrary cod 3.10. Android	le within the context of the ke d ID: A-32089409.	ernel. This is	sue is rated as C	ritical due to the pos	sibility of a lo	cal permane	nt device
9 <u>C\</u>	VE-2017-0561	<u>264</u>		Exec Code	2017-04-07	2017-08-15	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
A rem contex	ote code execution kt of the Wi-Fi SoC	n vulnerability . Product: An	v in the Broadcom adroid. Versions: K	Wi-Fi firmware could enable a Cernel-3.10, Kernel-3.18. Andr	a remote attacker 1 oid ID: A-3419910	to execute arbitrary 5. References: B-F	y code within RB#110814.	the context of the Wi-Fi SoC	C. This issue	is rated as Critic	al due to the possibil	ity of remote	code execut	ion in the
10 <u>C</u>	VE-2017-0528	264		Exec Code Bypass	2017-03-07	2017-07-17	9.3	None	Remote	Medium	Not required	Complete	Complete	Complete
An olo	vation of privilege	vulnorability	in the kernel secu	rity subsystem could enable a	local malicious ar	polication to to eve	cute code in	the context of a privileged p	rocoss This	issue is rated as	High because it is a	general hype	es for a korr	

An elevation of privilege vulnerability in the kernel security subsystem could enable a local malicious application to to execute code in the context of a privileged process. This issue is rated as High because it is a general bypass for a kernel level defense in depth or exploit mitigation technology. Product: Android. Versions: Kernel-3.18. Android ID: A-33351919.

NC STATE UNIVERSITY

Kernel vulnerabilities

#	CVE ID	CWE ID	# of Exploits	Vulnerability Type(s)	Publish Date	Update Date	Score	Gained Access Level	Access	Complexity	Authentication	Conf.	Integ.	Avail.
1	CVE-2018-20961	415		DoS	2019-08-07	2019-08-27	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
In th unsp	ne Linux kernel before pecified other impact.	4.16.4, a	a double free v	ulnerability in the f	_midi_set_alt fur	nction of drivers/u	usb/gadget	/function/f_midi.c	c in the f_mid	i driver may allo	w attackers to caus	e a denial of	service or pos	sibly have
2	CVE-2019-10125	<u>94</u>			2019-03-27	2019-06-14	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
An i: retu	ssue was discovered ir rn of vfs_poll(), and th	n aio_poll his will ca	() in fs/aio.c ii use a use-afte	n the Linux kernel tl er-free.	hrough 5.0.4. A f	ile may be releas	ed by aio_	poll_wake() if an	expected eve	nt is triggered ir	mmediately (e.g., by	the close of	a pair of pipe	s) after the
3	CVE-2019-11683	399		DoS Mem. Corr.	2019-05-02	2019-06-14	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
udp_ othe	_gro_receive_segment er impact via UDP pack	t in net/ip kets with	ov4/udp_offloa a 0 payload, b	ad.c in the Linux ker because of mishandl	nel 5.x before 5. ing of padded pa	0.13 allows remo ckets, aka the "G	ite attacker RO packet	rs to cause a deni of death" issue.	al of service (slab-out-of-bou	nds memory corrup	tion) or possil	oly have unsp	ecified
4	CVE-2019-11811	416			2019-05-07	2019-05-31	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
An is drive	ssue was discovered ir ers/char/ipmi/ipmi_si_	n the Linu _mem_io.	x kernel befor c, and drivers	re 5.0.4. There is a /char/ipmi/ipmi_si_	use-after-free up port_io.c.	oon attempted rea	ad access t	o /proc/ioports af	ter the ipmi_s	si module is rem	oved, related to driv	vers/char/ipm	ii/ipmi_si_int	f.c,
5	CVE-2019-15292	<u>416</u>			2019-08-21	2019-09-02	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
An i	ssue was discovered ir	n the Linu	x kernel befor	re 5.0.9. There is a	use-after-free in	atalk_proc_exit,	related to i	net/appletalk/atal	k_proc.c, net	/appletalk/ddp.c	, and net/appletalk,	/sysctl_net_a	talk.c.	
6	CVE-2019-15504	<u>415</u>			2019-08-23	2019-09-04	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
drive	ers/net/wireless/rsi/rs	i_91x_us	b.c in the Linu	x kernel through 5.	2.9 has a Double	Free via crafted	USB device	e traffic (which ma	ay be remote	via usbip or usb	oredir).			
7	CVE-2019-15505	<u>125</u>			2019-08-23	2019-09-04	10.0	None	Remote	Low	Not required	Complete	Complete	Complete
drive	ers/media/usb/dvb-us	b/technis	at-usb2.c in th	ne Linux kernel thro	ugh 5.2.9 has ar	n out-of-bounds re	ead via cra	fted USB device t	raffic (which	may be remote v	via usbip or usbredi	r).		
8	CVE-2019-15926	<u>125</u>			2019-09-04	2019-09-14	9.4	None	Remote	Low	Not required	Complete	None	Complete
An i: /wm	ssue was discovered in ni.c.	n the Linu	x kernel befor	re 5.2.3. Out of bou	nds access exists	s in the functions	ath6kl_wm	ni_pstream_timeo	ut_event_rx	and ath6kl_wmi_	_cac_event_rx in the	e file drivers/	net/wireless/	ath/ath6kl
9	CVE-2018-20836	<u>416</u>			2019-05-07	2019-05-08	9.3	None	Remote	Medium	Not required	Complete	Complete	Complete
An i	ssue was discovered ir	n the Linu	x kernel befor	re 4.20. There is a r	ace condition in a	smp_task_timedo	out() and si	mp_task_done() i	n drivers/scs	i/libsas/sas_expa	ander.c, leading to a	a use-after-fro	ee.	
10	CVE-2019-11815	<u>362</u>			2019-05-08	2019-06-07	9.3	None	Remote	Medium	Not required	Complete	Complete	Complete
An is	ssue was discovered ir	n rds_tcp_	_kill_sock in n	et/rds/tcp.c in the L	inux kernel befo	re 5.0.8. There is	a race cor	dition leading to	a use-after-fr	ee, related to ne	et namespace clean	Jp.		

Kernel exploitation research is active

Unleashing Use-Before-Initialization Vulnerabilities in the Linux Kernel Using Targeted Stack Spraying

- reliably exploiting uninitialized uses on the kernel stack has been considered infeasible
- code executed prior to triggering the vulnerability must leave an attacker-controlled pattern on the stack
- a fully automated targeted stackspraying approach for the Linux kernel that reliably facilitates the exploitation of uninitialized uses
- published in NDSS 2017

Unix

- Code running in user mode is always linked to a certain identity
 - security checks and access control decisions are based on user identity
- Unix is user-centric
 - no roles
- User
 - identified by username (UID), group name (GID)
 - typically authenticated by password (stored encrypted)
- User root
 - superuser, system administrator
 - special privileges (access resources, modify OS)
 - cannot decrypt user passwords

NC STATE UNIVERSITY

Process Management

- Process
 - implements user-activity
 - entity that executes a given piece of code
 - has its own execution stack, memory pages, and file descriptors table
 - separated from other processes using the virtual memory abstraction
- Thread
 - separate stack and program counter
 - share memory pages and file descriptor table

Process Management

- Process Attributes
 - process ID (PID)
 - uniquely identified process
 - (real) user ID (UID)
 - ID of owner of process
 - effective user ID (EUID)
 - ID used for permission checks (e.g., to access resources)
 - saved user ID (SUID)
 - to temporarily drop and restore privileges
 - lots of management information
 - scheduling
 - memory management, resource management

Process Management

- Switching between IDs
 - uid-setting system calls

 int setuid(uid_t uid)
 int seteuid(uid_t uid)
 int setresuid(uid_t ruid, uid_t euid, uid_t suid)
- Can be tricky
 - POSIX 1003.1:

If the process has appropriate privileges, the setuid(newuid) function sets the real user ID, effective user ID, and the [saved user ID] to newuid.

- what are appropriate privileges?

Solaris: EUID = 0; FreeBSD: newuid = EUID;

Linux: SETUID capability

Summary of all the functions that set the various user IDs

Process Management

Bug in sendmail 8.10.1:

- call to setuid(getuid()) to clear privileges (effective UID is root)
- on Linux, attacker could clear SETUID capability
- call clears EUID, but SUID remains root

Further reading

Setuid Demystified

Hao Chen, David Wagner, and Drew Dean 11th USENIX Security Symposium, 2002

User Authentication

- How does a process get a user ID?
- Authentication
- Passwords
 - user passwords are used as keys for crypt() function
 - uses SHA-512
 - 8-byte "salt"
 - chosen from date, not secret
 - prevent same passwords to map onto same string
 - make dictionary attacks more difficult
- Password cracking
 - dictionary attacks, rainbow tables
 - Crack, JohnTheRipper

User Authentication

- Shadow passwords
 - password file is needed by many applications to map user ID
 - to user names
 - encrypted passwords are not
- /etc/shadow
 - holds encrypted passwords
 - account information
 - last change date
 - expiration (warning, disabled)
 - minimum change frequency
 - readable only by superuser and privileged programs
 - SHA-512 hashed passwords (default on Ubuntu) to slow down guessing

NC STATE UNIVERSITY

User Authentication

- Shadow passwords
 - a number of other encryption / hashing algorithms were proposed
 - blowfish, SHA-1, ...
- Other authentication means possible
 - Linux PAM (pluggable authentication modules)
 - Kerberos
 - Active directory (Windows)

Group Model

- Users belong to one or more groups
 - primary group (stored in /etc/passwd)
 - additional groups (stored in /etc/group)
 - possibility to set group password
 - and become group member with newgrp
- /etc/group

groupname : password : group id : additional users root:x:0:root bin:x:1:root,bin,daemon users:x:100:akaprav

- Special group wheel/sudo
 - protect root account by limiting user accounts that can perform su

File System

• File tree

- primary repository of information
- hierarchical set of directories
- directories contain file system objects (FSO)
- root is denoted "/"
- File system object
 - files, directories, symbolic links, sockets, device files
 - referenced by *inode* (index node)

File System

- Access Control
 - permission bits
 - chmod, chown, chgrp, umask
 - file listing:

	-	rwx	rwx	rwx
(file	type)	(user)	(group)	(other)

Туре	r	W	Х	S	t
File	read access	write access	execute	suid / sgid inherit id	sticky bit
Directory	list files	insert and remove files	stat / execute files, chdir	new files have dir-gid	files/dirs only delete-able by owner

Sticky bit

- It has no effect on files (on Linux)
- When used on a directory, all the files in that directory will be modifiable only by their owners
- What's a very common directory with sticky bit?

\$ Is -Id /tmp drwxrwxrwt 26 root root 69632 Sep 7 15:24 /tmp \$ Is -I test -rw-rw-r-- 1 kapravel kapravel 0 Sep 7 15:29 test \$ chmod +t test; Is -I test -rw-rw-r-T 1 kapravel kapravel 0 Sep 7 15:29 test

SUID Programs

- Each process has real and effective user / group ID
 - usually identical
 - real IDs
 - determined by current user
 - authentication (login, su)
 - effective IDs
 - determine the "rights" of a process
 - system calls (e.g., setuid())
 - suid / sgid bits
 - · to start process with effective ID different from real ID
 - attractive target for attacker
- Never use SUID shell scripts (multiplying problems)
 - many operating systems ignore the setuid attribute when applied to executable shell scripts
 - you need to patch the kernel to enable it

File System

- Shared resource
 - susceptible to race condition problems
- Time-of-Check, Time-of-Use (TOCTOU)
 - common race condition problem
 - problem:
 - Time-Of-Check (t_1) : validity of assumption A on entity E is checked
 - Time-Of-Use (t_2) : assuming A is still valid, E is used
 - Time-Of-Attack (t_3) : assumption A is invalidated

$$t_1 < t_3 < t_2$$

ΤΟΟΤΟυ

- Steps to access a resource
 - 1. obtain reference to resource
 - 2. query resource to obtain characteristics
 - 3. analyze query results
 - 4. if resource is fit, access it
- Often occurs in Unix file system accesses
 - check permissions for a certain file name (e.g., using access (2))
 - open the file, using the file name (e.g., using **fopen(3)**)
 - four levels of indirection (symbolic link hard link inode file descriptor)
- Windows uses file handles and includes checks in API open call

Overview

```
/* access returns 0 on success */
if(!access(file, W_OK)) {
   f = fopen(file, "wb+");
   write_to_file(f);
} else {
    fprintf(stderr, "Permission denied \
        when trying to open %s.\n", file);
}
```

Attack

\$ touch dummy; ln -s dummy pointer \$ rm pointer; ln -s /etc/passwd pointer

Examples

• TOCTOU Examples

- Setuid Scripts
 - 1. exec() system call invokes seteuid() call prior to executing program
 - 2. program is a script, so command interpreter is loaded first
 - 3. program interpreted (with root privileges) is invoked on script name
 - 4. attacker can replace script content between step 2 and 3

Examples

• TOCTOU Examples

- Directory operations
 - rm can remove directory trees, traverses directories depth-first
 - issues chdir("..") to go one level up after removing a directory branch
 - by relocating subdirectory to another directory, arbitrary files can be deleted
- Temporary files
 - commonly opened in /tmp or /var/tmp
 - often guessable file names

Temporary Files

"Secure" procedure for creating temporary files

- 1. pick a prefix for your filename
- 2. generate at least 64 bits of high-quality randomness
- 3. base64 encode the random bits
- 4. concatenate the prefix with the encoded random data
- 5. set umask appropriately (0066 is usually good)
- 6. use fopen(3) to create the file, opening it in the proper mode
- 7. delete the file immediately using unlink(2)
- 8. perform reads, writes, and seeks on the file as necessary
- 9. finally, close the file

Temporary Files

- Library functions to create temporary files can be insecure
 - mktemp(3) is not secure, use mkstemp(3) instead
 - old versions of mkstemp(3) did not set umask correctly
- Temp Cleaners
 - programs that clean "old" temporary files from temp directories
 - first lstat(2) file, then use unlink(2) to remove files
 - vulnerable to race condition when attacker replaces file between lstat(2) and unlink(2)
 - arbitrary files can be removed
 - delay program long enough until temp cleaner removes active file

Prevention

- "Handbook of Information Security Management" suggests
 - 1. increase number of checks
 - 2. move checks closer to point of use
 - 3. immutable bindings
- Only number 3 is secure!
- Immutable bindings
 - operate on file descriptors
 - do not check access by yourself (i.e., no use of access(2))
 drop privileges instead and let the file system do the job
- Use the O_CREAT | O_EXCL flags to create a new file with open(2)
 and be prepared to have the open call fail

and be prepared to have the open call fail

Prevention

Series of papers on the access system call

Fixing races for fun and profit: how to use access(2)

D. Dean and A. Hu Usenix Security Symposium, 2004

Fixing races for fun and profit: howto abuse atime

N. Borisov, R. Johnson, N. Sastry, and D. Wagner Usenix Security Symposium, 2005

Portably Solving File TOCTTOU Races with Hardness Amplification

D. Tsafrir, T. Hertz, D. Wagner, and D.Da Silva Usenix Conference on File and Storage Technologies (FAST), 2008

Locking

- Ensures exclusive access to a certain resource
- Used to circumvent accidental race conditions
 - advisory locking (processes need to cooperate)
 - not mandatory, therefore not secure
- Often, files are used for locking
 - portable (files can be created nearly everywhere)
 - "stuck" locks can be easily removed
- Simple method
 - create file using the O_EXCL flag

Shell

- Shell
 - one of the core Unix application
 - both a command language and programming language
 - provides an interface to the Unix operating system
 - rich features such as control-flow primitives, parameter passing, variables, and string substitution
 - communication between shell and spawned programs via redirection and pipes
 - different flavors
 - bash and sh, tcsh and csh, ksh, zsh

Shell Attacks

- Environment Variables
 - \$HOME and \$PATH can modify behavior of programs that operate with relative path names
 - \$IFS internal field separator
 - used to parse tokens
 - usually set to [\t\n] but can be changed to "/"
 - "/bin/ls" is parsed as "bin ls" calling bin locally
 - IFS now only used to split expanded variables
 - preserve attack (/usr/lib/preserve is SUID)
 - called "/bin/mail" when vi crashes to preserve file
 - · change IFS, create bin as link to /bin/sh, kill vi

Shell Attacks

- Control and escape characters
 - can be injected into command string
 - modify or extend shell behavior
 - user input used for shell commands has to be rigorously sanitized
 - easy to make mistakes
 - classic examples are `;' and `&'
- Applications that are invoked via shell can be targets as well
 - increased vulnerability surface
- Restricted shell
 - invoked with -r or rbash
 - more controlled environment

Shell Attacks

- system(char *cmd)
 - function called by programs to execute other commands
 - invokes shell
 - executes string argument by calling /bin/sh –c string
 - makes binary program vulnerable to shell attacks
 - especially when user input is utilized
- popen(char *cmd, char *type)
 - forks a process, opens a pipe and invokes shell for cmd

File Descriptor Attacks

- SUID program opens file
- forks external process
 - sometimes under user control
- on-execute flag
 - if close-on-exec flag is not set, then new process inherits file descriptor
 - malicious attacker might exploit such weakness
- Linux Perl 5.6.0
 - getpwuid() leaves /etc/shadow opened (June 2002)
 - problem for Apache with mod_perl
 - web browsers and flash

Resource Limits

- File system limits
 - quotas
 - restrict number of storage blocks and number of inodes
 - hard limit
 - can never be exceeded (operation fails)
 - soft limit
 - can be exceeded temporarily
 - can be defined per mount-point
 - defend against resource exhaustion (denial of service)
- Process resource limits
 - number of child processes, open file descriptors

Signals

Signal

- simple form of interrupt
- asynchronous notification
- can happen anywhere for process in user space
- used to deliver segmentation faults, reload commands, ...
- kill command
- Signal handling
 - process can install signal handlers
 - when no handler is present, default behavior is used
 - ignore or kill process
 - possible to catch all signals except SIGKILL (-9)

Signals

- Security issues
 - code has to be re-entrant
 - atomic modifications
 - no global data structures
 - race conditions
 - unsafe library calls, system calls
 - examples
 - wu-ftpd 2001, sendmail 2001 + 2006, stunnel 2003, ssh 2006
- Secure signals
 - write handler as simple as possible
 - block signals in handler

Shared Libraries

- Library
 - collection of object files
 - included into (linked) program as needed
 - code reuse
- Shared library
 - multiple processes share a single library copy
 - save disk space (program size is reduced)
 - save memory space (only a single copy in memory)
 - used by virtually all Unix applications (at least libc.so)
 - check binaries with ldd

Shared Libraries

- Static shared library
 - address binding at link-time
 - not very flexible when library changes
 - code is fast
- Dynamic shared library
 - address binding at load-time
 - uses procedure linkage table (PLT) and global offset table (GOT)
 - code is slower (indirection)
 - loading is slow (binding has to be done at run-time)
 - classic .so or .dll libraries
- PLT and GOT entries are very popular attack targets
 - buffer overflows

Shared Libraries

- Management
 - stored in special directories (listed in /etc/ld.so.conf)
 - manage cache with ldconfig
- Preload
 - override (substitute) with other version
 - use /etc/ld.so.preload
 - can also use environment variables for override
 - possible security hazard
 - now disabled for SUID programs (old Solaris vulnerability)

Advanced Security Features

- Address space protection
 - address space layout randomization (ASLR)
 - non-executable stack (based on NX bit or PAX patches)
- Mandatory access control extensions
 - SELinux/AppArmor
 - role-based access control extensions
 - capability support
- Miscellaneous improvements
 - hardened chroot jails
 - better auditing
- <u>https://wiki.ubuntu.com/Security/Features</u>

NC STATE UNIVERSITY

Your Security Zen

We're Banning Facial Recognition. We're Missing the Point.

source: https://www.nytimes.com/2020/01/20/opinion/facial-recognition-ban-privacy.html

Your Security Zen

Apple dropped plan for encrypting backups after FBI complained

"Apple dropped plans to let iPhone users fully encrypt backups of their devices in the company's iCloud service after the FBI complained that the move would harm

investigations"

source:

https://www.reuters.com/article/us-apple-fbi-icloud-exclusive/exclusive-apple-dropped-plan-for-encrypting-backups-after-fbi-complained-sources-idU SKBN1ZK1CT

Your Security Zen

Microsoft Zero-Day Actively Exploited, Patch Forthcoming

CVE-2020-0674 is a critical flaw for most Internet Explorer versions, allowing remote code execution and complete takeover

source: <u>https://threatpost.com/microsoft-zero-day-actively-exploited-patch/152018/</u>

overthewire.org bandit

- Register for a <u>wechall.net</u> account
- Link overthewire.org to your wechall account
 - Click "Account" on the top of wechall.net
 - Clink on the "Linked Sites" button
 - On the "Select a site" dropdown, select "OverTheWire.org"
 - Then click the "Link Site" button
- Register bandit progress
 - <u>http://overthewire.org/information/wechall.html</u>
- Keep notes on how you solved each level in a README
- Start working on your challenges
 - <u>http://overthewire.org/wargames/bandit/</u>
- The goal is to reach level 11 today!
- Submit your report at the end of class
 - <u>https://forms.gle/jSmVdWj1E4642FgJ6</u>