
CSC 405
Computer Security

Reverse Engineering

Alexandros Kapravelos
akaprav@ncsu.edu

Introduction
• Reverse engineering

– process of analyzing a system
– understand its structure and functionality
– used in different domains (e.g., consumer electronics)

• Software reverse engineering
– understand architecture (from source code)
– extract source code (from binary representation)
– change code functionality (of proprietary program)
– understand message exchange (of proprietary protocol)

Software Engineering

00101000110111
01010101111000

mov eax, ebx
xor eax, eax

int x;
while (x<10){

Machine code

Assembler

C, C++,..

First generation
language

Second
generation
language

Third
generation
language

Assemble

Compile

Software Reverse Engineering

00101000110111
01010101111000

mov eax, ebx
xor eax, eax

int x;
while (x<10){

Machine code

Assembler

C, C++,..

First generation
language

Second
generation
language

Third
generation
language

Disassemble

De-compile

Going Back is Hard!
• Fully-automated disassemble/de-compilation of arbitrary

machine-code is theoretically an undecidable problem

• Disassembling problems
– hard to distinguish code (instructions) from data

• De-compilation problems
– structure is lost

• data types are lost, names and labels are lost
– no one-to-one mapping

• same code can be compiled into different (equivalent) assembler
blocks

• assembler block can be the result of different pieces of code

Why Reverse Engineering
• Software interoperability

– Samba (SMB Protocol)
– OpenOffice (MS Office document formats)

• Emulation
– Wine (Windows API)
– React-OS (Windows OS)

• Legacy software
– Onlive

• Malware analysis
• Program cracking
• Compiler validation

Analyzing a Binary - Static Analysis
• Identify the file type and its characteristics

– architecture, OS, executable format...

• Extract strings
– commands, password, protocol keywords...

• Identify libraries and imported symbols
– network calls, file system, crypto libraries

• Disassemble
– program overview
– finding and understanding important functions

• by locating interesting imports, calls, strings...

Analyzing a Binary - Dynamic Analysis
• Memory dump

– extract code after decryption, find passwords...

• Library/system call/instruction trace
– determine the flow of execution
– interaction with OS

• Debugging running process
– inspect variables, data received by the network, complex

algorithms..

• Network sniffer
– find network activities
– understand the protocol

Static Techniques
• Gathering program information

– get some rough idea about binary (file)

– strings that the binary contains (strings)

Static Techniques
• Examining the program (ELF) header (elfsh)
• readelf

Program entry point

Static Techniques
• Used libraries

– easier when program is dynamically linked (ldd)

– more difficult when program is statically linked

Interesting “shared” library
used for (fast) system calls

Static Techniques
Looking at linux-gate.so.1

Static Techniques
• Used library functions

– again, easier when program is dynamically linked (nm -D)

– more difficult when program is statically linked

Static Techniques
Recognizing libraries in statically-linked programs

• Basic idea
– create a checksum (hash) for bytes in a library function

• Problems
– many library functions (some of which are very short)
– variable bytes – due to dynamic linking, load-time patching,

linker optimizations

• Solution
– more complex pattern file
– uses checksums that take into account variable parts
– implemented in IDA Pro as:

Fast Library Identification and Recognition Technology (FLIRT)

Static Techniques
• Program symbols

– used for debugging and linking
– function names (with start addresses)
– global variables
– use nm to display symbol information
– most symbols can be removed with strip

• Function call trees
– draw a graph that shows which function calls which others
– get an idea of program structure

Static Techniques
Displaying program symbols

Static Techniques
• Disassembly

– process of translating binary stream into machine instructions

• Different level of difficulty
– depending on ISA (instruction set architecture)

• Instructions can have
– fixed length

• more efficient to decode for processor
• RISC processors (SPARC, MIPS, ARM)

– variable length
• use less space for common instructions
• CISC processors (Intel x86)

This will backfire
in the future :)

Static Techniques
• Fixed length instructions

– easy to disassemble
– take each address that is multiple of instruction length as

instruction start
– even if code contains data (or junk), all program instructions are

found

• Variable length instructions
– more difficult to disassemble
– start addresses of instructions not known in advance
– different strategies

• linear sweep disassembler
• recursive traversal disassembler

– disassembler can be desynchronized with respect to actual code

Static Techniques
• Linear sweep disassembler

– start at beginning of code (.text) section
– disassemble one instruction after the other
– assume that well-behaved compiler tightly packs instructions
– objdump -d uses this approach

Let’s break LSD
#include <stdio.h>

int main() {

 printf("Hello, world!\n");

 return 0;

}

$ gcc hello.c -o hello

$./hello

Hello, world!

Objdump disassembly
0804840b <main>:
 804840b: 8d 4c 24 04 lea 0x4(%esp),%ecx
 804840f: 83 e4 f0 and $0xfffffff0,%esp
 8048412: ff 71 fc pushl -0x4(%ecx)
 8048415: 55 push %ebp
 8048416: 89 e5 mov %esp,%ebp
 8048418: 51 push %ecx
 8048419: 83 ec 04 sub $0x4,%esp
 804841c: 83 ec 0c sub $0xc,%esp
 804841f: 68 c0 84 04 08 push $0x80484c0
 8048424: e8 b7 fe ff ff call 80482e0 <puts@plt>
 8048429: 83 c4 10 add $0x10,%esp
 804842c: b8 00 00 00 00 mov $0x0,%eax
 8048431: 8b 4d fc mov -0x4(%ebp),%ecx
 8048434: c9 leave
 8048435: 8d 61 fc lea -0x4(%ecx),%esp
 8048438: c3 ret

$ objdump -D hello

radare2 disassembly
[0x08048310]> pdf@main
/ (fcn) sym.main 46
| 0x0804840b 8d4c2404 lea ecx, [esp+0x4]
| 0x0804840f 83e4f0 and esp, 0xfffffff0
| 0x08048412 ff71fc push dword [ecx-0x4]
| 0x08048415 55 push ebp
| 0x08048416 89e5 mov ebp, esp
| 0x08048418 51 push ecx
| 0x08048419 83ec04 sub esp, 0x4
| 0x0804841c 83ec0c sub esp, 0xc
| ; DATA XREF from 0x080484c0 (fcn.080484b8)
| 0x0804841f 68c0840408 push str.Helloworld ; 0x080484c0
| ; CODE (CALL) XREF from 0x080482e6 (fcn.080482e6)
| ; CODE (CALL) XREF from 0x080482f6 (fcn.080482f6)
| ; CODE (CALL) XREF from 0x08048306 (fcn.08048306)
| 0x08048424 e8b7feffff call 0x1080482e0 ; (sym.imp.puts)
| sym.imp.puts(unk, unk, unk, unk)
| 0x08048429 83c410 add esp, 0x10
| 0x0804842c b800000000 mov eax, 0x0
| 0x08048431 8b4dfc mov ecx, [ebp-0x4]
| 0x08048434 c9 leave
| 0x08048435 8d61fc lea esp, [ecx-0x4]
\ 0x08048438 c3 ret

Let’s patch the program
$ radare2 -Aw hello
[0x08048310]> 0x08048419
[0x08048419]> wx eb01 #(jmp 0x804841c)

We patched a 3-byte instruction with a 2-byte
instruction. What is going to happen now with

disassembly?!

Disassembly fails!
[0x08048310]> pdf@main
/ (fcn) sym.main 46
| 0x0804840b 8d4c2404 lea ecx, [esp+0x4]
| 0x0804840f 83e4f0 and esp, 0xfffffff0
| 0x08048412 ff71fc push dword [ecx-0x4]
| 0x08048415 55 push ebp
| 0x08048416 89e5 mov ebp, esp
| 0x08048418 51 push ecx
| ,=< 0x08048419 eb01 jmp loc.0804841c
| | 0x0804841b 0483 add al, 0x83
| 0x0804841d ec in al, dx
| 0x0804841e 0c68 or al, 0x68
| 0x08048420 c0840408e8b. rol byte [esp+eax-0x14817f8], 0xff
| 0x08048428 ff83c410b800 inc dword [ebx+0xb810c4]
| 0x0804842e 0000 add [eax], al
| 0x08048430 008b4dfcc98d add [ebx-0x723603b3], cl
| 0x08048436 61 popad
| 0x08048437 fc cld
\ 0x08048438 c3 ret

Static Techniques
• Recursive traversal disassembler

– aware of control flow
– start at program entry point (e.g., determined by ELF header)
– disassemble one instruction after the other, until branch or jump

is found
– recursively follow both (or single) branch (or jump) targets
– not all code regions can be reached

• indirect calls and indirect jumps
• use a register to calculate target during run-time

– for these regions, linear sweep is used
– IDA Pro uses this approach

.text:0804840B ; int __cdecl main(int argc, const char **argv, const char **envp)

.text:0804840B public main

.text:0804840B main proc near ; DATA XREF: _start+17o

.text:0804840B var_4 = dword ptr -4

.text:0804840B argc = dword ptr 0Ch

.text:0804840B argv = dword ptr 10h

.text:0804840B envp = dword ptr 14h

.text:0804840B lea ecx, [esp+4]

.text:0804840F and esp, 0FFFFFFF0h

.text:08048412 push dword ptr [ecx-4]

.text:08048415 push ebp

.text:08048416 mov ebp, esp

.text:08048418 push ecx

.text:08048419 jmp short loc_804841C

.text:08048419 ; ---

.text:0804841B db 4

.text:0804841C ; ---

.text:0804841C loc_804841C: ; CODE XREF: main+Ej

.text:0804841C sub esp, 0Ch

.text:0804841F push offset s ; "Hello, world!"

.text:08048424 call _puts

.text:08048429 add esp, 10h

.text:0804842C mov eax, 0

.text:08048431 mov ecx, [ebp+var_4]

.text:08048434 leave

.text:08048435 lea esp, [ecx-4]

.text:08048438 retn

.text:08048438 main endp%

Dynamic Techniques
• General information about a process

– /proc file system
– /proc/<pid>/ for a process with pid <pid>
– interesting entries

• cmdline (show command line)
• environ (show environment)
• maps (show memory map)
• fd (file descriptor to program image)

• Interaction with the environment
– filesystem
– network

Dynamic Techniques
• Filesystem interaction

– lsof
– lists all open files associated with processes

• Windows Registry
– regmon (Sysinternals)

• Network interaction
– check for open ports

• processes that listen for requests or that have active connections
• netstat
• also shows UNIX domain sockets used for IPC

– check for actual network traffic
• tcpdump
• ethereal/wireshark

Dynamic Techniques
• System calls

– are at the boundary between user space and kernel
– reveal much about a process’ operation
– strace
– powerful tool that can also

• follow child processes
• decode more complex system call arguments
• show signals

– works via the ptrace interface

• Library functions
– similar to system calls, but dynamically linked libraries
– ltrace

Dynamic Techniques
• Execute program in a controlled environment

– sandbox / debugger

• Advantages
– can inspect actual program behavior and data values
– (at least one) target of indirect jumps (or calls) can be observed

• Disadvantages
– may accidentally launch attack/malware
– anti-debugging mechanisms
– not all possible traces can be seen

Dynamic Techniques
• Debugger

– breakpoints to pause execution
• when execution reaches a certain point (address)
• when specified memory is access or modified

– examine memory and CPU registers
– modify memory and execution path

• Advanced features
– attach comments to code
– data structure and template naming
– track high level logic

• file descriptor tracking
– function fingerprinting

Dynamic Techniques
• Debugger on x86 / Linux

– use the ptrace interface

• ptrace
– allows a process (parent) to monitor another process (child)
– whenever the child process receives a signal, the parent is

notified
– parent can then

• access and modify memory image (peek and poke commands)
• access and modify registers
• deliver signals

– ptrace can also be used for system call monitoring

Dynamic Techniques
• Breakpoints

– hardware breakpoints
– software breakpoints

• Hardware breakpoints
– special debug registers (e.g., Intel x86)
– debug registers compared with PC at every instruction

• Software breakpoints
– debugger inserts (overwrites) target address with an int 0x03

instruction
– interrupt causes signal SIGTRAP to be sent to process
– debugger

• gets control and restores original instruction
• single steps to next instruction
• re-inserts breakpoint

Anti-Disassembly
• Against static analysis (disassembler)

• Confusion attack
– targets linear sweep disassembler
– insert data (or junk) between instructions and

let control flow jump over this garbage
– disassembler gets desynchronized with true instructions

Anti-Disassembly
• Advanced confusion attack

– targets recursive traversal disassembler
– replace direct jumps (calls) by indirect ones (branch functions)
– force disassembler to revert to linear sweep, then use previous

attack

Anti-Debugging
• Against dynamic analysis (debugger)

– debugger presence detection techniques
• API based
• thread/process information
• registry keys, process names, …

– exception-based techniques

– breakpoint detection
• software breakpoints
• hardware breakpoints

– timing-based and latency detection

Anti-Debugging
Debugger presence checks

• Linux
– a process can be traced only once

if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0)
 exit(1);

• Windows
– API calls

OutputDebugString()
IsDebuggerPresent()

 ... many more ...

– thread control block
• read debugger present bit directly from process memory

Anti-Debugging
Exception-based techniques

SetUnhandledExceptionFilter()

After calling this function, if an exception occurs in a process
that is not being debugged, and the exception makes it to the
unhandled exception filter, that filter will call the exception filter
function specified by the lpTopLevelExceptionFilter
parameter. [source: MSDN]

– Idea
set the top-level exception filter, raise an unhandled exception,

continue in the exception filter function

Anti-Debugging
Breakpoint detection

– detect software breakpoints
• look for int 0x03 instructions

if ((*(unsigned *)((unsigned)<addr>+3) & 0xff)==0xcc)

 exit(1);

• checksum the code
if (checksum(text_segment) != valid_checksum)
 exit(1);

– detect hardware breakpoints
• use the hardware breakpoint registers for computation

Reverse Engineering
• Goals

– focused exploration
– deep understanding

• Case study
– copy protection mechanism
– program expects name and serial number
– when serial number is incorrect, program exits
– otherwise, we are fine

• Changes in the binary
– can be done with hexedit or radare2

Reverse Engineering
• Focused exploration

– bypass check routines
– locate the point where the failed check is reported
– find the routine that checks the serial number
– find the location where the results of this routine are used
– slightly modify the jump instruction

• Deep understanding
– key generation
– locate the checking routine
– analyze the disassembly
– run through a few different cases with the debugger
– understand what check code does and develop code that

creates appropriate keys

Malicious Code Analysis
Static analysis vs. dynamic analysis

• Static analysis
– code is not executed
– all possible branches can be examined (in theory)
– quite fast

• Problems of static analysis
– undecidable in general case, approximations necessary
– binary code typically contains very little information

• functions, variables, type information, …
– disassembly difficult (particularly for Intel x86 architecture)
– obfuscated code, packed code
– self-modifying code

Malicious Code Analysis
• Dynamic analysis

– code is executed
– sees instructions that are actually executed

• Problems of dynamic analysis
– single path (execution trace) is examined
– analysis environment possibly not invisible
– analysis environment possibly not comprehensive

• Possible analysis environments
– instrument program
– instrument operating system
– instrument hardware

Malicious Code Analysis
• Instrument program

– analysis operates in same address space as sample
– manual analysis with debugger
– Detours (Windows API hooking mechanism)

– binary under analysis is modified
• breakpoints are inserted
• functions are rewritten
• debug registers are used

– not invisible, malware can detect analysis
– can cause significant manual effort

Malicious Code Analysis
• Instrument operating system

– analysis operates in OS where sample is run
– Windows system call hooks

– invisible to (user-mode) malware
– can cause problems when malware runs in OS kernel
– limited visibility of activity inside program

• cannot set function breakpoints

• Virtual machines
– allow to quickly restore analysis environment
– might be detectable (x86 virtualization problems)

Malicious Code Analysis
• Instrument hardware

– provide virtual hardware (processor) where sample
can execute (sometimes including OS)

– software emulation of executed instructions
– analysis observes activity “from the outside”

– completely transparent to sample (and guest OS)
– operating system environment needs to be provided
– limited environment could be detected
– complete environment is comprehensive, but slower

– Anubis uses this approach

Stealthiness
• One obvious difference between machine and emulator

→ time of execution

• Time could be used to detect such system
→ emulation allows to address these issues
→ certain instructions can be dynamically modified to return

innocently looking results
→ for example, RTC (real-time clock) - RDTSC instruction

Challenges
• Reverse engineering is difficult by itself

– a lot of data to handle
– low level information
– creative process, experience very valuable
– tools can only help so much

• Additional challenges
– compiler code optimization
– code obfuscation
– anti-disassembly techniques
– anti-debugging techniques

Ghidra
• Released in March 2019
• NSA
• open source

– https://github.com/NationalSecurityAgency/ghidra
• In development for ∼20 years
• Scripting in Java and Python
• Headless Analyzer
• https://github.com/NationalSecurityAgency/ghidra/wiki/fil

es/recon2019.pdf

https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra/wiki/files/recon2019.pdf
https://github.com/NationalSecurityAgency/ghidra/wiki/files/recon2019.pdf

Your Security Zen
Jeff Bezos hack:

How Jeff Bezos’ iPhone X Was Hacked

source: https://www.nytimes.com/2020/01/22/technology/jeff-bezos-hack-iphone.html

https://www.nytimes.com/2020/01/22/technology/jeff-bezos-hack-iphone.html

Your Security Zen
Google, Mozilla Ban Hundreds of Browser Extensions

in Chrome, Firefox

source: https://threatpost.com/google-mozilla-ban-browser-extensions-chrome-firefox/152257/

https://threatpost.com/google-mozilla-ban-browser-extensions-chrome-firefox/152257/

Your Security Zen
After a decade of drama, Apple is ready to kill Flash in

Safari once and for all

source: https://arstechnica.com/gadgets/2020/01/apple-seems-poised-to-end-adobe-flash-support-in-the-next-safari-release/

https://arstechnica.com/gadgets/2020/01/apple-seems-poised-to-end-adobe-flash-support-in-the-next-safari-release/

hackpack summer internships
• Bonus levels in assignments
• Good grade in CSC-405
• Participate in hackpack meetings weekly and play CTFs

research during the summer
publish a research paper

WSPR lab
opportunity to see what a PhD looks like!

