
CSC 405
Computer Security

Web Security

Alexandros Kapravelos
akaprav@ncsu.edu

(Derived from slides by Giovanni Vigna and Adam Doupe)

1

The XMLHttpRequest Object
• Microsoft developers working on Outlook Web Access for Exchange

2000
• Scalability problems with traditional web application
• They created a DHTML version (circa) 1998 using an ActiveX

control to fetch bits of data from the server using JavaScript
• OWA team got the MSXML team (MSXML is Microsoft's XML library,

and it shipped with IE) to include their ActiveX control (hence the
XML in the name)
– Shipped in IE 5, March 1999

• Exchange 2000 finally released in November 2000, and OWA used
the ActiveX Object

• Added by Netscape in December 2000 as XMLHttpRequest
• Find the full story here: https://hackerfall.com/story/the-story-of-

xmlhttp-2008

2

https://hackerfall.com/story/the-story-of-xmlhttp-2008

The XMLHttpRequest Object
• Allows JavaScript code to (asynchronously) retrieve data

from the server, then process the data and update the
DOM

• Because of the origin (ActiveX control on Windows and
included in Netscape's DOM), used to need two different
ways to instantiate the control
– Most browsers (including Microsoft Edge):

• http_request = new XMLHttpRequest();
– Internet Explorer

• http_request = new ActiveXObject("Microsoft.XMLHTTP");

3

Creating an XMLHttpRequest
• Using the onreadystatechange property of an

XMLHttpRequest object one can set the action to be
performed when the result of a query is received
http_request.onreadystatechange = function(){

<JS code here>

};

• Then, one can execute the request
• http_request.open('GET',

'http://example.com/show.php?keyword=foo', true);
• http_request.send();
• Note that the third parameter indicates that the request is

asynchronous, that is, the execution of JavaScript will
proceed while the requested document is being downloaded

4

XMLHttpRequest Lifecycle
• The function specified using the "onreadystatechange"

property will be called at any change in the request
status
– 0 (uninitialized: Object is not initialized with data)
– 1 (loading: Object is loading its data)
– 2 (loaded: Object has finished loading its data)
– 3 (interactive: User can interact with the object even though

it is not fully loaded)
– 4 (complete: Object is completely initialized)

• Usually wait until the status is “complete”
– if (http_request.readyState == 4) {

operates on data} else {
not ready, return}

5

XMLHttpRequest Success
• After having received the document (and

having checked for a successful return
code – 200) the content of the request can
be accessed:
– As a string by calling:
http_request.responseText

– As an XMLDocument object:
http_request.responseXML

• In this case the object can be modified using the
JavaScript DOM interface

6

XMLHttpRequest Example
<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>AJAX Example</title>

</head>

<body>

<h1>AJAX Example</h1>

<div id='insert_here'>

</div>

<script>

…

</script>

</body>

</html>
7

XMLHttpRequest Example
if (typeof XMLHttpRequest != "undefined") {

var http_request = new XMLHttpRequest();

}
else {

var http_request = new ActiveXObject("Microsoft.XMLHTTP");

}
if (typeof console == "undefined") {

console = { "log" : function (text) { alert(text); } };
}

http_request.onreadystatechange = function () {

console.log(http_request.readyState);
if (http_request.readyState === 4) {

var text = http_request.responseText;

var new_node = document.createTextNode(text);

document.getElementById('insert_here').appendChild(new_node);
}

};

console.log("Before Request");
http_request.open('GET', 'ajax_test.txt', true);

http_request.send();
console.log("After Request"); 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

XMLHttpRequest with jQuery
<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">

<title>AJAX jQuery Example</title>

</head>

<body>
<h1>AJAX jQuery Example</h1>

<div id='insert_here'>

</div>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js">

</script>

<script>

$.get("ajax_test.txt", function(data) {
$("#insert_here").html(data);

});

</script>
</body>

</html>
29

30

31

Asynchronous JavaScript and XML
– AJAX

• Can now make web applications that
asynchronously fetch only the required
data from the server
– Can also respond to user input (clicks, form),

and potentially load data
• First reference to the term AJAX

– https://web.archive.org/web/20050223021343
/http://adaptivepath.com/publications/essays/a
rchives/000385.php

32

https://web.archive.org/web/20050223021343/http:/adaptivepath.com/publications/essays/archives/000385.php

How to Design a Web Application
• Depends on the framework you use
• CGI applications

– One single file that responds to multiple path infos
– Multiple files that each respond to their own path

• PHP applications
– Typically many files that correspond 1-1 with a

URL
• ASP applications

– Classic ASP is the same as PHP

33

"Natural" PHP code
<?php

session_start();

$_SESSION['username'] = 'admin';

$username_param = $_GET['username'];
if ($username_param != $_SESSION['username'])

{

if ($_SESSION['username'] != 'admin')

{

echo "<h1>Sorry, you can only view your own comments.</h1>";

exit(0);
}

}

$username = $_SESSION['username'];

?>
34

"Natural" PHP code
<h1>CSC 591 Comments</h1>
<h2>Welcome <?php echo $username; ?>

<p>for debugging purposes you are: <?php echo $_SESSION['loggedin2'];
?></p>

<h2>Here are the comments</h2>

<?php
$db = sqlite_open("comments.sqlite");

$query = "select * from comments where username = '" . sqlite_escape_string($username_param) .
"';";

$res = sqlite_query($query, $db);

if ($res)
{

while ($entry = sqlite_fetch_array($res, SQLITE_ASSOC))

{

?>
<p><?php echo $entry['comment']; ?>

- <?php htmlspecialchars($username); ?>

</p>
<?php

}
?> 35

"Natural" PHP code
<h2>Make your voice heard!</h2>

<form action="add_comment.php?username=<?php echo urlencode($username); ?>"

method="POST">

<textarea name="comment"></textarea>

<input type="submit" value="Submit" />
</form>

<p>

Logout

</p>

<?php

}
else {

?>

<h1>Error</h1><p> <?php echo

htmlspecialchars(sqlite_error_string(sqlite_last_error($db))); ?> </p>

<?php

}

?> 36

Spaghetti Code
• How maintainable is this code?

– Imagine all the files are like this
– You want to change how comments are

stored, giving them extra metadata
– You must change every single SQL query in

every PHP files that touches the comments,
as well as all the outputs

• HTML output intermixed with SQL queries
intermixed with PHP code

37

Tight Coupling of URLs to Scripts
• The natural way to design a web application is to map every

(valid) URL to a specific script that gets executed
• URLs look like:

– http://example.com/add_comment.php
– http://example.com/view_comments.php
– http://example.com/users/view_users.php
– http://example.com/admin/secret.php

• And map directly to the following file structure
– add_comment.php
– view_comments.php
– users/view_users.php
– admin/secret.php

• Is this necessary?

38

39

Model-View-Controller
• User Interface design framework

– A way to separate the concerns of a GUI
– Originally created in the early '90s

• Popularized by Ruby on Rails to structure
the server-side code of web applications

40

41

Separation of Concerns
• Model

– Handles all the "business logic" of the application
– Stores the application state

• View
– Responsible for generating a view for the user of the data

from the model
– Usually a simple templating system to display the data from

the model
• Controller

– Responsible for taking input from the user, fetching the
correct data from the model, then calling the correct view to
display the data

– Should be very simple

42

Object Relational Mapping
• As a programmer, you don't need to worry

about the database or "SQL" language
• Rails (ActiveRecord)

– user = User.create(name: "David",

occupation: "Code Artist")

– david = User.find_by(name: 'David')
– david.destroy()
– Article.where('id >

10').limit(20).order('id asc')
43

Routing
• Define a mapping between URLs and server-side functions
• Also define parameters that get passed to the function from the URL
• Rails example:

class BooksController < ApplicationController

def update

@book = Book.find(params[:id])

if @book.update(book_params)

redirect_to(@book)

else

render "edit"

end

end

end
44

Routing
class BooksController < ApplicationController

def index

@books = Book.all

end

end

45

Templating
• Define the view as a simplified language

– Input: well-defined variables or dictionaries
– Output: HTML (or JSON or XML, …)

• Ruby on Rails uses ERB:

<h1>Listing Books</h1>

…

<% @books.each do |book| %>

<tr>

<td><%= book.title %></td>

<td><%= book.content %></td>

<td><%= link_to "Show", book %></td>
<td><%= link_to "Edit", edit_book_path(book) %></td>

<td><%= link_to "Remove", book, method: :delete, data: { confirm: "Are you

sure?" } %></td>

</tr>

<% end %>

…

<%= link_to "New book", new_book_path %> 46

Flask & Jekyll

• Similar to Ruby on Rails, but in Python
• Very nice tutorial if you want to build your own

(complicated) site
– https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-

part-i-hello-world
• Plain text -> static website

– Jekyll: https://jekyllrb.com/
– What I use for kapravelos.com
– Originally developed for Github Pages
– Easy to host

• Write your own website
– Google App Engine with Flask (link)
– Github Pages (link)

47

https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world
https://jekyllrb.com/
https://cloud.google.com/appengine/docs/standard/python/getting-started/python-standard-env
https://pages.github.com/

