NC STATE UNIVERSITY

CSC 405
Computer Security

Web Security

Alexandros Kapravelos
akaprav@ncsu.edu

(Derived from slides by Giovanni Vigna and Adam Doupe)

NC STATE UNIVERSITY

HI, THIS 15

YOUR SON'S SCHOOL.
WERE HAVING S0ME
(OMPUTER TROUBLE.

\%W

source: https://xkcd.com/327/ N 2//

https://xkcd.com/327/

NC STATE UNIVERSITY

HI, THIS 1S OH, DEAR — DID HE
YOUR SONS SCHOOL. | BREAK SOMETHING?

s | Ma-)

Sl

source: https://xkcd.com/327/ N 3//

https://xkcd.com/327/

NC STATE UNIVERSITY

HI, THIS 15 OH DEAR = DID HE | DID YOU REALLY
YOUR SONG SCHOOL. | BREAK SOMETHING? | NAME YOUR SON
WERE HAVING S0ME N H WAY Robert'); DROP
(OMPUTER TROUBLE. / TABLE Studerts:-- 7

J ~ OH. YES. UITTLE
BOBBY TABLES,
WE CALL HIM.

N N {)':'"'I
source: https://xkcd.com/327/ N 4_//'

https://xkcd.com/327/

NC STATE UNIVERSITY

HI, THIS 1S

WE'RE HAVING SOME
(OMPUTER TROUBLE.

K%W

YOUR SON'S SCHOOL.

source: https://xkcd.com/327/

OH, DEAR — DID HE
BREAK SOMETHING?

IN PLWH‘Y /

S

DID YOU REALLY WELL, WE'VE LOST THIS
NAME YOUR SON YEARS STUDENT RECORDS.
Robert'); DROP I HOPE YOURE HAPPY.
TABLE Students;-~ 7 RI!
{l AND I H(PE
~ OH. YES LUTTLE ~~ YOUVE LEARNED
BOBBY TABLES, TO SANMIZE YOUR
WE CALL HIM. DATABASE INPUTS.
L 2)

https://xkcd.com/327/

SQL Injection

« SQL injection might happen when queries are built using the

parameters provided by the users

— Squery = “select ssn from employees where
name = ‘" + username + “’ °

« By using special characters such as ‘ (tick), -- (comment), +
(add), @variable, @@variable (server internal variable), %
(wildcard), it is possible to:

— Modify queries in an unexpected way
— Probe the database schema and find out about stored procedures
— Run commands (e.g., using xp_commandshell in MS SQL Server)

NC STATE UNIVERSITY

An Example Web Page

.ioix

|Fe Edt Vew Favortes Tods Hep W
U)) ﬂ g b /:“Swd\ - Folders \w”(me Q\mda ek‘ b f Q Pop-Up Stopper
| Address [] ntp: boox uses/ e |k
4
User's Webpage
’
Login
Usemmne:l
Password'l
Submitl Resetl
S 4
€] Done | Mol intanet y PR
RN
C 12))
) &

The Form

<form action="login.asp" method="post">
<table>
<tr><td>Username:</td>
<td><input type="text" name="username"></td></tr>
<tr><td>Password:</td>
<td><input type=password name="password"></td></tr>
</table>
<input type="submit" value="Submit">
<input type="reset" value="Reset">

</form>

A A,
[DBIRI

. <

NC STATE UNIVERSITY

The Login Script

. <% function Login(connection) {
var username = Request.form("username");
var password = Request.form("password");
var rso = Server.CreateObject("ADODB.Recordset");
var sql = "select * from pubs.guest.sa_table \

«tn

where username = + username + "' and \
password = ‘" + password + "'";
rso.open(sql, connection); //perform query
if (rso.EOF) //if record set empty, deny access
{ rso.close();
%> <center>ACCESS DENIED</center> <%
} else { //else grant access
%> <center>ACCESS GRANTED</center> <%

// do stuff here ...

| A
AW
|: ffu} | 1|

N /4

NC STATE UNIVERSITY

The or 1=1 -- Technique

« Given the SQL query string:
"select * from pubs.guest.sa_table \
where username = ‘" + username + "' and \

]

password = ‘" + password + "'";
« By providing the following username:
“or 1=1 --

 the user name (and any password) results in the string:

select * from sa_table where username=‘' or 1=1 --' and
password= ‘"’
— The conditional statement “username="" or 1=1 --"is true whether

or not username is equal to “

— The “-" makes sure that the rest of the SQL statement is interpreted
as a comment and therefore and password =‘’ is not evaluated

| A,
|: DRINI
110

NC STATE UNIVERSITY

Injecting SQL Into Different Types of

Queries

« SQL injection can modify any type of query such as

— SELECT statements
« SELECT * FROM accounts WHERE user=‘'S{u}’ AND pass=‘'S${p}’
— INSERT statements
« INSERT INTO accounts (user, pass) VALUES('S{u}’, ‘S{p}’)
— Note that in this case one must figure out how many values to insert
— UPDATE statements
« UPDATE accounts SET pass=‘S${np}’ WHERE user= ‘S{u}’ AND
pass="${p}’
— DELETE statements
- DELETE * FROM accounts WHERE user=‘S{u}’

ldentifying SQL Injection

« A SQL injection vulnerability can be identified in different
ways
— Negative approach: special-meaning characters in the query will
cause an error (for example: user=""")
— Positive approach: provide an expression that would NOT cause
an error (for example: “17+5" instead of “227, or a string

concatenation)

1

The UNION Operator

» The UNION operator is used to merge the results of two separate
queries

« Ina SQL injection attack this can be exploited to extract
information from the database
« Original query:

— SELECT id, name, price FROM products WHERE
brand=‘'S{b}’

« Modified query passing ${b}="foo’ UNION...”:

— SELECT id, name, price FROM products WHERE brand=‘foo’
UNION SELECT user, pass, NULL FROM accounts -- '

* For this attack to work the attacker must know

— The structure of the query (number of parameters and types have to be
compatible: NULL can be used if the type is not known)

— The name of the table and columns

NC STATE UNIVERSITY

Determining Number and Type of
Query Parameters

« The number of columns in a query can be determined
using progressively longer NULL columns until the

correct query Is returned

— UNION SELECT NULL

— UNION SELECT NULL, NULL

— UNION SELECT NULL, NULL, NULL

* The type of columns can be determined using a similar

technique
— For example, to determine the column that has a string type one

would execute:
« UNION SELECT ‘foo’, NULL, NULL
« UNION SELECT NULL, ‘foo’, NULL
« UNION SELECT NULL, NULL, ‘foo’

it

NC STATE UNIVERSITY

Determining Table and Column Names

« To determine table and column names one has to rely on
techniques that are database-specific

— Oracle

« By using the user_objects table one can extract information about the tables
created for an application

« By using the user_tab_column table one can extract the names of the
columns associated with a table

— MS-SQL
» By using the sysobjects table one can extract information about the tables in
the database

« By using the syscolumns table one can extract the names of the columns
associated with a table

— MySQL
« By using the information_schema one can extract information about the
tables and columns

NC STATE UNIVERSITY

Second-Order SQL Injection

* Ina second-order SQL injection, the code is injected into an
application, but the SQL statement is invoked at a later point
in time

— e.g., Guestbook, statistics page, etc.

« Even if application escapes single quotes, second order SQL

injection might be possible

— Attacker sets user name to: john'--, application safely escapes
value to john' ' -- (note the two single quotes)

— At a later point, attacker changes password (and “sets” a new
password for victim john):

update users set password='hax’' where
database_handle(“username”)=‘john’'--"

16

register.php
<?php

session_start();

$sql = "insert into users (username, password) values (

mysql real escape string($ POST['name']) . "',
mysql real escape string($ POST['password']) . "');";

mysq_query($sql);

$user_id = mysql _insert_id();

¢ SESSION['uid'] = $user id; 2 19))
'

NC STATE UNIVERSITY

change password.php

<?php

session_start();

$new _password = $ POST['password'];

$res = mysqgl query(“"select username, password from users where
id = '"" . $ SESSION[‘uid'] . "';");

$row = mysql fetch_assoc($result);

$query = "update users set password =

mysql real escape_string($new password) . where username =

.$row["username’'].""' and password = '".$row['password'].""';";

mysql_guery($query); C |2))

Blind SQL Injection

« A typical countermeasure is to prohibit the display of
error messages. However, a web application may still be
vulnerable to blind SQL injection

 Example: a news site

— Press releases are accessed with pressRelease.jsp?id=5

— A SQL query is created and sent to the database:

e select title, description FROM pressReleases where
id=5;

— All error messages are filtered by the application

19

Blind SQL Injection

« How can we inject statements into the application and exploit
it?
— We do not receive feedback from the application so we can use a
trial-and-error approach
— First, we try to inject pressRelease.jsp?id=5 AND 1=1
— The SQL query is created and sent to the database:

« select title, description FROM pressReleases where id=5
AND 1=1

— If there is a SQL injection vulnerability, the same press release
should be returned

— If input is validated, id=5 AND 1=1 should be treated as the value

2

Blind SQL Injection

* When testing for vulnerability, we know 1=1 is always true

— However, when we inject other statements, we do not have any
information

— What we know: If the same record is returned, the statement must
have been true

— For example, we can ask server if the current user is “h4x0r”:

* pressRelease.jsp?id=5 AND user_name()="h4x0r’

— By combining subqueries and functions, we can ask more complex
questions (e.g., extract the name of a database table character by
character)

e pressRelease.jsp?id=5 AND SUBSTRING(user _name(), 1,
1) < '?’°

oA

NC STATE UNIVERSITY

SQL Injection Solutions

« Developers should never allow client-supplied data to

modify SQL statements

« Stored procedures
— Isolate applications from SQL
— All SQL statements required by the application are stored
procedures on the database server
* Prepared statements
— Statements are compiled into SQL statements before user input

IS added

2

NC STATE UNIVERSITY

SQL Injection Solutions:

Stored Procedures

 Original query:
— String query = "SELECT ftitle, description from pressReleases
WHERE id= “+ request.getParameter(“id”);
— Statement stat = dbConnection.createStatement();
— ResultSet rs = stat.executeQuery(query);
« The first step to secure the code is to take the SQL
statements out of the web application and intotheDB

— CREATE PROCEDURE getPressRelease @id integer AS SELECT title,
description FROM pressReleases WHERE Id = @id

NC STATE UNIVERSITY

SQL Injection Solutions:

Stored Procedures

* Now, in the application, instead of string-building SQL, a
stored procedure is invoked. For example, in Java:
CallableStatements cs = dbConnection.prepareCall(
“{call getPressRelease(?)}”);

cs.setInt(1,

Integer.parseInt(request.getParameter(“id”)));
ResultSet rs = cs.executeQuery();

a4

NC STATE UNIVERSITY

SQL Injection Solutions:

Prepared Statements

* Prepared statements allow for the clear separation of what is
to be considered data and what is to be considered code

« A query is performed in a two-step process:

— First the query is parsed and the location of the parameters
identified (this is the “preparation”)

— Then the parameters are bound to their actual values

* In some cases, prepared statements can also improve the
performance of a query

L2

NC STATE UNIVERSITY

SQL Injection Solutions:
Prepared Statements

Smysqli = new mysqgli("localhost", "my_user", "my_pass", "db");
Sstmt = Smysqli->stmt_init();

Sstmt->prepare("SELECT District FROM City WHERE Name=?"));
Sstmt->bind_param("s", Scity);

" n “ = n

/* type can be “s” = string, “i" = integer .. */

Sstmt->execute();

Sstmt->bind_result(Sdistrict);

Sstmt->fetch();

printf("%s is in district %s\n", Scity, Sdistrict);
Sstmt->close();}

