
CSC 405
SSL/TLS & HTTPS

Alexandros Kapravelos
akaprav@ncsu.edu

HTTP Workflow

HTTPS Workflow

3

1
User enters web address in address

bar

2
Browser looks up IP address of the

URL via DNS

3
Browser submits request for SSL

Connect from Website

4
Website responds with an SSL

certificate

Receive request
for SSL cert

Retrieves public SSL
cert from drive

Transfers cert to
User

HTTPS Workflow

5
User verifies SSL certificate is

issued to website and not expired

6 User generates a random number

7
User encrypts session key with

public key

8
Website decrypts the session key

with their private key

9
"Secure" communication can now

occur between the two

Retrieves public SSL cert
from drive

Transfers cert
to User

User verifies
certificate

User generates
session key Website verifies session key

with private key

Website switches
communications to session

key encryption
Secure

Communication
Begins

SSL vs TLS
● SSL (Secure Sockets Layer): Developed by Netscape in the mid-1990s.

SSL versions 1.0 (never publicly released), 2.0, and 3.0 were created.
● TLS (Transport Layer Security): When SSL 3.0 was found to have

security weaknesses, the Internet Engineering Task Force (IETF) took over
development, improved upon it, and released it under the new name TLS.
○ TLS 1.0 was released in 1999, essentially an upgrade of SSL 3.0.
○ TLS 1.1, 1.2, and the current strongest version, TLS 1.3 (released in 2018),

followed, each bringing significant security and performance improvements.

Creating the Certificate
Step One: Generate a Certificate Signing Request (CSR)

openssl req -nodes -newkey rsa:2048 -keyout myserver.key -out server.csr

You are about to be asked to enter information that will be incorporated into your
certificate request.
...

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:NC
Locality Name (eg, city) []:Raleigh
Organization Name (eg, company) [Internet Widgits Pty Ltd]:NC State University
Organizational Unit Name (eg, section) []:HackPack
Common Name (e.g. server FQDN or YOUR name) []:Hack T. Pack
Email Address []:hackpackclub@ncsu.edu

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

Creating the Certificate
Step One: Generate a Certificate Signing Request (CSR)

openssl req -nodes -newkey rsa:2048 -keyout myserver.key -out server.csr

This will generate two files with RSA-2048 encryption

myserver.key server.csr

Creating the CSR
Step One: Generate a Certificate Signing Request (CSR)

openssl req -nodes -newkey rsa:2048 -keyout myserver.key -out server.csr

This will generate two files with RSA-2048 encryption

myserver.key server.csr

The .key file becomes your internal
private key for encryption

Creating the CSR
Step One: Generate a Certificate Signing Request (CSR)

openssl req -nodes -newkey rsa:2048 -keyout myserver.key -out server.csr

This will generate two files with RSA-2048 encryption

myserver.key server.csr

The .csr file contains the
information entered during creation

Submitting Your CSR

• The CSR file is then submitted to a Certificate Authority
– These entities in turn verify the certificate for users and the server
– Once verified by the CA, the registering party will receive a signed

version of the certificate

Submitting Your CSR

• The CSR file is then submitted to a Certificate Authority
– These entities in turn verify the certificate for users and the server
– Once verified by the CA, the registering party will receive a signed

version of the certificate

Congratulations!

You've registered for SSL!

The Foundation of Trust: Certificate Authorities (CAs)

• Who are they? CAs are trusted third-party organizations (e.g., Let's
Encrypt, DigiCert, GlobalSign).

• What do they do? They issue digital certificates (like SSL/TLS
certificates).

• Core Function: To verify the identity of an entity (like a website owner)
and bind that identity to a cryptographic public key.

How CAs Enable Secure Connections (TLS/SSL)
1. Verification: A website owner proves their identity and control over a domain to a

CA.
2. Issuance: The CA issues a certificate containing the website's domain name,

public key, and other details. This certificate is digitally signed by the CA using its
private key.

3. Browser Trust: Your web browser and operating system come pre-loaded with a
list of trusted Root CAs and their public keys (the "Trust Store").

4. Connection: When you visit an HTTPS website:
5. The website presents its certificate.
6. Your browser checks if the certificate was signed by a CA in its Trust Store.
7. It verifies the signature using the CA's public key.
8. It checks if the certificate is valid (not expired, revoked) and matches the domain

name.
9. Result: If everything checks out, the browser trusts the server's identity and

establishes an encrypted connection. This system allows millions of websites to
be trusted without prior direct relationships.

Upload Your Key and Cert to the Server

• Transfer the myserver.key file to your server
– Typically stored somewhere like /etc/ssl/

[user@server ~] ls /etc/ssl/key
myserver.key

Upload Your Key and Cert to the Server

• Transfer the signed certificate files to your server
– Typically domainName.crt and domainName.ca-bundle

[user@server ~] ls /etc/ssl/cert
domainName.crt
domainName.ca-bundle

Configure Your Server

• This will range from the application running your server
(Apache, nginx, etc.)

[user@server ~] cat /etc/httpd/conf/httpd.conf
...
Load config files in "/etc/httpd/conf.d" directory, if any.
IncludeOptional conf.d/*.conf
<VirtualHost *:80>
 ServerName domainname.tld
 Redirect "/" "https://domainname.tld/"
</VirtualHost>

Apache Configuration

Configure Your Server

• This will range from the application running your server
(Apache, nginx, etc.)

[user@server ~] cat /etc/httpd/conf/httpd.conf
...
Load config files in "/etc/httpd/conf.d" directory, if any.
IncludeOptional conf.d/*.conf
<VirtualHost *:80>
 ServerName domainname.tld
 Redirect "/" "https://domainname.tld/"
</VirtualHost>

Establish that requests occurring from Port 80 should be
redirected to the HTTPS address (Port 443)

Configure Your Server

• This will range from the application running your server
(Apache, nginx, etc.)

[user@server ~] cat /etc/httpd/conf.d/ssl.conf
<VirtualHost _default_:443>
 ServerName domainName:65432
 SSLEngine on
 SSLCertificateFile /etc/ssl/cert/domainName.crt
 SSLCertificateKeyFile /etc/ssl/key/myserver.key
 ...
 ProxyPass / uwsgi://localhost:65432/
 ProxyPassReverse / uwsgi://localhost:65432/
</VirtualHost>

Configure Your Server

• This will range from the application running your server
(Apache, nginx, etc.)

[user@server ~] cat /etc/httpd/conf.d/ssl.conf
<VirtualHost _default_:443>
 ServerName domainName:65432
 SSLEngine on
 SSLCertificateFile /etc/ssl/cert/domainName.crt
 SSLCertificateKeyFile /etc/ssl/key/myserver.key
 ...
 ProxyPass / uwsgi://localhost:65432/
 ProxyPassReverse / uwsgi://localhost:65432/
</VirtualHost>

Now, communications occur via the 443
port, which can in turn redirect traffic to
internal applications or /var/www/html

Configure Your Server

• This will range from the application running your server
(Apache, nginx, etc.)

[user@server ~] cat /etc/httpd/conf.d/ssl.conf
<VirtualHost _default_:443>
 ServerName domainName:65432
 SSLEngine on
 SSLCertificateFile /etc/ssl/cert/domainName.crt
 SSLCertificateKeyFile /etc/ssl/key/myserver.key
 ...
 ProxyPass / uwsgi://localhost:65432/
 ProxyPassReverse / uwsgi://localhost:65432/
</VirtualHost>

Congratulations! You're
website is HTTPS!

Configure Your Server

• This will range from the application running your server
(Apache, nginx, etc.)

[user@server ~] systemctl restart httpd

Now restart Apache…

The Life of a Computer Scientist…

• This will range from the application running your server
(Apache, nginx, etc.)

…and debug whatever
you broke 😆

domainName.tld

Let's Encrypt
Literally no reason to not have SSL encryption on your site

https://letsencrypt.org/

[user@server ~] snap install core
[user@server ~] snap refresh core
[user@server ~] snap install --classic certbot
[user@server ~] ln -s /snap/bin/certbot /usr/bin/certbot
[user@server ~] certbot --apache

https://letsencrypt.org/

HTTPS Workflow

5
User verifies SSL certificate is

issued to website and not expired

6 User generates a random number

7
User encrypts session key with

public key

8
Website decrypts the session key

with their private key

9
"Secure" communication can now

occur between the two

Retrieves public SSL cert
from drive

Transfers cert
to User

User verifies
certificate

User generates
session key Website verifies session key

with private key

Website switches
communications to session

key encryption
Secure

Communication
Begins

Where's the
vulnerability?

SSL Hijacking

Attacker sends a phishing attack utilizing
JavaScript to install a bogus CA certificate

business.com

SSL Hijacking

The user's DNS caches are poisoned to
make the user's browser route traffic to
business.com to attacker's IP Address

business.com

Known as
"DNS Poisoning"

SSL Hijacking

Attacker also configures their server
to act as a proxy to business.com

business.com

SSL Hijacking

When the user attempts to connect to
business.com, their DNS cache
points to the attacker's server and
accepts the fake SSL certificate

business.com

SSL Hijacking

User's request is decrypted by
attacker, logged, and then relayed to

business.com's server

business.com

SSL Hijacking

This attack will persist until the
user's DNS cache expires

business.com

SSL Hijacking

If the victim installs the fake CA certificate
onto the system, detecting SSL hijacking

becomes nearly impossible

business.com

SSL Hijacking

If the server also relies on
Session IDs, the attacker can also

store those for future attacks

PHPSESSID=1234

business.com

The Problem: Limitations of Standard TLS Trust
● Standard TLS/SSL: Relies on a chain of trust rooted in Certificate

Authorities (CAs).
● Trust Model: Your device/browser trusts hundreds of CAs globally.
● The Weak Link: What if a trusted CA is compromised or tricked into

issuing a fraudulent certificate for a legitimate domain?
● The Threat: A Man-in-the-Middle (MitM) attacker could present this

fraudulent (but technically valid) certificate.
● Result: Standard validation would succeed, allowing interception of

sensitive data, even over HTTPS.

What is Certificate Pinning?
● Definition: A security technique where an application associates a specific

host directly with its expected X.509 certificate or public key.
● Mechanism: Instead of trusting any certificate signed by a trusted CA, the

application only trusts the specific certificate(s) or public key(s) it has
"pinned".

● Implementation: Usually done within the client application (e.g., mobile
apps, specific software).

● What's Pinned?:
○ The hash of the entire certificate.
○ The hash of the certificate's Subject Public Key Info (SPKI) - often

preferred for flexibility.
○

How Pinning Works & Benefits
1. Connection Attempt: Application connects to a host (e.g.,

secure.service.com).
2. Server Responds: Server presents its TLS certificate chain.
3. Pin Check: Application extracts the certificate/public key from the server's

response.
4. Comparison: It compares the extracted info against its stored ("pinned")

values for that specific host.
5. Decision:

○ Match: Connection proceeds securely.
○ Mismatch: Connection is ABORTED, even if the certificate chain

validates against the device's trusted CAs.

Primary Benefit: Drastically reduces the attack surface for MitM attacks using
compromised or fraudulent CA certificates.

● Maintenance Burden:
○ Pinned certificates expire! The application must be updated before the

server certificate changes.
○ Requires careful coordination between server administration and app

development/release cycles.
● Risk of "Bricking": If the server certificate changes unexpectedly (e.g.,

emergency rotation, mistake) before the app is updated with the new pin, the app
will refuse to connect, locking users out.

● Inflexibility: Can break connections when users are behind corporate web
proxies that intercept TLS traffic using their own certificates (a legitimate form of
MitM in that context).

● Alternatives/Complements: Certificate Transparency (CT) logs help detect
mis-issued certificates publicly.

● When to Use: Best suited for applications with high-security requirements (e.g.,
banking, finance) where the extra operational complexity is justified. Pinning
public keys offers more flexibility than pinning full certificates.

Drawbacks & Considerations

Certificate Search

• Certificates are public and searchable
• Based on Certificate Transparency (CT) Logs

• https://crt.sh/?q=hackpack.club

• https://crt.sh/?q=tiktok

https://crt.sh/?q=hackpack.club
https://crt.sh/?q=tiktok

The State of https Adoption on the Web
Workshop on Measurements, Attacks, and Defenses for the Web

(MADWeb) 2025 link

https://research.mozilla.org/files/2025/03/the_state_of_https_adoption_on_the_web.pdf

Let’s Encrypt
• Let’s Encrypt issued its first certificate in 2015
• It democratized web security
• Let's Encrypt is funded entirely through charitable contributions, primarily

from corporate sponsorships and individual donations
• Grew from serving a few thousand domains to nearly 600 million between

2015-2025
• Currently issues more than 6 million TLS certificates daily
• Serves more than 550 million websites worldwide
• Has become the world's largest certificate authority, providing more HTTPS

certificates than all other certificate authorities combined
• It’s operating budget is ~$3m/year (!)

https://letsencrypt.org/stats/

https://letsencrypt.org/stats/

