
CSC 574
Computer and Network Security

Reverse Engineering

Alexandros Kapravelos
kapravelos@ncsu.edu

(Derived from slides by Chris Kruegel)

2

Introduction
• Reverse engineering

– process of analyzing a system
– understand its structure and functionality
– used in different domains (e.g., consumer electronics)

• Software reverse engineering
– understand architecture (from source code)
– extract source code (from binary representation)
– change code functionality (of proprietary program)
– understand message exchange (of proprietary protocol)

3

Software Engineering

00101000110111
01010101111000

mov eax, ebx
xor eax, eax

int x;
while (x<10){

Machine code

Assembler

C, Pascal,..

First generation
language

Second
generation
language

Third
generation
language

Assemble

Compile

4

Software Reverse Engineering

00101000110111
01010101111000

mov eax, ebx
xor eax, eax

int x;
while (x<10){

Machine code

Assembler

C, Pascal,..

First generation
language

Second
generation
language

Third
generation
language

Disassemble

De-compile

5

Going Back is Hard!

• Fully-automated disassemble/de-compilation of arbitrary
machine-code is theoretically an undecidable problem

• Disassembling problems
– hard to distinguish code (instructions) from data

• De-compilation problems
– structure is lost

• data types are lost, names and labels are lost

– no one-to-one mapping
• same code can be compiled into different (equivalent) assembler blocks

• assembler block can be the result of different pieces of code

6

Why Reverse Engineering

• Software interoperability
– Samba (SMB Protocol)
– OpenOffice (MS Office document formats)

• Emulation
– Wine (Windows API)
– React-OS (Windows OS)

• Malware analysis
• Program cracking
• Compiler validation

7

Analyzing a Binary

Static Analysis

• Identify the file type and its characteristics
– architecture, OS, executable format...

• Extract strings
– commands, password, protocol keywords...

• Identify libraries and imported symbols
– network calls, file system, crypto libraries

• Disassemble
– program overview
– finding and understanding important functions

• by locating interesting imports, calls, strings...

8

Analyzing a Binary

Dynamic Analysis

• Memory dump
– extract code after decryption, find passwords...

• Library/system call/instruction trace
– determine the flow of execution
– interaction with OS

• Debugging running process
– inspect variables, data received by the network, complex

algorithms..

• Network sniffer
– find network activities
– understand the protocol

9

Static Techniques

• Gathering program information

– get some rough idea about binary (file)

– strings that the binary contains (strings)

Static Techniques
• Examining the program (ELF) header (elfsh)

10

Program entry point

11

Static Techniques

• Used libraries
– easier when program is dynamically linked (ldd)

– more difficult when program is statically linked

Interesting “shared” library
–
used for (fast) system calls

Static Techniques
Looking at linux-gate.so.1

12

13

Static Techniques

• Used library functions
– again, easier when program is dynamically linked (nm -D)

– more difficult when program is statically linked

14

Static Techniques

Recognizing libraries in statically-linked programs
• Basic idea

– create a checksum (hash) for bytes in a library function

• Problems
– many library functions (some of which are very short)
– variable bytes – due to dynamic linking, load-time patching,

linker optimizations

• Solution
– more complex pattern file
– uses checksums that take into account variable parts
– implemented in IDA Pro as:

Fast Library Identification and Recognition Technology (FLIRT)

15

Static Techniques

• Program symbols
– used for debugging and linking
– function names (with start addresses)
– global variables
– use nm to display symbol information
– most symbols can be removed with strip

• Function call trees
– draw a graph that shows which function calls which others
– get an idea of program structure

16

Static Techniques

Displaying program symbols

17

Static Techniques

• Disassembly
– process of translating binary stream into machine instructions

• Different level of difficulty
– depending on ISA (instruction set architecture)

• Instructions can have
– fixed length

• more efficient to decode for processor
• RISC processors (SPARC, MIPS)

– variable length
• use less space for common instructions
• CISC processors (Intel x86)

18

Static Techniques

• Fixed length instructions
– easy to disassemble
– take each address that is multiple of instruction length as instruction start
– even if code contains data (or junk), all program instructions are found

• Variable length instructions
– more difficult to disassemble
– start addresses of instructions not known in advance
– different strategies

• linear sweep disassembler
• recursive traversal disassembler

– disassembler can be desynchronized with respect to actual code

19

Intel x86 Assembler Primer

• Assembler Language
– human-readable form of machine instructions
– must understand the hardware architecture, memory model, and

stack

• AT&T syntax
– mnemonic source(s), destination
– standalone numerical constants are prefixed with a $
– hexadecimal numbers start with 0x
– registers are specified with %

20

Intel x86 Assembler Primer
• Registers

– local variables of processor
– six 32-bit general purpose registers

• can be used for calculations, temporary storage of values, …
%eax, %ebx, %ecx, %edx, %esi, %edi

– several 32-bit special purpose registers
%esp- stack pointer
%ebp- frame pointer
%eip- instruction pointer

• Important mnemonics (instructions)
mov data transfer
add / subarithmetic
cmp / test compare two values and set control flags
je / jne conditional jump depending on control flags (branch)
jmp unconditional jump

Intel x86 Assembler Primer
Status (EFLAGS) Register

21

Intel x86 Assembler Primer

• Status (EFLAGS) Register
– used for control flow decision
– set implicit by many operations (arithmetic, logic)

• Flags typically used for control flow
– CF (carry flag)

• set when operation “carries out” most significant bit
– ZF (zero flag)

• set when operation yields zero
– SF (signed flag)

• set when operation yields negative result
– OF (overflow flag)

• set when operation causes 2’s complement overflow
– PF (parity flag)

• set when the number of ones in result of operation is even

22

Intel x86 Assembler Primer

23

Instruction Synonym Jump condition Description

jmp label
jmp *operand

1
1

direct jump
indirect jump

je label
jne label

jz
jnz

ZF
~ZF

equal/zero
not equal/zero

js label
jns label

SF
~SF

negative
non-negative

jg label
jge label
jl label
jle label

jnle
jnl
jnge
jng

~(SF ^ OF) & ~ZF
(~SF ^ OF)
SF ^ OF
(SF ^ OF) | ZF

greater than (signed)
greater or equal (signed)
less than (signed)
less or equal (signed)

ja label
jae label
jb label
jbe label

jnbe
jnb
jnae
jna

~CF & ~ZF
~CF
CF
CF | ZF

above (unsigned)
above or equal (unsigned)
below (unsigned)
below or equal (unsigned)

Intel x86 Assembler Primer

• When are flags set?
– implicit, as a side effect of many operations
– can use explicit compare / test operations

• Compare
cmp b, a [note the order of operands]
– computes (a – b) but does not overwrite destination
– sets ZF (if a == b), SF (if a < b) [and also OF and CF]

• How is a branch operation implemented
– typically, two step process

first, a compare/test instruction
followed by the appropriate jump instruction

24

Intel x86 Assembler Primer

• Program can access data stored in memory
– memory is just a linear (flat) array of memory cells (bytes)
– accessed in different ways (called addressing modes)

• Most general fashion
– address: displacement(%base, %index, scale)

where the result address is displacement + %base + %index*scale

• Simplified variants are also possible
– use only displacement → direct addressing
– use only single register → register addressing

25

26

Intel x86 Assembler Primer

• Stack
– managed by stack pointer (%esp) and frame pointer (%ebp)
– special commands (push, pop)
– used for

• function arguments
• function return address
• local arguments

• Byte ordering
– important for multi-byte values (e.g., four byte long value)
– Intel uses little endian ordering
– how to represent 0x03020100 in memory?

0x040 0
0x041 1
0x042 2
0x043 3

Intel x86 Assembler Primer

27

no input

returns a status code, you can view it by typing echo $?

%ebx holds the return code

.section .text

.globl _start

_start:

movl $1, %eax # This is the system call for exiting program

movl $0, %ebx # This value is returned as status

int $0x80 # This interrupt calls the kernel, to execute sys call

Intel x86 Assembler Primer
• So how do we create the application?

– we need to assemble and link the code
– this can be done by using the assembler as (or gcc)

• Assemble
as exit.s –o exit.o |
 gcc –c –o exit.o exit.s

• Link
ld –o exit exit.o |
 gcc –nostartfiles –o exit exit.o

28

29

Intel x86 Assembler Primer

• If statement

#include <stdio.h>

int main(int argc, char **argv)
{
 int a;

 if(a < 0) {
 printf("A < 0\n");
 }
 else {
 printf("A >= 0\n");
 }
}

.LC0:
 .string "A < 0\n"

.LC1:

 .string "A >= 0\n"

.globl main

 .type main, @function

main:

 [function prologue]

 cmpl $0, -4(%ebp) /* compute: a – 0 */

 jns .L2 /* jump, if sign bit

 not set: a >= 0 */

 movl $.LC0, (%esp)

 call printf

 jmp .L3

.L2:

 movl $.LC1, (%esp)

 call printf

.L3:

 leave

 ret

30

Intel x86 Assembler Primer

• While statement

#include <stdio.h>

int main(int argc, char **argv)
{
 int i;

 i = 0;
 while(i < 10)
 {
 printf("%d\n", i);
 i++;
 }
}

.LC0:
 .string "%d\n"

main:
 [function prologue]
 movl $0, -4(%ebp)

.L2:
 cmpl $9, -4(%ebp)
 jle .L4
 jmp .L3
.L4:
 movl -4(%ebp), %eax
 movl %eax, 4(%esp)
 movl $.LC0, (%esp)
 call printf
 leal -4(%ebp), %eax
 incl (%eax)
 jmp .L2
.L3:
 leave
 ret

Intel x86 Assembler Primer
Task: Find the maximum of a list of numbers

– Questions to ask:
• Where will the numbers be stored?
• How do we find the maximum number?
• How much storage do we need?
• Will registers be enough or is memory needed?

– Let us designate registers for the task at hand:
• %edi holds position in list
• %ebx will hold current highest
• %eax will hold current element examined

31

