
CSC 574
Computer and Network Security

Reverse Engineering

Alexandros Kapravelos
kapravelos@ncsu.edu

(Derived from slides by Chris Kruegel)

2

Introduction
• Reverse engineering

– process of analyzing a system
– understand its structure and functionality
– used in different domains (e.g., consumer electronics)

• Software reverse engineering
– understand architecture (from source code)
– extract source code (from binary representation)
– change code functionality (of proprietary program)
– understand message exchange (of proprietary protocol)

3

Software Engineering

00101000110111
01010101111000

mov eax, ebx
xor eax, eax

int x;
while (x<10){

Machine code

Assembler

C, Pascal,..

First generation
language

Second
generation
language

Third
generation
language

Assemble

Compile

4

Software Reverse Engineering

00101000110111
01010101111000

mov eax, ebx
xor eax, eax

int x;
while (x<10){

Machine code

Assembler

C, Pascal,..

First generation
language

Second
generation
language

Third
generation
language

Disassemble

De-compile

5

Going Back is Hard!

• Fully-automated disassemble/de-compilation of arbitrary
machine-code is theoretically an undecidable problem

• Disassembling problems
– hard to distinguish code (instructions) from data

• De-compilation problems
– structure is lost

• data types are lost, names and labels are lost

– no one-to-one mapping
• same code can be compiled into different (equivalent) assembler blocks

• assembler block can be the result of different pieces of code

6

Why Reverse Engineering

• Software interoperability
– Samba (SMB Protocol)
– OpenOffice (MS Office document formats)

• Emulation
– Wine (Windows API)
– React-OS (Windows OS)

• Malware analysis
• Program cracking
• Compiler validation

7

Analyzing a Binary

Static Analysis

• Identify the file type and its characteristics
– architecture, OS, executable format...

• Extract strings
– commands, password, protocol keywords...

• Identify libraries and imported symbols
– network calls, file system, crypto libraries

• Disassemble
– program overview
– finding and understanding important functions

• by locating interesting imports, calls, strings...

8

Analyzing a Binary

Dynamic Analysis

• Memory dump
– extract code after decryption, find passwords...

• Library/system call/instruction trace
– determine the flow of execution
– interaction with OS

• Debugging running process
– inspect variables, data received by the network, complex

algorithms..

• Network sniffer
– find network activities
– understand the protocol

9

Static Techniques

• Gathering program information

– get some rough idea about binary (file)

– strings that the binary contains (strings)

Static Techniques
• Examining the program (ELF) header (elfsh)

10

Program entry point

11

Static Techniques

• Used libraries
– easier when program is dynamically linked (ldd)

– more difficult when program is statically linked

Interesting “shared” library
–
used for (fast) system calls

Static Techniques
Looking at linux-gate.so.1

12

13

Static Techniques

• Used library functions
– again, easier when program is dynamically linked (nm -D)

– more difficult when program is statically linked

14

Static Techniques

Recognizing libraries in statically-linked programs
• Basic idea

– create a checksum (hash) for bytes in a library function

• Problems
– many library functions (some of which are very short)
– variable bytes – due to dynamic linking, load-time patching,

linker optimizations

• Solution
– more complex pattern file
– uses checksums that take into account variable parts
– implemented in IDA Pro as:

Fast Library Identification and Recognition Technology (FLIRT)

15

Static Techniques

• Program symbols
– used for debugging and linking
– function names (with start addresses)
– global variables
– use nm to display symbol information
– most symbols can be removed with strip

• Function call trees
– draw a graph that shows which function calls which others
– get an idea of program structure

16

Static Techniques

Displaying program symbols

17

Static Techniques

• Disassembly
– process of translating binary stream into machine instructions

• Different level of difficulty
– depending on ISA (instruction set architecture)

• Instructions can have
– fixed length

• more efficient to decode for processor
• RISC processors (SPARC, MIPS)

– variable length
• use less space for common instructions
• CISC processors (Intel x86)

18

Static Techniques

• Fixed length instructions
– easy to disassemble
– take each address that is multiple of instruction length as instruction start
– even if code contains data (or junk), all program instructions are found

• Variable length instructions
– more difficult to disassemble
– start addresses of instructions not known in advance
– different strategies

• linear sweep disassembler
• recursive traversal disassembler

– disassembler can be desynchronized with respect to actual code

19

Intel x86 Assembler Primer

• Assembler Language
– human-readable form of machine instructions
– must understand the hardware architecture, memory model, and

stack

• AT&T syntax
– mnemonic source(s), destination
– standalone numerical constants are prefixed with a $
– hexadecimal numbers start with 0x
– registers are specified with %

20

Intel x86 Assembler Primer
• Registers

– local variables of processor
– six 32-bit general purpose registers

• can be used for calculations, temporary storage of values, …
%eax, %ebx, %ecx, %edx, %esi, %edi

– several 32-bit special purpose registers
%esp- stack pointer
%ebp- frame pointer
%eip- instruction pointer

• Important mnemonics (instructions)
mov data transfer
add / subarithmetic
cmp / test compare two values and set control flags
je / jne conditional jump depending on control flags (branch)
jmp unconditional jump

Intel x86 Assembler Primer
Status (EFLAGS) Register

21

Intel x86 Assembler Primer

• Status (EFLAGS) Register
– used for control flow decision
– set implicit by many operations (arithmetic, logic)

• Flags typically used for control flow
– CF (carry flag)

• set when operation “carries out” most significant bit
– ZF (zero flag)

• set when operation yields zero
– SF (signed flag)

• set when operation yields negative result
– OF (overflow flag)

• set when operation causes 2’s complement overflow
– PF (parity flag)

• set when the number of ones in result of operation is even

22

Intel x86 Assembler Primer

23

Instruction Synonym Jump condition Description

jmp label
jmp *operand

1
1

direct jump
indirect jump

je label
jne label

jz
jnz

ZF
~ZF

equal/zero
not equal/zero

js label
jns label

SF
~SF

negative
non-negative

jg label
jge label
jl label
jle label

jnle
jnl
jnge
jng

~(SF ^ OF) & ~ZF
(~SF ^ OF)
SF ^ OF
(SF ^ OF) | ZF

greater than (signed)
greater or equal (signed)
less than (signed)
less or equal (signed)

ja label
jae label
jb label
jbe label

jnbe
jnb
jnae
jna

~CF & ~ZF
~CF
CF
CF | ZF

above (unsigned)
above or equal (unsigned)
below (unsigned)
below or equal (unsigned)

Intel x86 Assembler Primer

• When are flags set?
– implicit, as a side effect of many operations
– can use explicit compare / test operations

• Compare
cmp b, a [note the order of operands]
– computes (a – b) but does not overwrite destination
– sets ZF (if a == b), SF (if a < b) [and also OF and CF]

• How is a branch operation implemented
– typically, two step process

first, a compare/test instruction
followed by the appropriate jump instruction

24

Intel x86 Assembler Primer

• Program can access data stored in memory
– memory is just a linear (flat) array of memory cells (bytes)
– accessed in different ways (called addressing modes)

• Most general fashion
– address: displacement(%base, %index, scale)

where the result address is displacement + %base + %index*scale

• Simplified variants are also possible
– use only displacement → direct addressing
– use only single register → register addressing

25

26

Intel x86 Assembler Primer

• Stack
– managed by stack pointer (%esp) and frame pointer (%ebp)
– special commands (push, pop)
– used for

• function arguments
• function return address
• local arguments

• Byte ordering
– important for multi-byte values (e.g., four byte long value)
– Intel uses little endian ordering
– how to represent 0x03020100 in memory?

0x040 0
0x041 1
0x042 2
0x043 3

Intel x86 Assembler Primer

27

no input

returns a status code, you can view it by typing echo $?

%ebx holds the return code

.section .text

.globl _start

_start:

movl $1, %eax # This is the system call for exiting program

movl $0, %ebx # This value is returned as status

int $0x80 # This interrupt calls the kernel, to execute sys call

Intel x86 Assembler Primer
• So how do we create the application?

– we need to assemble and link the code
– this can be done by using the assembler as (or gcc)

• Assemble
as exit.s –o exit.o |
 gcc –c –o exit.o exit.s

• Link
ld –o exit exit.o |
 gcc –nostartfiles –o exit exit.o

28

29

Intel x86 Assembler Primer

• If statement

#include <stdio.h>

int main(int argc, char **argv)
{
 int a;

 if(a < 0) {
 printf("A < 0\n");
 }
 else {
 printf("A >= 0\n");
 }
}

.LC0:
 .string "A < 0\n"

.LC1:

 .string "A >= 0\n"

.globl main

 .type main, @function

main:

 [function prologue]

 cmpl $0, -4(%ebp) /* compute: a – 0 */

 jns .L2 /* jump, if sign bit

 not set: a >= 0 */

 movl $.LC0, (%esp)

 call printf

 jmp .L3

.L2:

 movl $.LC1, (%esp)

 call printf

.L3:

 leave

 ret

30

Intel x86 Assembler Primer

• While statement

#include <stdio.h>

int main(int argc, char **argv)
{
 int i;

 i = 0;
 while(i < 10)
 {
 printf("%d\n", i);
 i++;
 }
}

.LC0:
 .string "%d\n"

main:
 [function prologue]
 movl $0, -4(%ebp)

.L2:
 cmpl $9, -4(%ebp)
 jle .L4
 jmp .L3
.L4:
 movl -4(%ebp), %eax
 movl %eax, 4(%esp)
 movl $.LC0, (%esp)
 call printf
 leal -4(%ebp), %eax
 incl (%eax)
 jmp .L2
.L3:
 leave
 ret

Intel x86 Assembler Primer
Task: Find the maximum of a list of numbers

– Questions to ask:
• Where will the numbers be stored?
• How do we find the maximum number?
• How much storage do we need?
• Will registers be enough or is memory needed?

– Let us designate registers for the task at hand:
• %edi holds position in list
• %ebx will hold current highest
• %eax will hold current element examined

31

Intel x86 Assembler - Algorithm

• Check if %eax is zero (i.e., termination sign)
– if yes, exit
– if not, increase current position %edi

• Load next value in the list to %eax
– we need to think about what addressing mode to use here

• Compare %eax (current value) with %ebx (highest value so far)
– if the current value is higher, replace %ebx

• Repeat

32

Intel x86 Assembler - Code

33

.section .data

data_items:

.long 3,67,34,222,45,75,54,34,44,33,22,11,66,0

.section .text

.globl _start

_start:

 movl $0, %edi # Reset index

 movl data_items(,%edi,4), %eax

 movl %eax, %ebx #First item is the biggest so far

Intel x86 Assembler - Code

34

start_loop:

 cmpl $0, %eax

 je loop_exit

 incl %edi # Increment edi

 movl data_items(,%edi,4), %eax # Load the next value

 cmpl %ebx, %eax # Compare ebx with eax

 jle start_loop # If it is less, just jump to the beginning

 movl %eax, %ebx # Otherwise, store the new largest number

 jmp start_loop

loop_exit:

 movl $1, %eax # Remember the exit sys call? It is 1

 int $0x80

Intel x86 Assembler Primer
• Functions

– clearly, all larger programs need to be divided into functions

• x86 provides two operations
– call

• pushes address after call instruction on stack
• jumps to target

– ret
• pops top of the stack
• transfers control to that value

• A lot is filled in by the compiler
– local and global variables
– passing arguments between caller and callee

35

Intel x86 Assembler Primer
• Local variables

– stored in the current stack frame
– referenced relative to frame pointer (or stack pointer)

• Global variables
– referenced by absolute address (or offset to segment)

36

call 80484a8 <opendir@plt>
mov %eax,0xfffffff0(%ebp)

DIR *d;
d = opendir(s);

mov 0x8049bbc,%eax
mov %eax,0xfffffffc(%ebp)

char *progname;
void usage() {
 char *s;
 s = progname;

Intel x86 Assembler Primer

• Function arguments
– can be passed in different fashions, depending on the calling convention

• Calling conventions
– cdecl

use the stack to pass arguments, right to left, caller cleans stack
– stdcall

use the stack to pass arguments, right to left, callee cleans stack
– fastcall

pass first two arguments in registers, rest on stack (right to left)

• Argument access
– with cdecl, use relative offset of base pointer
– similar to local variables, but positive offset

37

38

Static Techniques
… after this x86 assembler digression, back to disassembling

• Linear sweep disassembler
– start at beginning of code (.text) section
– disassemble one instruction after the other
– assume that well-behaved compiler tightly packs instructions
– objdump -d uses this approach

39

Static Techniques

• Recursive traversal disassembler
– aware of control flow
– start at program entry point (e.g., determined by ELF header)
– disassemble one instruction after the other, until branch or jump is found
– recursively follow both (or single) branch (or jump) targets
– not all code regions can be reached

• indirect calls and indirect jumps
• use a register to calculate target during run-time

– for these regions, linear sweep is used
– IDA Pro uses this approach

40

Dynamic Techniques

• General information about process
– /proc file system
– /proc/<pid>/ for a process with pid <pid>
– interesting entries

• cmdline (show command line)
• environ (show environment)
• maps (show memory map)
• fd (file descriptor to program image)

• Interaction with the environment
– file system
– network

41

Dynamic Techniques

• File system interaction
– lsof

– lists all open files associated with processes

• Windows Registry
– regmon (Sysinternals)

• Network interaction
– check for open ports

• processes that listen for requests or that have active connections
• netstat

• also shows UNIX domain sockets used for IPC

– check for actual network traffic
• tcpdump

• ethereal/wireshark

42

Dynamic Techniques

• System calls
– are at the boundary between user space and kernel
– reveal much about a process’ operation
– strace

– powerful tool that can also
• follow child processes
• decode more complex system call arguments
• show signals

– works via the ptrace interface

• Library functions
– similar to system calls, but dynamically linked libraries
– ltrace

43

Dynamic Techniques

• Execute program in a controlled environment
– sandbox / debugger

• Advantages
– can inspect actual program behavior and data values
– (at least one) target of indirect jumps (or calls) can be observed

• Disadvantages
– may accidentally launch attack/malware
– anti-debugging mechanisms
– not all possible traces can be seen

44

Dynamic Techniques

• Debugger
– breakpoints to pause execution

• when execution reaches a certain point (address)
• when specified memory is access or modified

– examine memory and CPU registers
– modify memory and execution path

• Advanced features
– attach comments to code
– data structure and template naming
– track high level logic

• file descriptor tracking
– function fingerprinting

45

Dynamic Techniques

• Debugger on x86 / Linux
– use the ptrace interface

• ptrace
– allows a process (parent) to monitor another process (child)
– whenever the child process receives a signal, the parent is notified
– parent can then

• access and modify memory image (peek and poke commands)
• access and modify registers
• deliver signals

– ptrace can also be used for system call monitoring

46

Dynamic Techniques

• Breakpoints
– hardware breakpoints
– software breakpoints

• Hardware breakpoints
– special debug registers (e.g., Intel x86)
– debug registers compared with PC at every instruction

• Software breakpoints
– debugger inserts (overwrites) target address with an int 0x03 instruction
– interrupt causes signal SIGTRAP to be sent to process
– debugger

• gets control and restores original instruction
• single steps to next instruction
• re-inserts breakpoint

Challenges
• Reverse engineering is difficult by itself

– a lot of data to handle
– low level information
– creative process, experience very valuable
– tools can only help so much

• Additional challenges
– compiler code optimization
– code obfuscation
– anti-disassemble techniques
– anti-debugging techniques

47

Anti-Disassembly

• Against static analysis (disassembler)

• Confusion attack
– targets linear sweep disassembler
– insert data (or junk) between instructions and

let control flow jump over this garbage
– disassembler gets desynchronized with true instructions

jmp Label1 8048000: 74 02 je 8048004
.short 0x4711 8048002: 47 inc %edi

 8048003: 11 90 90 90 90 90 adc %edx,0x90909090(%eax)
Label1: 8048004: <Label1>

48

Anti-Disassembly

• Advanced confusion attack
– targets recursive traversal disassembler
– replace direct jumps (calls) by indirect ones (branch functions)
– force disassembler to revert to linear sweep, then use previous attack

49

Anti-Debugging
• Against dynamic analysis (debugger)

– debugger presence detection techniques
• API based
• thread/process information
• registry keys, process names, …

– exception-based techniques

– breakpoint detection
• software breakpoints
• hardware breakpoints

– timing-based and latency detection

50

Anti-Debugging
Debugger presence checks

• Linux
– a process can be traced only once

if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0)
 exit(1);

• Windows
– API calls

OutputDebugString()
IsDebuggerPresent()

 ... many more ...

– thread control block
• read debugger present bit directly from process memory

51

Anti-Debugging
Exception-based techniques

SetUnhandledExceptionFilter()

After calling this function, if an exception occurs in a process that is not
being debugged, and the exception makes it to the unhandled exception filter,
that filter will call the exception filter function specified by the
lpTopLevelExceptionFilter parameter. [source: MSDN]

– Idea
set the top-level exception filter, raise an unhandled exception, continue in the

exception filter function

52

53

Anti-Debugging

Breakpoint detection

– detect software breakpoints
• look for int 0x03 instructions

if ((*(unsigned *)((unsigned)<addr>+3) & 0xff)==0xcc)

 exit(1);

• checksum the code
if (checksum(text_segment) != valid_checksum)
 exit(1);

– detect hardware breakpoints
• use the hardware breakpoint registers for computation

54

Reverse Engineering

• Goals
– focused exploration
– deep understanding

• Case study
– copy protection mechanism
– program expects name and serial number
– when serial number is incorrect, program exits
– otherwise, we are fine

• Changes in the binary
– can be done with hexedit

55

Reverse Engineering

• Focused exploration
– bypass check routines
– locate the point where the failed check is reported
– find the routine that checks the password
– find the location where the results of this routine are used
– slightly modify the jump instruction

• Deep understanding
– key generation
– locate the checking routine
– analyze the disassembly
– run through a few different cases with the debugger
– understand what check code does and develop code that creates

appropriate keys

56

Malicious Code Analysis

Static analysis vs. dynamic analysis

• Static analysis
– code is not executed
– all possible branches can be examined (in theory)
– quite fast

• Problems of static analysis
– undecidable in general case, approximations necessary
– binary code typically contains very little information

• functions, variables, type information, …
– disassembly difficult (particularly for Intel x86 architecture)
– obfuscated code, packed code
– self-modifying code

57

Malicious Code Analysis

• Dynamic analysis
– code is executed
– sees instructions that are actually executed

• Problems of dynamic analysis
– single path (execution trace) is examined
– analysis environment possibly not invisible
– analysis environment possibly not comprehensive

• Possible analysis environments
– instrument program
– instrument operating system
– instrument hardware

58

Malicious Code Analysis

• Instrument program
– analysis operates in same address space as sample
– manual analysis with debugger
– Detours (Windows API hooking mechanism)

– binary under analysis is modified
• breakpoints are inserted
• functions are rewritten
• debug registers are used

– not invisible, malware can detect analysis
– can cause significant manual effort

59

Malicious Code Analysis

• Instrument operating system
– analysis operates in OS where sample is run
– Windows system call hooks

– invisible to (user-mode) malware
– can cause problems when malware runs in OS kernel
– limited visibility of activity inside program

• cannot set function breakpoints

• Virtual machines
– allow to quickly restore analysis environment
– might be detectable (x86 virtualization problems)

60

Malicious Code Analysis

• Instrument hardware
– provide virtual hardware (processor) where sample

can execute (sometimes including OS)
– software emulation of executed instructions
– analysis observes activity “from the outside”

– completely transparent to sample (and guest OS)
– operating system environment needs to be provided
– limited environment could be detected, but faster
– complete environment is comprehensive, but slower

– Anubis uses this approach

61

Stealthiness

• One obvious difference between machine and emulator
→ time of execution

• Time could be used to detect such system
→ emulation allows to address these issues
→ certain instructions can be dynamically modified to return

innocently looking results
→ for example, RTC (real-time clock) - RTDSC instruction

Your Security Zen

• Warner Bros flags its own website as a piracy portal

62

The Matrix

