
CSC 574
Computer and Network Security

Symbolic Execution

Alexandros Kapravelos
kapravelos@ncsu.edu

Let’s find some bugs

• We have a potentially vulnerable program
• The program has some inputs which can be controlled

by the attacker
• What should we do as developers?

– Add checks (assertions)
– Write tests
– Make sure the checks do not fail

• Is this enough?

Concrete Execution

void foo(int x, int y) {
 int z = 0;

if (x>y) {
z = x;

} else {
z = y;

}
if (z < x) {

assert false;
}

}

x=0, y=0

False

z = 0

False
// not reached

Concrete Execution

void foo(int x, int y) {
 int z = 0;

if (x>y) {
z = x;

} else {
z = y;

}
if (z < x) {

assert false;
}

}

x=1, y=0

True
z = 1

False
// not reached

Pros/Cons

• Testing intended functionality
• Testing for known bugs
• Unintended functionality
• Unknown bugs
• Complete coverage

Can we automate this part?

Symbolic Execution

void foo(int x, int y) {
 int z = 0;

if (x>y) {
z = x;

} else {
z = y;

}
if (z < x) {

assert false;
}

}

x=α, y=β

z = α, α > β

z = β, α <= β

1. α < α -> False
2. β < α, α <= β, False

Feasible and Infeasible Paths

• A path is a particular route in the
control-flow graph of the program

• A feasible path is the path covered for
a particular input

• An infeasible path is the path that no
input can cover

Infeasible Paths

• Dead code => infeasible path
• Infeasible path !=> dead code

• It is normal in a large program to have a large of
infeasible paths

• This makes automatic testing based on the input to the
program incredibly hard

• α > b Λ α + β <= 10

• α, β are called free variables
• Solution: a set of variable assignments that makes the

constraint satisfiable
• {α =3, β = 2} is a solution
• {α =6, β = 5} is not a solution

• Decision procedure: is the constraint satisfiable?
• Constraint solver: if is satisfiable, find assignments
• Undecidable problem

Constrains

Symbolic Execution

• Execute the program differently, “symbols” as input
• Take all feasible paths
• Program state is different:

– No stack/heap
– Symbolic values for memory locations
– Path condition

• Path condition: input constraints so that a certain path is
feasible

• A solution to a path condition is a test input that covers
the desired path

History of Symbolic Execution

James C. King
Symbolic execution and program testing

Communications of the ACM 19, 7
(July 1976)

• Computation intensive
– Too many paths
– Program state grows a lot
– Constraint solver is computationally expensive, but we need to

identify the feasible paths

• Powerful computers
• Better constraint solvers

Why are we talking about it now?

Symbolic Execution Tools

• KLEE
– Open source symbolic executor
– Runs on top of LLVM
– Has found lots of problems in open-source software

• SAGE
– Microsoft internal tool
– Symbolic execution to find bugs in file parsers - E.g., JPEG,

DOCX, PPT, etc
– Cluster of n machines continually running SAGE

Constraint Solver

• Boolean SATisfiability Problem
• Find values that satisfy a boolean formula
• NP-Complete

 (l1 ∨ l2 ∨ x2) ∧ (¬x2 ∨ l3 ∨ x3)

Solver

 SAT UNSAT

SMT Solvers

• Satisfiability modulo theories
• SAT, but with binary variables replaced by predicates

over a suitable set of non-binary variables

3x + 2y - z >= 4

Popular SMT solvers

• Z3 - developed at Microsoft Research
– http://z3.codeplex.com/

• Yices - developed at SRI
– http://yices.csl.sri.com/

• STP - developed by Vijay Ganesh, now @ Waterloo
– https://sites.google.com/site/stpfastprover/

• CVC3 - developed primarily at NYU
– http://www.cs.nyu.edu/acsys/cvc3/

http://z3.codeplex.com/
http://z3.codeplex.com/
http://yices.csl.sri.com/
http://yices.csl.sri.com/
https://sites.google.com/site/stpfastprover/
https://sites.google.com/site/stpfastprover/

Forking Execution

• What to do when we reach a branching point?
– Follow both paths (condition satisfied and negation)

• State explosion *really* fast (exponential)
– Loops on symbolic variables are problematic

• How can we do this more efficiently?
– Prune paths by following only feasible ones
– Concolic execution: run the program concretely and assist the

execution with symbolic execution by changing the path
conditions

Static analysis

• It will terminate, even if the whole program is taken into
account

• Approximation is the key
– Let’s assume every path is feasible

• False alarms
• Less accurate

Symbolic search

• We have to decide on a strategy
– Depth-first search (DFS)
– Breadth-first search (BFS)

• Potential drawbacks
– No smart choices
– DFS can get easily stuck in one part of the program

• Literally on a loop
– BFS is a better choice

• Harder to implement (think about concolic execution)

Search strategies

• Focus on the paths that matter
– Assertion failures
– Time bound

• Improve coverage
– Program execution as a DAG

• Nodes = program states
• Edge(n1, n2) = can transition from n1 to state n2

– Graph exploration algorithm

Randomness

• In the beginning we know
nothing, how do we start?

• Ideas
– Pick next path at random
– Randomly restart search
– Choose randomly among

equal priority paths
• But then how do we

reproduce our analysis?
– Pseudo-randomness
– Record the seed
– Otherwise bugs can

disappear on reruns

Coverage-guided heuristics

• Let’s visit statements that we haven’t seen before
• Approach

– Score of statement = # visits
– Pick the next statement with the lowest score

• Pros
– Errors are often in hard-to-reach parts of the program
– This strategy tries to reach everywhere.

• Cons
– Maybe never be able to get to a statement if proper

precondition not set up

Generational search

• Hybrid of BFS and coverage-guided
– Generation 0: pick one program at random, run to completion
– Generation 1: take paths from gen 0; negate one branch

condition on a path to yield a new path prefix; find a solution for
that prefix; then take the resulting path

– Generation n: similar, but branching off gen n-1
• Also uses a coverage heuristic to pick priority

Path-based search limited

• 2100 possible execution paths
• Hard to find the bug

– (100 75) ≈ 278 paths reach buggy line of code
– Pr(finding bug) = 278 / 2100 = 2-22

Libraries and native code

• Execution of a program is not solely contained on the
programs code
– Libraries, system calls, assembly code

• We could extend the symbolic execution to those parts
– Pull in the library and symbolically execute it
– If library is complicated, then our program state will grow too

large
– Replace the library with a simpler version (libc -> newlib)

• Model the code of the external dependencies

Concolic Execution

• Dynamic symbolic execution
• Concrete execution of the program with assistance by

symbolic execution

• Instrument the program
– Keep a shadow state with symbolic variables
– Start with a concrete execution that sets an initial path

• Follow one path and use symbolic execution to
determine the next one
– Negate a condition
– Inputs are concrete values

Concretization

• Use symbolic execution as guidance
– But replace symbolic variables with concrete values that satisfy

the path condition
• This way the program is actually executed

– Abstract parts that are not in the code (system calls)
– No symbolic-ness at such calls (we lose information)

• Very useful when conditions get too complex for SMT
solver

Conclusion

• Symbolic execution is very powerful and productive
• Not very practical as programs grow large

– Limited by the power of the constraint solver
– Bound by the infeasible paths number

• Promising research area!

