
CSC 574
Computer and Network Security

Fuzzing

Alexandros Kapravelos
kapravelos@ncsu.edu

Let’s find some bugs (again)

• We have a potentially vulnerable program
• The program has some inputs which can be controlled

by the attacker

Can we generate automatic tests?

Fuzzing

• A form of vulnerability analysis
• Steps

– Generate random inputs and feed them to the program
– Monitor the application for any kinds of errors

• Simple technique
• Inefficient

– Input usually has a specific format, randomly generated inputs
will be rejected

– Probability of causing a crash is very low

Example

Standard HTML document
• <html></html>

Randomized HTML
• <html>AAAAAAA</html>
• <html><></html>
• <html></html></html>
• <html>html</html>
• <html>/</<>></html>

Types of Fuzzers

• Mutation Based
– mutate existing data samples to create test data

• Generation Based
– define new tests based on models of the input

• Evolutionary
– Generate inputs based on response from program

Mutation Based Fuzzing

• Little or no knowledge of the structure of the inputs is
assumed

• Anomalies are added to existing valid inputs
• Anomalies may be completely random or follow some

heuristics
• Requires little to no setup time
• Dependent on the inputs being modified
• May fail for protocols with checksums, those which

depend on challenge response, etc.

• Example Tools:
– Taof, GPF, ProxyFuzz,
– Peach Fuzzer, etc.

Fuzzing a pdf viewer

• Google for .pdf files (about 1,640,000,000 results)
• Crawl pages and build a pdf dataset
• Create a fuzzing tool that:

– Picks a PDF file
– Mutates the file
– Renders the PDF in the viewer
– Check if it crashes

Mutation Based Fuzzing

• East to setup and automate
• Little to no protocol knowledge required

• Limited to the initial dataset
• May fail on protocols with checksums, or other

challenges

Generation-Based Fuzzing

• Generate random inputs with the input specification in
mind (RFC, documentation, etc.)

• Add anomalies to each possible spot
• Knowledge of the protocol prunes inputs that would

have been rejected by the application

Word (.doc) Binary File Format

https://msdn.microsoft.com/en-us/library/office/cc313105(v=office.14).aspx (576 pages)

https://msdn.microsoft.com/en-us/library/office/cc313105(v=office.14).aspx
https://msdn.microsoft.com/en-us/library/office/cc313105(v=office.14).aspx

Generation-Based Fuzzing

• Completeness
• Can deal with complex input, like checksums

• Input generator is labor intensive for complex protocols
• There has to be a specification

Evolutionary Fuzzing

• Attempts to generate inputs based on the response of
the program

• Autodafe
– Fuzzing by weighting attacks with markers
– Open source

• EFS
– Generates test cases based on code coverage metrics

Challenges

• Mutation based
– Enormous amount of generated inputs
– Can run forever

• Generation based
– Less inputs (we have more knowledge)
– Is it enough?

Code Coverage

• A metric of how well your code was tested
• Percent of code that was executed during analysis
• Profiling tools

– Gcov

• Code coverage types:
– Line coverage

• which lines of source code have been executed
– Branch coverage

• which branches have been taken
– Path coverage

• which paths were taken

Fuzzing Chrome

• AddressSanitizer
• ClusterFuzz
• SyzyASAN
• ThreadSanitizer
• libFuzzer
• more...

Chrome’s fuzzing infrastructure

• Automatically grab the most current Chrome LKGR
(Last Known Good Revision)

• Hammer away at it to the tune of multi-million test cases
a day

• Thousands of Chrome instances
• Hundreds of virtual machines

AddressSanitizer

• Compiler which performs instrumentation
• Run-time library that replaces malloc(), free()and friends
• custom malloc() allocates more bytes than requested

and “poisons” the redzones around the region returned
to the caller

• Heap buffer overrun/underrun (out-of-bounds access)
• Use after free
• Stack buffer overrun/underrun

• Chromium’s “browser_tests” are about 20% slower

SyzyASAN

• AddressSanitizer works only on Linux and Mac
• Different instrumenter that injects instrumentation into

binaries produced by the Microsoft Visual Studio
toolchain

• Run-time library that replaces malloc, free, et al.

 ThreadSanitizer

• Runtime data race detector based on binary translation
• Supports also compile-time instrumentation

– Greater speed and accuracy
• Data races in C++ and Go code
• Synchronization issues

– deadlocks
– unjoined threads
– destroying locked mutexes
– use of async-signal
– unsafe code in signal handlers
– others...

libFuzzer

• Engine for in-process, coverage-guided, white-box
fuzzing

• In-process
– don’t launch a new process for every test case
– mutate inputs directly in memory

• Coverage-guided
– measure code coverage for every input
– accumulate test cases that increase overall coverage

• White-box
– compile-time instrumentation of the source code

• Fuzz individual components of Chrome
– don’t need to generate an HTML page or network payload and

launch the whole browser

libFuzzer
==9896==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x62e000022836 at

pc 0x000000499c51 bp 0x7fffa0dc1450 sp 0x7fffa0dc0c00

WRITE of size 41994 at 0x62e000022836 thread T0

SCARINESS: 45 (multi-byte-write-heap-buffer-overflow)

 #0 0x499c50 in __asan_memcpy

 #1 0x4e6b50 in Read third_party/woff2/src/buffer.h:86:7

 #2 0x4e6b50 in ReconstructGlyf third_party/woff2/src/woff2_dec.cc:500

 #3 0x4e6b50 in ReconstructFont third_party/woff2/src/woff2_dec.cc:917

 #4 0x4e6b50 in woff2::ConvertWOFF2ToTTF(unsigned char const*, unsigned long,

woff2::WOFF2Out*) third_party/woff2/src/woff2_dec.cc:1282

 #5 0x4dbfd6 in LLVMFuzzerTestOneInput
testing/libfuzzer/fuzzers/convert_woff2ttf_fuzzer.cc:15:3

Cluster Fuzzing

ClusterFuzz uses the following memory debugging tools
with libFuzzer-based fuzzers:

• AddressSanitizer (ASan): 500 GCE VMs
• MemorySanitizer (MSan): 100 GCE VMs
• UndefinedBehaviorSanitizer (UBSan): 100 GCE VMs

July 2016

14,366,371,459,772 unique test inputs
112 bugs filed

Analysis of the bugs found so far

Source: https://security.googleblog.com/2016/08/guided-in-process-fuzzing-of-chrome.html

https://security.googleblog.com/2016/08/guided-in-process-fuzzing-of-chrome.html

Chrome’s Vulnerability Reward Program

• Submit your fuzzer
• Google will run it with ClusterFuzz
• Automatically nominate bugs they find for reward

payments

