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The World-Wide Web
• The World-Wide Web was originally conceived as a 

geographically distributed document retrieval system with a 
hypertext structure

• In the past 20+ years, the Web evolved into a full-fledged 
platform for the execution of distributed applications

• The Web is also vulnerable to a number of attacks
• The impact of these attacks is enormous, because of the 

widespread use of the service, the accessibility of the servers, 
and the widespread use of the clients
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Standards and Technologies
• HTTP 1.0, 1.1
• URIs, URLs
• HTML, XML, XHTML
• DOM, BOM 
• Cascading Style Sheets
• SSL/TLS, Socks
• CGI, Active Server Pages, Servlets
• JavaScript, VBScript
• Applets, ActiveX controls
• Web Services, SOAP



Web Vulnerability Analysis
• Vulnerabilities in the protocol(s)
• Vulnerabilities in the infrastructure
• Vulnerabilities in the server-side portion of the application
• Vulnerabilities in the client-side portion of the application
• Many vulnerability are the results of interactions of the various 

components involved in the processing of a request
• Understanding the basic technologies is key



Technology Review
• How are resources referenced?
• How are resources transferred?
• How are resources represented?
• How are resources processed on the server side?
• How are resources processed on the client side?



URIs, URLs, URNs
• Uniform Resource Identifier

– a string that identifies a resource
• Uniform Resource Locator 

– an identifier that contains enough information to access 
the resource

• Uniform Resource Names 
– used to identify an entity regardless of the fact that the 

entity is accessible or even that it exists



URI Syntax
• The general URI syntax is specified in RFC 2396
• Specific types of URIs are described in separate standards
• Syntax: <scheme>://<authority><path>?<query>
• Examples:

– ftp://ftp.ietf.org/rfc/rfc1808.txt
– http://www.csc.ncsu.edu/~jdoe/My%20HomePage
– mailto:cs176b@cs.csb.edu
– telnet://melvyl.ucop.edu/



URI Syntax
• Scheme: a string specifying the protocol/framework
• Authority: a name space that qualifies the resource

– Most of the times, it is a server name
• <userinfo>@<host>:<port>

• Path: a pathname composed of “/” separated strings
• Query: an application-specific piece of information



HyperText Transfer Protocol

• Protocol used to transfer information between a web client 
and a web server

• Based on TCP, uses port 80
• Version 1.0 is defined in RFC 1945
• Version 1.1 is defined in RFC 2616



HTTP
• Client 

– Opens a TCP connection 
– Sends a request

• Server 
– Accepts the connection 
– Processes the request 
– Sends a reply

• Multiple requests can be sent using the same TCP connection



Requests
• A request is composed of a header and a body (optional) 

separated by an empty line (CR LF)
• The header specifies:

– Method (GET, HEAD, POST)
– Resource (e.g., /hypertext/doc.html)
– Protocol version (HTTP/1.1)
– Other info

• General header
• Request header
• Entity header

• The body is considered as a byte stream



Methods
• GET requests the transfer of the entity referred by the URL
• HEAD requests the transfer of header meta-information only
• POST asks the server to process the included entity as “data” 

associated with the resource identified by the URL
– Resource annotation
– Message posting (newsgroups and mailing list)
– Form data submission
– Database input



Less-Used Methods
• OPTIONS requests information about the communication 

options available on the request/response chain identified by 
the URL (a URL of “*” identifies the options of the server)

• PUT requests that the enclosed entity be stored under the 
supplied URL (note that this is different from the POST 
request where the URL specifies the server-side component 
that will process the content)



Less-Used Methods
• DELETE requests that the origin server delete the resource 

identified by the URL
• TRACE invokes a remote, application-layer loop-back of the 

request message
– TRACE allows the client to see what is being received at the other  

end of the request chain and use that data for testing or diagnostic  
information

• CONNECT is used with proxies



Resources

• A resource can be specified by an absolute URI or an absolute 
path

• Absolute URIs are used when requesting a resource through a 
proxy
– GET http://www.example.com/index.html HTTP/1.1

• Absolute path URIs are used when requesting a resource to the 
server that owns that resource
– GET /index.html HTTP/1.1



Request Example

GET /doc/activities.html HTTP/1.1
Host: longboard:8080
Date: Tue, 03 Nov 2015 8:34:12 GMT
Pragma: no-cache
Referer: http://www.ms.com/main.html
If-Modified-Since: Sat, 12 Oct 2016 10:55:15 
GMT
<CR LF>



HTTP 1.1 Host Field
• In HTTP 1.0, it is not possible to discern, from the request line 

which server was intended to process the request:
GET /index.html HTTP/1.0

• As a consequence it is not possible to associate multiple 
server “names” to the same IP address

• In HTTP 1.1, the “Host” field is REQUIRED and specifies which 
server is the intended recipient
GET /index.html HTTP/1.1
Host: foo.com



Replies
• Replies are composed of a header and a body separated by a 

empty line (CR LF)
• The header contains:

– Protocol version (e.g., HTTP/1.0 or HTTP/1.1)
– Status code 
– Diagnostic text
– Other info

• General header
• Response header
• Entity header

• The body is a byte stream



Status Codes
• 1xx: Informational - Request received, continuing process 
• 2xx: Success - The action was successfully received, 

understood, and accepted
• 3xx: Redirection - Further action must be taken in order to 

complete the request 
• 4xx: Client Error - The request contains bad syntax or cannot 

be fulfilled 
• 5xx: Server Error - The server failed to fulfil an apparently valid 

request



Examples

• "200"   ; OK
• "201"   ; Created
• "202"   ; Accepted
• "204"   ; No Content
• “301"   ; Moved Permanently
• "307"   ; Temporary Redirect

• "400"   ; Bad Request
• "401"   ; Unauthorized
• "403"   ; Forbidden
• "404"   ; Not Found
• "500"   ; Internal Server Error
• "501"   ; Not Implemented
• "502"   ; Bad Gateway
• "503"   ; Service Unavailable



Reply Example
HTTP/1.1 200 OK
Date: Tue, 12 Oct 2016 8:35:12 GMT
Server: Apache/1.3.14 PHP/3.0.17 mod_perl/1.23
Content-Type: text/html
Last-Modified: Sun, 10 Oct 2016 18:11:00 GMT

<html>
  <head>
    <title>The Page</title>
  …
</html>



Header Fields
• General header fields: These refer to the message and not to 

the resource contained in it
– Date, Pragma, Cache-Control, Transfer-Encoding..

• Request header fields:
– Accept, Host, Authorization, From, If-modified-since, User Agent, 

Referer...
• Response header fields:

– Location, Server, WWW-Authenticate
• Entity header fields: 

– Allow, Content-Encoding, Content-Length, Content-Type, Expires, 
Last-Modified



HTTP Authentication
• Based on a simple challenge-response scheme
• The challenge is returned by the server as part of a 401 

(unauthorized) reply message and specifies the 
authentication schema to be used 

• An authentication request refers to a realm, that is, a set of 
resources on the server

• The client must include an Authorization header field with the 
required (valid) credentials



HTTP Basic Authentication Scheme
• The server replies to an unauthorized request with a 401 

message containing the header field

WWW-Authenticate: Basic realm=“ReservedDocs“

• The client retries the access including in the header a field 
containing a cookie composed of base64 encoded username 
and password

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ== 



HTTP 1.1 Authentication
• Defines an additional authentication scheme based on 

cryptographic digests (RFC 2617)
– Server sends a nonce as challenge
– Client sends request with digest of the username, the password, the 

given nonce value, the HTTP method, and the requested URL
• To authenticate the users the web server has to have access 

to the hashes of usernames and passwords



Hypertext Markup Language
• A simple data format used to create hypertext documents that are portable from one 

platform to another
• Based on Standard Generalized Markup Language (SGML) (ISO 8879:1986)
• HTML 2.0 

– Proposed in RFC 1866 (November 1995)
• HTML 3.2

– Proposed as World Wide Web Consortium (W3C) recommendation (January 1997)
• HTML 4.01

– Proposed as W3C recommendation (December 1999)
• XHTML 1.0

– Attempt by W3C to reformulate HTML into Extensible Markup Language (XML) (January 2000)
• HTML 5.0

– Proposed as W3C recommendation (October 2014)
• HTML 5.1

– Under development



HTML – Overview
• Basic idea is to “markup” document with tags, which add 

meaning to raw text
• Start tag: <foo>
• Followed by text
• End tag: </foo>
• Self-closing tag: <bar />
• Void tags (have no end tag): <img>
• Tag are hierarchical



HTML – Tags 

<html>
  <head>
    <title>Example</title>
  </head>
  <body>
    <p>I am the example text</p>
  </body>
</html>



HTML – Tags 
• <html>

– <head>
• <title>

– Example

– <body>
• <p>

– I am the example text



HTML – Tags 
• Tags can have “attributes” that provide metadata about the 

tag
• Attributes live inside the start tag after the tag name
• Four different syntax

– <foo bar>
• foo is the tag name and bar is an attribute

– <foo bar=baz>
• The attribute bar has the value baz

– <foo bar='baz'>
– <foo bar="baz">

• Multiple attributes are separated by spaces
– <foo bar='baz' disabled required="true">



HTML – Hyperlink
• The anchor tag is used to create a hyperlink
• href attribute is used provide the URI 
• Text inside the anchor tag is the text of the hyperlink

<a href="http://google.com">Google</a>



HTML – Basic HTML 5 Page

<!DOCTYPE html>
<html>
  <head>
    <meta charset="UTF-8">
    <title>CS279</title>
  </head>

  <body>
    <a href="http://example.com/">Text</a>
  </body>
</html>



HTML – Character References
• Special characters can be included in HTML using < > ' " & = 

– Encode the character reference
– Also referred to in HTML < 5.0 as “entity reference” or “entity 

encoding”
• Three types, each starts with & and ends with ;

– Named character reference
• &<predefined name>;

– Decimal numeric character reference
• &#<decimal unicode>;

– Hexadecimal numeric character reference
• &#x<hexadecimal unicode>;



HTML – Character References Example
• The ampersand (&) is used to start a character reference, so it 

must be encoded as a character reference
• &amp;
• &#38;
• &#x26;
• &#x00026;



HTML – Character References Example
• é
• &eacute;
• &#233;
• &#xe9;



HTML – Character References Example
• &lt;
• &#60;
• &#x30;
• &#x00030;



HTML – Forms 
• A form is a component of a Web page that has form controls, 

such as text fields, buttons, checkboxes, range controls, or 
color pickers
– Form is a way to create a complex HTTP request

• The action attribute contains the URI to submit the HTTP 
request
– Default is the current URI

• The method attribute is the HTTP method to use in the 
request
– GET or POST, default is GET



HTML – Forms
• Children input tags of the form are transformed into either 

query URL parameters or HTTP request body
• Difference is based on the method attribute

– GET passes data in the query
– POST passes data in the body

• Data is encoded as either 
“application/x-www-form-urlencoded” or 
“multipart/form-data”
– GET always uses “application/x-www-form-urlencoded”
– POST depends on enctype attribute of form, default is 

“application/x-www-form-urlencoded”
– "multipart/form-data" is mainly used to upload files



HTML – Forms
• Data sent as name-value pairs

– Data from the input tags (as well as others)
<input type="text" name="foo" value="bar”>

• Name is taken from the input tag’s name attribute
• Value is taken either from the input tag’s value attribute or the 

user-supplied input
– Empty string if neither is present



application/x-www-form-urlencoded
• All name-value pairs of the form are encoded
• form-urlencoding encodes the name-value pairs using percent 

encoding 
– Except that spaces are translated to + instead of %20
– foo=bar

• Multiple name-value pairs separated by ampersand (&)



application/x-www-form-urlencoded
<form action="http://example.com/grades/submit" >
  <input type="text" name="student" value="bar">
  <input type="text" name="class">
  <input type="text" name="grade">
  <input type="submit" name="submit">
</form>

http://example.com/grades/submit?student=John+Doe&class=cs
+279&grade=A%2B&submit=Submit



application/x-www-form-urlencoded
<form action="http://example.com/grades/submit" method="POST">
  <input type="text" name="student”>
  <input type="text" name="class">
  <input type="text" name="grade">
  <input type="submit" name="submit">
</form>

POST /grades/submit HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:34.0) 
Gecko/20100101 Firefox/34.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Connection: keep-alive
Content-Type: application/x-www-form-urlencoded
Content-Length: 65

student=John+Doe&class=CS+279&grade=A%2B&submit=Submit



HTML Frames
• Frames allow for the display of multiple separate views 

(associated with separate URLs) together on one page
• Used in the early days to display banners or navigation 

elements
– Now replaced by CSS directives



The frameset Element

<frameset cols="85%, 15%">
  <frame src="http://www.cs.ucsb.edu/~vigna" name="home">
  <frame src="frame.html" name="local">
  <noframes>
    Text to be displayed in browsers that do not support 
frames
  </noframes>
</frameset>


