
CSC 574
Computer and Network Security

Web Security

Alexandros Kapravelos
kapravelos@ncsu.edu

(Derived from slides by Giovanni Vigna)

The World-Wide Web
• The World-Wide Web was originally conceived as a

geographically distributed document retrieval system with a
hypertext structure

• In the past 20+ years, the Web evolved into a full-fledged
platform for the execution of distributed applications

• The Web is also vulnerable to a number of attacks
• The impact of these attacks is enormous, because of the

widespread use of the service, the accessibility of the servers,
and the widespread use of the clients

Architecture

HTTP Reply

HTTP Request

Architecture

HTTP Reply
HTTP Request

Firewall

Tunnel

CacheHTTP Request

Cached Reply

Proxy

Proxy Server

Architecture

Application
 Server

Application

Gateway
Program

Application-specific
requestBrowser

Extension

JavaScript,
ActiveX,
Flash,
Extensions

CGI, PHP,
ASP, Servlet

HTTP Reply
HTTP Request

Firewall

Tunnel

CacheHTTP Request

Cached Reply

Proxy

Proxy Server

Standards and Technologies
• HTTP 1.0, 1.1
• URIs, URLs
• HTML, XML, XHTML
• DOM, BOM
• Cascading Style Sheets
• SSL/TLS, Socks
• CGI, Active Server Pages, Servlets
• JavaScript, VBScript
• Applets, ActiveX controls
• Web Services, SOAP

Web Vulnerability Analysis
• Vulnerabilities in the protocol(s)
• Vulnerabilities in the infrastructure
• Vulnerabilities in the server-side portion of the application
• Vulnerabilities in the client-side portion of the application
• Many vulnerability are the results of interactions of the various

components involved in the processing of a request
• Understanding the basic technologies is key

Technology Review
• How are resources referenced?
• How are resources transferred?
• How are resources represented?
• How are resources processed on the server side?
• How are resources processed on the client side?

URIs, URLs, URNs
• Uniform Resource Identifier

– a string that identifies a resource
• Uniform Resource Locator

– an identifier that contains enough information to access
the resource

• Uniform Resource Names
– used to identify an entity regardless of the fact that the

entity is accessible or even that it exists

URI Syntax
• The general URI syntax is specified in RFC 2396
• Specific types of URIs are described in separate standards
• Syntax: <scheme>://<authority><path>?<query>
• Examples:

– ftp://ftp.ietf.org/rfc/rfc1808.txt
– http://www.csc.ncsu.edu/~jdoe/My%20HomePage
– mailto:cs176b@cs.csb.edu
– telnet://melvyl.ucop.edu/

URI Syntax
• Scheme: a string specifying the protocol/framework
• Authority: a name space that qualifies the resource

– Most of the times, it is a server name
• <userinfo>@<host>:<port>

• Path: a pathname composed of “/” separated strings
• Query: an application-specific piece of information

HyperText Transfer Protocol

• Protocol used to transfer information between a web client
and a web server

• Based on TCP, uses port 80
• Version 1.0 is defined in RFC 1945
• Version 1.1 is defined in RFC 2616

HTTP
• Client

– Opens a TCP connection
– Sends a request

• Server
– Accepts the connection
– Processes the request
– Sends a reply

• Multiple requests can be sent using the same TCP connection

Requests
• A request is composed of a header and a body (optional)

separated by an empty line (CR LF)
• The header specifies:

– Method (GET, HEAD, POST)
– Resource (e.g., /hypertext/doc.html)
– Protocol version (HTTP/1.1)
– Other info

• General header
• Request header
• Entity header

• The body is considered as a byte stream

Methods
• GET requests the transfer of the entity referred by the URL
• HEAD requests the transfer of header meta-information only
• POST asks the server to process the included entity as “data”

associated with the resource identified by the URL
– Resource annotation
– Message posting (newsgroups and mailing list)
– Form data submission
– Database input

Less-Used Methods
• OPTIONS requests information about the communication

options available on the request/response chain identified by
the URL (a URL of “*” identifies the options of the server)

• PUT requests that the enclosed entity be stored under the
supplied URL (note that this is different from the POST
request where the URL specifies the server-side component
that will process the content)

Less-Used Methods
• DELETE requests that the origin server delete the resource

identified by the URL
• TRACE invokes a remote, application-layer loop-back of the

request message
– TRACE allows the client to see what is being received at the other

end of the request chain and use that data for testing or diagnostic
information

• CONNECT is used with proxies

Resources

• A resource can be specified by an absolute URI or an absolute
path

• Absolute URIs are used when requesting a resource through a
proxy
– GET http://www.example.com/index.html HTTP/1.1

• Absolute path URIs are used when requesting a resource to the
server that owns that resource
– GET /index.html HTTP/1.1

Request Example

GET /doc/activities.html HTTP/1.1
Host: longboard:8080
Date: Tue, 03 Nov 2015 8:34:12 GMT
Pragma: no-cache
Referer: http://www.ms.com/main.html
If-Modified-Since: Sat, 12 Oct 2016 10:55:15
GMT
<CR LF>

HTTP 1.1 Host Field
• In HTTP 1.0, it is not possible to discern, from the request line

which server was intended to process the request:
GET /index.html HTTP/1.0

• As a consequence it is not possible to associate multiple
server “names” to the same IP address

• In HTTP 1.1, the “Host” field is REQUIRED and specifies which
server is the intended recipient
GET /index.html HTTP/1.1
Host: foo.com

Replies
• Replies are composed of a header and a body separated by a

empty line (CR LF)
• The header contains:

– Protocol version (e.g., HTTP/1.0 or HTTP/1.1)
– Status code
– Diagnostic text
– Other info

• General header
• Response header
• Entity header

• The body is a byte stream

Status Codes
• 1xx: Informational - Request received, continuing process
• 2xx: Success - The action was successfully received,

understood, and accepted
• 3xx: Redirection - Further action must be taken in order to

complete the request
• 4xx: Client Error - The request contains bad syntax or cannot

be fulfilled
• 5xx: Server Error - The server failed to fulfil an apparently valid

request

Examples

• "200" ; OK
• "201" ; Created
• "202" ; Accepted
• "204" ; No Content
• “301" ; Moved Permanently
• "307" ; Temporary Redirect

• "400" ; Bad Request
• "401" ; Unauthorized
• "403" ; Forbidden
• "404" ; Not Found
• "500" ; Internal Server Error
• "501" ; Not Implemented
• "502" ; Bad Gateway
• "503" ; Service Unavailable

Reply Example
HTTP/1.1 200 OK
Date: Tue, 12 Oct 2016 8:35:12 GMT
Server: Apache/1.3.14 PHP/3.0.17 mod_perl/1.23
Content-Type: text/html
Last-Modified: Sun, 10 Oct 2016 18:11:00 GMT

<html>
 <head>
 <title>The Page</title>
 …
</html>

Header Fields
• General header fields: These refer to the message and not to

the resource contained in it
– Date, Pragma, Cache-Control, Transfer-Encoding..

• Request header fields:
– Accept, Host, Authorization, From, If-modified-since, User Agent,

Referer...
• Response header fields:

– Location, Server, WWW-Authenticate
• Entity header fields:

– Allow, Content-Encoding, Content-Length, Content-Type, Expires,
Last-Modified

HTTP Authentication
• Based on a simple challenge-response scheme
• The challenge is returned by the server as part of a 401

(unauthorized) reply message and specifies the
authentication schema to be used

• An authentication request refers to a realm, that is, a set of
resources on the server

• The client must include an Authorization header field with the
required (valid) credentials

HTTP Basic Authentication Scheme
• The server replies to an unauthorized request with a 401

message containing the header field

WWW-Authenticate: Basic realm=“ReservedDocs“

• The client retries the access including in the header a field
containing a cookie composed of base64 encoded username
and password

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

HTTP 1.1 Authentication
• Defines an additional authentication scheme based on

cryptographic digests (RFC 2617)
– Server sends a nonce as challenge
– Client sends request with digest of the username, the password, the

given nonce value, the HTTP method, and the requested URL
• To authenticate the users the web server has to have access

to the hashes of usernames and passwords

Hypertext Markup Language
• A simple data format used to create hypertext documents that are portable from one

platform to another
• Based on Standard Generalized Markup Language (SGML) (ISO 8879:1986)
• HTML 2.0

– Proposed in RFC 1866 (November 1995)
• HTML 3.2

– Proposed as World Wide Web Consortium (W3C) recommendation (January 1997)
• HTML 4.01

– Proposed as W3C recommendation (December 1999)
• XHTML 1.0

– Attempt by W3C to reformulate HTML into Extensible Markup Language (XML) (January 2000)
• HTML 5.0

– Proposed as W3C recommendation (October 2014)
• HTML 5.1

– Under development

HTML – Overview
• Basic idea is to “markup” document with tags, which add

meaning to raw text
• Start tag: <foo>
• Followed by text
• End tag: </foo>
• Self-closing tag: <bar />
• Void tags (have no end tag):
• Tag are hierarchical

HTML – Tags

<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p>I am the example text</p>
 </body>
</html>

HTML – Tags
• <html>

– <head>
• <title>

– Example

– <body>
• <p>

– I am the example text

HTML – Tags
• Tags can have “attributes” that provide metadata about the

tag
• Attributes live inside the start tag after the tag name
• Four different syntax

– <foo bar>
• foo is the tag name and bar is an attribute

– <foo bar=baz>
• The attribute bar has the value baz

– <foo bar='baz'>
– <foo bar="baz">

• Multiple attributes are separated by spaces
– <foo bar='baz' disabled required="true">

HTML – Hyperlink
• The anchor tag is used to create a hyperlink
• href attribute is used provide the URI
• Text inside the anchor tag is the text of the hyperlink

Google

HTML – Basic HTML 5 Page

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>CS279</title>
 </head>

 <body>
 Text
 </body>
</html>

HTML – Character References
• Special characters can be included in HTML using < > ' " & =

– Encode the character reference
– Also referred to in HTML < 5.0 as “entity reference” or “entity

encoding”
• Three types, each starts with & and ends with ;

– Named character reference
• &<predefined name>;

– Decimal numeric character reference
• &#<decimal unicode>;

– Hexadecimal numeric character reference
• &#x<hexadecimal unicode>;

HTML – Character References Example
• The ampersand (&) is used to start a character reference, so it

must be encoded as a character reference
• &
• &
• &
• &

HTML – Character References Example
• é
• é
• é
• é

HTML – Character References Example
• <
• <
• 0
• 0

HTML – Forms
• A form is a component of a Web page that has form controls,

such as text fields, buttons, checkboxes, range controls, or
color pickers
– Form is a way to create a complex HTTP request

• The action attribute contains the URI to submit the HTTP
request
– Default is the current URI

• The method attribute is the HTTP method to use in the
request
– GET or POST, default is GET

HTML – Forms
• Children input tags of the form are transformed into either

query URL parameters or HTTP request body
• Difference is based on the method attribute

– GET passes data in the query
– POST passes data in the body

• Data is encoded as either
“application/x-www-form-urlencoded” or
“multipart/form-data”
– GET always uses “application/x-www-form-urlencoded”
– POST depends on enctype attribute of form, default is

“application/x-www-form-urlencoded”
– "multipart/form-data" is mainly used to upload files

HTML – Forms
• Data sent as name-value pairs

– Data from the input tags (as well as others)
<input type="text" name="foo" value="bar”>

• Name is taken from the input tag’s name attribute
• Value is taken either from the input tag’s value attribute or the

user-supplied input
– Empty string if neither is present

application/x-www-form-urlencoded
• All name-value pairs of the form are encoded
• form-urlencoding encodes the name-value pairs using percent

encoding
– Except that spaces are translated to + instead of %20
– foo=bar

• Multiple name-value pairs separated by ampersand (&)

application/x-www-form-urlencoded
<form action="http://example.com/grades/submit" >
 <input type="text" name="student" value="bar">
 <input type="text" name="class">
 <input type="text" name="grade">
 <input type="submit" name="submit">
</form>

http://example.com/grades/submit?student=John+Doe&class=cs
+279&grade=A%2B&submit=Submit

application/x-www-form-urlencoded
<form action="http://example.com/grades/submit" method="POST">
 <input type="text" name="student”>
 <input type="text" name="class">
 <input type="text" name="grade">
 <input type="submit" name="submit">
</form>

POST /grades/submit HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:34.0)
Gecko/20100101 Firefox/34.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Connection: keep-alive
Content-Type: application/x-www-form-urlencoded
Content-Length: 65

student=John+Doe&class=CS+279&grade=A%2B&submit=Submit

HTML Frames
• Frames allow for the display of multiple separate views

(associated with separate URLs) together on one page
• Used in the early days to display banners or navigation

elements
– Now replaced by CSS directives

The frameset Element

<frameset cols="85%, 15%">
 <frame src="http://www.cs.ucsb.edu/~vigna" name="home">
 <frame src="frame.html" name="local">
 <noframes>
 Text to be displayed in browsers that do not support
frames
 </noframes>
</frameset>

