
CSC 574 
Computer and Network Security

Web Security

Alexandros Kapravelos
kapravelos@ncsu.edu

(Derived from slides by Giovanni Vigna)



The World-Wide Web
• The World-Wide Web was originally conceived as a 

geographically distributed document retrieval system with a 
hypertext structure

• In the past 20+ years, the Web evolved into a full-fledged 
platform for the execution of distributed applications

• The Web is also vulnerable to a number of attacks
• The impact of these attacks is enormous, because of the 

widespread use of the service, the accessibility of the servers, 
and the widespread use of the clients
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Standards and Technologies
• HTTP 1.0, 1.1
• URIs, URLs
• HTML, XML, XHTML
• DOM, BOM 
• Cascading Style Sheets
• SSL/TLS, Socks
• CGI, Active Server Pages, Servlets
• JavaScript, VBScript
• Applets, ActiveX controls
• Web Services, SOAP



Web Vulnerability Analysis
• Vulnerabilities in the protocol(s)
• Vulnerabilities in the infrastructure
• Vulnerabilities in the server-side portion of the application
• Vulnerabilities in the client-side portion of the application
• Many vulnerability are the results of interactions of the various 

components involved in the processing of a request
• Understanding the basic technologies is key



Technology Review
• How are resources referenced?
• How are resources transferred?
• How are resources represented?
• How are resources processed on the server side?
• How are resources processed on the client side?



URIs, URLs, URNs
• Uniform Resource Identifier

– a string that identifies a resource
• Uniform Resource Locator 

– an identifier that contains enough information to access 
the resource

• Uniform Resource Names 
– used to identify an entity regardless of the fact that the 

entity is accessible or even that it exists



URI Syntax
• The general URI syntax is specified in RFC 2396
• Specific types of URIs are described in separate standards
• Syntax: <scheme>://<authority><path>?<query>
• Examples:

– ftp://ftp.ietf.org/rfc/rfc1808.txt
– http://www.csc.ncsu.edu/~jdoe/My%20HomePage
– mailto:cs176b@cs.csb.edu
– telnet://melvyl.ucop.edu/



URI Syntax
• Scheme: a string specifying the protocol/framework
• Authority: a name space that qualifies the resource

– Most of the times, it is a server name
• <userinfo>@<host>:<port>

• Path: a pathname composed of “/” separated strings
• Query: an application-specific piece of information



HyperText Transfer Protocol

• Protocol used to transfer information between a web client 
and a web server

• Based on TCP, uses port 80
• Version 1.0 is defined in RFC 1945
• Version 1.1 is defined in RFC 2616



HTTP
• Client 

– Opens a TCP connection 
– Sends a request

• Server 
– Accepts the connection 
– Processes the request 
– Sends a reply

• Multiple requests can be sent using the same TCP connection



Requests
• A request is composed of a header and a body (optional) 

separated by an empty line (CR LF)
• The header specifies:

– Method (GET, HEAD, POST)
– Resource (e.g., /hypertext/doc.html)
– Protocol version (HTTP/1.1)
– Other info

• General header
• Request header
• Entity header

• The body is considered as a byte stream



Methods
• GET requests the transfer of the entity referred by the URL
• HEAD requests the transfer of header meta-information only
• POST asks the server to process the included entity as “data” 

associated with the resource identified by the URL
– Resource annotation
– Message posting (newsgroups and mailing list)
– Form data submission
– Database input



Less-Used Methods
• OPTIONS requests information about the communication 

options available on the request/response chain identified by 
the URL (a URL of “*” identifies the options of the server)

• PUT requests that the enclosed entity be stored under the 
supplied URL (note that this is different from the POST 
request where the URL specifies the server-side component 
that will process the content)



Less-Used Methods
• DELETE requests that the origin server delete the resource 

identified by the URL
• TRACE invokes a remote, application-layer loop-back of the 

request message
– TRACE allows the client to see what is being received at the other  

end of the request chain and use that data for testing or diagnostic  
information

• CONNECT is used with proxies



Resources

• A resource can be specified by an absolute URI or an absolute 
path

• Absolute URIs are used when requesting a resource through a 
proxy
– GET http://www.example.com/index.html HTTP/1.1

• Absolute path URIs are used when requesting a resource to the 
server that owns that resource
– GET /index.html HTTP/1.1



Request Example

GET /doc/activities.html HTTP/1.1
Host: longboard:8080
Date: Tue, 03 Nov 2015 8:34:12 GMT
Pragma: no-cache
Referer: http://www.ms.com/main.html
If-Modified-Since: Sat, 12 Oct 2016 10:55:15 
GMT
<CR LF>



HTTP 1.1 Host Field
• In HTTP 1.0, it is not possible to discern, from the request line 

which server was intended to process the request:
GET /index.html HTTP/1.0

• As a consequence it is not possible to associate multiple 
server “names” to the same IP address

• In HTTP 1.1, the “Host” field is REQUIRED and specifies which 
server is the intended recipient
GET /index.html HTTP/1.1
Host: foo.com



Replies
• Replies are composed of a header and a body separated by a 

empty line (CR LF)
• The header contains:

– Protocol version (e.g., HTTP/1.0 or HTTP/1.1)
– Status code 
– Diagnostic text
– Other info

• General header
• Response header
• Entity header

• The body is a byte stream



Status Codes
• 1xx: Informational - Request received, continuing process 
• 2xx: Success - The action was successfully received, 

understood, and accepted
• 3xx: Redirection - Further action must be taken in order to 

complete the request 
• 4xx: Client Error - The request contains bad syntax or cannot 

be fulfilled 
• 5xx: Server Error - The server failed to fulfil an apparently valid 

request



Examples

• "200"   ; OK
• "201"   ; Created
• "202"   ; Accepted
• "204"   ; No Content
• “301"   ; Moved Permanently
• "307"   ; Temporary Redirect

• "400"   ; Bad Request
• "401"   ; Unauthorized
• "403"   ; Forbidden
• "404"   ; Not Found
• "500"   ; Internal Server Error
• "501"   ; Not Implemented
• "502"   ; Bad Gateway
• "503"   ; Service Unavailable



Reply Example
HTTP/1.1 200 OK
Date: Tue, 12 Oct 2016 8:35:12 GMT
Server: Apache/1.3.14 PHP/3.0.17 mod_perl/1.23
Content-Type: text/html
Last-Modified: Sun, 10 Oct 2016 18:11:00 GMT

<html>
  <head>
    <title>The Page</title>
  …
</html>



Header Fields
• General header fields: These refer to the message and not to 

the resource contained in it
– Date, Pragma, Cache-Control, Transfer-Encoding..

• Request header fields:
– Accept, Host, Authorization, From, If-modified-since, User Agent, 

Referer...
• Response header fields:

– Location, Server, WWW-Authenticate
• Entity header fields: 

– Allow, Content-Encoding, Content-Length, Content-Type, Expires, 
Last-Modified



HTTP Authentication
• Based on a simple challenge-response scheme
• The challenge is returned by the server as part of a 401 

(unauthorized) reply message and specifies the 
authentication schema to be used 

• An authentication request refers to a realm, that is, a set of 
resources on the server

• The client must include an Authorization header field with the 
required (valid) credentials



HTTP Basic Authentication Scheme
• The server replies to an unauthorized request with a 401 

message containing the header field

WWW-Authenticate: Basic realm=“ReservedDocs“

• The client retries the access including in the header a field 
containing a cookie composed of base64 encoded username 
and password

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ== 



HTTP 1.1 Authentication
• Defines an additional authentication scheme based on 

cryptographic digests (RFC 2617)
– Server sends a nonce as challenge
– Client sends request with digest of the username, the password, the 

given nonce value, the HTTP method, and the requested URL
• To authenticate the users the web server has to have access 

to the hashes of usernames and passwords



Hypertext Markup Language
• A simple data format used to create hypertext documents that are portable from one 

platform to another
• Based on Standard Generalized Markup Language (SGML) (ISO 8879:1986)
• HTML 2.0 

– Proposed in RFC 1866 (November 1995)
• HTML 3.2

– Proposed as World Wide Web Consortium (W3C) recommendation (January 1997)
• HTML 4.01

– Proposed as W3C recommendation (December 1999)
• XHTML 1.0

– Attempt by W3C to reformulate HTML into Extensible Markup Language (XML) (January 2000)
• HTML 5.0

– Proposed as W3C recommendation (October 2014)
• HTML 5.1

– Under development



HTML – Overview
• Basic idea is to “markup” document with tags, which add 

meaning to raw text
• Start tag: <foo>
• Followed by text
• End tag: </foo>
• Self-closing tag: <bar />
• Void tags (have no end tag): <img>
• Tag are hierarchical



HTML – Tags 

<html>
  <head>
    <title>Example</title>
  </head>
  <body>
    <p>I am the example text</p>
  </body>
</html>



HTML – Tags 
• <html>

– <head>
• <title>

– Example

– <body>
• <p>

– I am the example text



HTML – Tags 
• Tags can have “attributes” that provide metadata about the 

tag
• Attributes live inside the start tag after the tag name
• Four different syntax

– <foo bar>
• foo is the tag name and bar is an attribute

– <foo bar=baz>
• The attribute bar has the value baz

– <foo bar='baz'>
– <foo bar="baz">

• Multiple attributes are separated by spaces
– <foo bar='baz' disabled required="true">



HTML – Hyperlink
• The anchor tag is used to create a hyperlink
• href attribute is used provide the URI 
• Text inside the anchor tag is the text of the hyperlink

<a href="http://google.com">Google</a>



HTML – Basic HTML 5 Page

<!DOCTYPE html>
<html>
  <head>
    <meta charset="UTF-8">
    <title>CS279</title>
  </head>

  <body>
    <a href="http://example.com/">Text</a>
  </body>
</html>



HTML – Character References
• Special characters can be included in HTML using < > ' " & = 

– Encode the character reference
– Also referred to in HTML < 5.0 as “entity reference” or “entity 

encoding”
• Three types, each starts with & and ends with ;

– Named character reference
• &<predefined name>;

– Decimal numeric character reference
• &#<decimal unicode>;

– Hexadecimal numeric character reference
• &#x<hexadecimal unicode>;



HTML – Character References Example
• The ampersand (&) is used to start a character reference, so it 

must be encoded as a character reference
• &amp;
• &#38;
• &#x26;
• &#x00026;



HTML – Character References Example
• é
• &eacute;
• &#233;
• &#xe9;



HTML – Character References Example
• &lt;
• &#60;
• &#x30;
• &#x00030;



HTML – Forms 
• A form is a component of a Web page that has form controls, 

such as text fields, buttons, checkboxes, range controls, or 
color pickers
– Form is a way to create a complex HTTP request

• The action attribute contains the URI to submit the HTTP 
request
– Default is the current URI

• The method attribute is the HTTP method to use in the 
request
– GET or POST, default is GET



HTML – Forms
• Children input tags of the form are transformed into either 

query URL parameters or HTTP request body
• Difference is based on the method attribute

– GET passes data in the query
– POST passes data in the body

• Data is encoded as either 
“application/x-www-form-urlencoded” or 
“multipart/form-data”
– GET always uses “application/x-www-form-urlencoded”
– POST depends on enctype attribute of form, default is 

“application/x-www-form-urlencoded”
– "multipart/form-data" is mainly used to upload files



HTML – Forms
• Data sent as name-value pairs

– Data from the input tags (as well as others)
<input type="text" name="foo" value="bar”>

• Name is taken from the input tag’s name attribute
• Value is taken either from the input tag’s value attribute or the 

user-supplied input
– Empty string if neither is present



application/x-www-form-urlencoded
• All name-value pairs of the form are encoded
• form-urlencoding encodes the name-value pairs using percent 

encoding 
– Except that spaces are translated to + instead of %20
– foo=bar

• Multiple name-value pairs separated by ampersand (&)



application/x-www-form-urlencoded
<form action="http://example.com/grades/submit" >
  <input type="text" name="student" value="bar">
  <input type="text" name="class">
  <input type="text" name="grade">
  <input type="submit" name="submit">
</form>

http://example.com/grades/submit?student=John+Doe&class=cs
+279&grade=A%2B&submit=Submit



application/x-www-form-urlencoded
<form action="http://example.com/grades/submit" method="POST">
  <input type="text" name="student”>
  <input type="text" name="class">
  <input type="text" name="grade">
  <input type="submit" name="submit">
</form>

POST /grades/submit HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:34.0) 
Gecko/20100101 Firefox/34.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Connection: keep-alive
Content-Type: application/x-www-form-urlencoded
Content-Length: 65

student=John+Doe&class=CS+279&grade=A%2B&submit=Submit



HTML Frames
• Frames allow for the display of multiple separate views 

(associated with separate URLs) together on one page
• Used in the early days to display banners or navigation 

elements
– Now replaced by CSS directives



The frameset Element

<frameset cols="85%, 15%">
  <frame src="http://www.cs.ucsb.edu/~vigna" name="home">
  <frame src="frame.html" name="local">
  <noframes>
    Text to be displayed in browsers that do not support 
frames
  </noframes>
</frameset>



The frameset Element



The iframe Element
• Inline frames
• Similar to frames, but does not need a frameset

<iframe src="http://www.kapravelos.com" name="home" 
frameBorder="0"></iframe>

<iframe src="frame.html" name="frame" 
frameBorder="0"></iframe>



Maintaining State
• HTTP is a stateless protocol
• Many Web applications require that state be maintained 

across requests
• This can be achieved through a number of different means

– Embedding information in the returned page
• Modified URLs
• Hidden fields in forms

– Using cookies



Embedding Information in URLs
• When a user requests a page, the application embeds 

user-specific information in every link contained in the page 
returned to the user

• Client request:
GET /login.php?user=foo&pwd=bar HTTP/1.1

• Server reply:
<html>
...
<a href=“catalog.php?user=foo”>Catalog</a>
...
</html>



Embedding Information in Forms
• If a user has to go through a number of forms, information 

can be carried through using hidden input tags
• Client request: 

 GET /login.php?user=foo&pwd=bar HTTP/1.1

• Server reply:
<html>
... <form>
<input type=“hidden” name=“user” value=“foo” />
<input type=“submit” value=“Press here to see the catalog” />
...

• When the user presses on the form’s button, the string 
“user=foo” is sent together with the rest of the form’s 
contents



Embedding Information in Cookies
• Cookies are small information containers that a web server 

can store on a web client 
• They are set by the server by including the “Set-Cookie” 

header field in a reply:
Set-Cookie: USER=foo; SHIPPING=fedex; path=/

• Cookies are passed (as part of the “Cookie” header field) in 
every further transaction with the site that set the cookie
Cookie: USER=foo; SHIPPING=fedex;



Embedding Information in Cookies
• They are usually used to maintain “state” across separate 

HTTP transactions
– User preferences
– Status of multi-step processes (e.g., shopping cart applications)
– Session token stored as a result of a username/password 

authentication
• Cookies are accessible (e.g., through JavaScript) only by the 

site that set them



Cookie Structure
• A cookie can have a number of fields:

– <name>=<value>: generic data (only required field)
– expires=<date>: expiration date
– path=<path>: set of resources to which the cookie applies
– domain=<domain name>: by default set to the hostname, but it could 

specify a more generic domain (e.g., foo.com)
– secure: flag that forces the cookie to be sent over secure connections 

only
– Httponly: flag that specifies that a cookie should not be accessible to 

client-side scripts
• There are limitations to the number of cookies that a server can set



Sessions
• Sessions are used to represent a time-limited interaction of a 

user with a web server
• There is no concept of a “session” at the HTTP level, and 

therefore it has to be implemented at the web-application 
level
– Using cookies
– Using URL parameters
– Using hidden form fields

• At the beginning of a session a unique ID is generated and 
returned to the user

• From that point on, the session ID is used to index the 
information stored on the server side 



Executing Code on the Server
• The server-side component of an application executes code in 

reaction to an HTTP request
• This simple mechanism allows for the creation of web-based 

portal to database and other applications



The Common Gateway Interface
• Mechanism to invoke programs on the server side 
• The program’s output is returned to the client
• Input parameters can be passed 

– Using the URL (GET method)
• Advantage: The query can be stored as a URL

– Using the request body (POST method)
• Advantage: Input parameters can be of any size

http://www.ms.com/cgi-bin/prg.exe/usr/info?choice=yes&q=high

Program
Extra

Information
CGI 

Directory 
Query data



CGI Programs
• Can be written in any language
• Input to the program is piped to the process’ stdin
• Parameters are passed by setting environment variables

– REQUEST_METHOD :GET, HEAD or POST
– PATH_INFO : path in the URL that follows the program name and 

precedes “?”
– QUERY_STRING: information that follows “?”
– CONTENT_TYPE : MIME type of the data for the POST method
– CONTENT_LENGTH : size of the data for the POST method
– HTTP_<field>: value of corresponding header field



CGI Variables
– SERVER_SOFTWARE : name/version of server software
– SERVER_NAME : server hostname
– GATEWAY_INTERFACE : CGI version
– SERVER_PROTOCOL : server protocol version
– SERVER_PORT : TCP port used by the server
– PATH_TRANSLATED : PATH_INFO for non-Unix OSs
– SCRIPT_NAME : name of the script
– REMOTE_HOST : hostname of the client
– REMOTE_ADDR : address of the client
– AUTH_TYPE : authentication mechanism used
– REMOTE_USER : authenticated user name
– REMOTE_IDENT : user name as returned by identd



Active Server Pages
• Microsoft’s answer to CGI scripts 
• Pages that contain a mix of

– Text
– HTML tags
– Scripting directives (mostly VBScript and JScript)
– Server-side includes

• Page scripting directives are executed on the server side 
before serving the page

• ASP.NET provide access to a number of easy-to-use built-in 
objects  



Active Server Pages

<% strName = request.querystring("Name")
   If strName <> “” Then%>
<b>Welcome!</b>
<% Response.write(strName)
   Else %>
<b>You didn’t provide a name...</b>
<% End If %>



Servlets And JavaServer Pages (J2EE)
• Servlets are Java programs that are executed on the server 

– Similar to CGI programs
– They can be executed within an existing JVM without having to 

create a new process
• JavaServer Pages (JSP) are static HTML intermixed with Java 

code
– Similar to Microsoft’s Active Server Pages
– Allow one to specify both the dynamic and the static parts of a page
– They are compiled into servlets



PHP
• The “PHP Hypertext Processor” is a scripting language that 

can be embedded in HTML pages to generate dynamic 
content

• PHP code is executed on the server side when the page 
containing the code is requested

• A common setup is a LAMP system, which is the composition 
of
– Linux 
– Apache
– MySQL
– PHP



Example
<html>
  <head> <title>Feedback Page</title></head>
  <body>
    <h1>Feedback Page</h1>
    <?php  
$name = $_POST['name'];
$comment = $_POST['comment'];
$file = fopen("feedback.html", "a");
fwrite($file, "<p>$name said: $comment</p>\n");
fclose($file);
include(”feedback.html");
    ?>
    <p>And this is the end of it!</p>
    <hr />
  </body>
</html>



Web Application Frameworks
• Web App Frameworks provide support for the rapid 

development of web applications
• Might be based on existing web servers or might provide a 

complete environment (including the server implementation)
• Often based on the Model-View-Controller architectural 

pattern
• Provide automated translation of objects to/from database
• Provide templates for the generation of dynamic pages

– Ruby on Rails
– Flask (Python)
– Node.js (JavaSCript)



Web Application Frameworks

Source: http://trends.builtwith.com/framework

http://trends.builtwith.com/framework


User Agents
• User Agents (most of the time browser) are the client side 

component responsible for the retrieval and display of web 
resources
– wget, curl
– Chrome, Firefox, Safari

• Some User Agents support the execution of client side code
– Java Applets
– ActiveX Controls
– JavaScript



Java Applets
• Java applets are compiled Java programs that are

– Downloaded into a browser 
– Executed within the context of a web page

• Access to resources is regulated by an implementation of the 
Java Security Manager

• Introduced in 1995, experienced initial success but was not 
adopted widely



ActiveX Controls
• ActiveX controls are binary, OS-specific programs that are 

downloaded and executed in the context of a web page
• ActiveX controls are supported only by Windows-based 

browsers
• The code is signed using the Authenticode mechanism
• Once executed, they have complete access to the client’s 

environment



JavaScript/JScript
EcmaScript/VBScript

• Scripting languages used to implement dynamic behavior in 
web pages

• JavaScript initially introduced by NetScape in 1995 (LiveScript 
was the original name) 

• JScript is Microsoft’s version (now also called JavaScript)
• EcmaScript is a standardized version of JavaScript
• VBScript is based on Microsoft Visual Basic



Client-side Scripting
• Code is included using external references

<script src=“http://www.foocom/somecode.js”></script>

• Code is embedded into HTML pages using the SCRIPT tag and 
storing the code in comments

<script LANGUAGE=“JavaScript”>
<!-- var name = prompt ('Please Enter your name below.','')

      if ( name == null ) {
         document.write ('Welcome to my site!')
      }

    else {
       document.write ('Welcome to my site '+name+'!')

    }
-->

   </script>



DOM and BOM
• The Document Object Model (DOM) is a programmatic 

interface to the manipulation of client-side content:

var x = document.createElement('HR');
document.getElementById('inserthrhere').appendChild(x);

• The Browser Object Model (BOM) is a programmatic interface 
to the browser properties:
location.href = 'newpage.html’;
history.back()



JavaScript Security
• JavaScript code is downloaded as part of an HTML page and 

executed on-the-fly 
• The security of JavaScript code execution is guaranteed by a 

sandboxing mechanism
– No access to files
– No access to network resources
– No window smaller than 100x100 pixels
– No access to the browser’s history
– ...

• The details of how sandboxing is implemented depend on the 
particular browser considered



JavaScript Security Policies (in Mozilla)
• “Same origin” policy

– JavaScript code can access only resources (e.g., cookies) that are 
associated with the same origin (e.g., foo.com)

– The protocol, port (if one is specified), and host are the same for 
both pages

• “Signed script” policy
– The signature on JavaScript code is verified and a principal identity 

is extracted
– The principal’s identity is compared to a policy file to determine the 

level of access 
• “Configurable” policy

– The user can manually modify the policy file (user.js) to allow or 
deny access to specific resources/methods for code downloaded 
from specific sites



Same Origin Policy In Detail
• Every frame in a browser’s window is associated with a 

domain
– A domain is determined by the server, protocol, and port from which 

the frame content was downloaded
• Code downloaded in a frame can only access the resources 

associated with the source domain of the frame
• If a frame explicitly include external code, this code will 

execute within the frame domain even though it comes from 
another host

<script type="text/javascript"> //Downloaded from foo.com 
      src="http://www.bar.com/scripts/script.js"> //Executes as if it were 

from foo.com 
</script> 



AJAX
• AJAX (Asynchronous JavaScript and XML) is a mechanism to 

modify a web page based on the result of a request, but 
without the need of user action

• It relies on two basic concepts:
– JavaScript-based DOM manipulation
– The XML-HTTP Request object



XML HTTP Request
• The XML HTTP Request object was introduced to allow 

JavaScript code to retrieve XML data from a server the 
execution of queries from JavaScript

• Unfortunately, the same object has to be accessed in different 
way depending on the browser being used
– Most browsers:

• http_request = new XMLHttpRequest();

– Internet Explorer
• http_request = new ActiveXObject("Microsoft.XMLHTTP");



Requesting A Document
• Using the “onreadystatechange” property of an XML-HTTP 

request object one can set the action to be performed when 
the result of a query is received
– http_request.onreadystatechange = function(){

  code here
};

• Then, one can execute the request
– http_request.open('GET', 

'http://www.foo.come/show.php?keyword=foo', true);
– Note that the third parameter indicates that the request is 

asynchronous, that is, the execution of JavaScript will proceed while 
the requested document is being downloaded



Waiting For The Document
• The function specified using the “onreadystatechange” property 

will be called at any change in the request status
– 0 (uninitialized: Object is not initialized with data)
– 1 (loading: Object is loading its data)
– 2 (loaded: Object has finished loading its data)
– 3 (interactive: User can interact with the object even though it is not fully 

loaded)
– 4 (complete: Object is completely initialized)

• The function will usually wait until the status is “complete”
– if (http_request.readyState == 4) {

  operates on data 
  } else {
    not ready, return
  }



Modifying A Document
• After having received the document (and having checked for a 

successful return code -- 200) the content of the request can 
be accessed:
– As a string by calling: http_request.responseText
– As an XMLDocument object: http_request.responseXML

• In this case the object can be modified using the JavaScript DOM interface



Web Attacks
• Attacks against authentication
• Attacks against authorization
• Command injection attacks
• Unauthorized access to client information
• Man-in-the-middle attacks
• Attacks against HTTP protocol implementations



Monitoring and Modifying HTTP Traffic
• HTTP traffic can be analyzed in different ways

– Sniffers can be used to collect traffic
– Servers can be configured to create extensive logs
– Browsers can be used to analyze the contents received from a 

server
– Client-side/server-side proxies can be used to analyze the traffic 

without having to modify the target environment
• Client-side proxies are especially effective in performing 

vulnerability analysis of web applications because they allow 
one to examine and modify each request and reply
– Burp
– Chrome Postman Extension



Which Is The Best Way to Authenticate?
• IP address-based authentication
• HTTP-based authentication
• Certificate-based (SSL/TLS) authentication
• Form-based authentication



 Web-based Authentication
• IP address-based

– The IP source of a TCP connection (in theory) can be spoofed
– NAT-ing may cause several users to share the same IP
– The same user could use different IPs (for example, because of frequent 

DHCP renewals)
• HTTP-based

– Not very scalable and difficult to manage at the application level
• Certificate-based

– Works (on the server-side) for TLS-based connections
– Few users have “real” certificates or know how to use them

• Form-based
– Form data might be sent in the clear



Basic Authentication
• A form is used to send username and password (over an 

TLS-protected channel) to a server-side application
• The application: 

– Verifies the credentials (e.g., by checking in a database)
– Generates a session authenticator which is sent back to the user

• Typically a cookie, which is sent as part of the header, e.g.:
Set-Cookie: JSESSION=“johndoe:bluedog”; secure

• Next time the browser contacts the same server it will include the 
authenticator
– In the case of cookies, the request will contain, for example:

Cookie: auth=“johndoe:bluedog”
• Authentication is performed using this value



Better Authentication
• Notes on previous scheme:

– Authenticators should not have predictable values
– Authenticators should not be reusable across sessions

• A better form of authentication is to generate a random value 
and store it with other session information in a file or 
back-end database
– This can be automatically done using “sessions” in various 

frameworks
• J2EE: JSESSIONID=1A530637289A03B07199A44E8D531429
• PHP: PHPSESSID=43b4a19d1962304012a7531fb2bc50dd
• ASP.NET: ASPSESSIONID=MBHHDGCBGGBJBMAEGLDAJLGF



Authentication Caveats
• If an application includes an authenticator in the URL it is 

possible that browsers may leak the information as part of the 
“Referer” [sic!] field
– User access page 

http://www.foo.com/links.php?auth=28919830983
– User selects a link to http://www.bar.com/
– The www.bar.com site receives:

GET / HTTP/1.1
Host: www.bar.com
User-Agent: Mozilla
Referer: http://www.foo.com/links.php?auth=28919830983



More Caveats
• Authenticators should not be long-lived
• Note that a cookie’s expiration date is enforced by the 

browser and not by the server
– An attacker can manually modify the files where cookies are stored 

to prolong a cookie’s lifetime
• Expiration information should be stored on the server’s side or 

included in the cookie in a cryptographically secure way
• For example:

– exp=t&data=s&digest=MACk(exp=t&data=s)

see Fu et al. “Dos and Don’ts of Client Authentication on the Web”



Web Single Sign-On
• Authentication management can be a difficult task
• It is possible to rely on trusted third parties for authentication

– OAuth
– OpenId
– SAML
– FIDO



Attacking Authentication
• Eavesdropping credentials/authenticators
• Brute-forcing/guessing credentials/authenticators
• Bypassing authentication

– SQL Injection
– Session fixation

 



Eavesdropping 
Credentials and Authenticators

• If the HTTP connection is not protected by TLS it is possible to 
eavesdrop the credentials:
– Username and password sent as part of an HTTP basic authentication 

exchange
05/12/05 11:03:11 tcp 253.2.19.172.in-addr.arpa.61312 ->                   
this.cs.ucdavis.edu 80 (http)

       GET /webreview/ HTTP/1.1
       Host: raid2005.cs.ucdavis.edu
       Authorization: Basic cmFpZGNoYWlyOnRvcDY4OQ== [raidchair:top688]

– Username and password submitted through a form
– The authenticator included as cookie, URL parameter, or hidden field in a 

form
• Cookies’ “secure” flag is a good way to prevent accidental leaking 

of sensitive authentication information



Brute-forcing 
Credentials and Authenticators

• If authenticators have a limited value domain they can be 
brute-forced (e.g., 4-digit PIN)

• If authenticators are chosen in a non-random way they can be 
easily guessed 
– Sequential session IDs
– User-specified passwords 
– Example: http://www.foo.bar/secret.php?id=BGH15110915103939 

observed at 15:10 of November 9, 2015
• Long-lived authenticators make these attacks more likely to 

succeed



Bypassing Authentication
• Form-based authentication may be bypassed using carefully 

crafted arguments (e.g., using SQL injection)
• Weak password recovery procedures can be leveraged to 

reset a victim’s password to a known value
• Authentication can be bypassed using forceful browsing

– See discussion on authorization, later
• Authentication can be bypassed because of EAR

– See discussion on EAR, later
• Authentication can be bypassed through session fixation



Session Fixation

(1) GET /login.py(2) session=55181(6) GET /balance.py?session=55181
(3) Attacker lures victim into clicking on

http://bank.com/login.py?session=55181

(4) GET /login.py?session=55181

(5) GET /form.py?user=joe&pwd=foo&session=55181

bank.com

Victim

Attacker



Session Fixation
• If application accepts blindly an existing session ID, then the 

initial setup phase is not necessary
• Session IDs should always regenerated after login and never 

allow to be “inherited”
• Session fixation can be composed with cross-site scripting to 

achieve session id initialization (e.g., by setting the cookie 
value)

• See: M. Kolsek, “Session Fixation Vulnerability in Web-based 
Applications”



Lessons Learned
• Authentication is critical
• Do not transfer security-critical information in the clear
• Do not use repeatable, predictable, long-lived session IDs
• Do not allow the user to choose the session IDs
• If possible, use well-established third-party authentication 

services



Authorization Attacks: Forceful Browsing
• Resources in a web application are identified by paths
• The web application developer assumes that the application 

will be accessed through links, following the “intended flow”
• The user, however, is not bound to follow the prescribed links 

and can “jump” to any publicly available resource
• If paths are predictable, one can bypass authorization checks
• Example: 

– User is presented with list of documents only after authentication
– Requesting directly the URL http://www.acme.com/resources/ 

provides access



Authorization Attacks: Path Traversal
• Applications might build filename paths using user-provided 

input
• Path/directory traversal attacks

– Break out of the document space by using relative paths 
• GET /show.php?file=/../../../../../../etc/passwd
• Paths can be encoded, double-encoded, obfuscated, etc
• GET show.php?file=%2f%2e%2e%2f%2e%2e%2fetc%2fpasswd



Authorization Attacks: Directory Listing
• If automated directory listing is enabled, the browser may 

return a listing of the directory if no index.html file is present 
and may expose contents that should not be accessible



Lesson Learned
• Resources are identified by paths

– Web pages
– Filenames

• If the resources identifiers are predictable, it is possible to 
bypass authorization checks



Authorization Attacks: Parameters
• Parameter manipulation

– The resources accessible are determined by the parameters to a 
query

– If client-side information is blindly accepted, one can simply modify 
the parameter of a legitimate request to access additional 
information

• GET /cgi-bin/profile?userid=1229&type=medical
• GET /cgi-bin/profile?userid=1230&type=medical

• Parameter creation
– If parameters from the request query are blindly imported into the 

application’s space, one might modify the behavior of an application
• GET /cgi-bin/profile?userid=1229&type=medical&admin=1



PHP’s register_global
• The register_global directive makes request information, such 

as the GET/POST variables and cookie information, available 
as global variables
– Variables can be provided so that particular, unexpected execution 

paths are followed
– Variables could be set regardless of conditional statements

<?php
   if ($_GET[“password”]==“secret”) {
      $admin = true;
   }
   if ($admin) { ... }
?>

– Vulnerable to: GET /vuln.php?password=foo&admin=1
– All variables should be initialized/sanitized along every path



PHP’s register_global
• Register_global was “on” by default

– Security/usability trade-off
• This has been changed in releases after 4.2.0, but:

– Many existing PHP-based applications require the directive to be on
– Some PHP-based application solved the problem by adding code 

that simulates register_global behavior



Authorization Attacks: Parameters
• Parameter Pollution: In case of multiple occurrences of the 

same variable in the query string of a query, servers might 
behave differently
– http://example.com/?color=red&color=blue

• color=red
• color=blue
• color=red,blue

• If the link on a web page are created on the basis of user input 
it is possible to pollute parameters by injecting query 
delimiters (the ampersand)



Parameter Pollution Example
• Original URL: http://host/election.jsp?poll_id=4568

– Link1: <a href=”vote.jsp?poll_id=4568&candidate=white”>Vote for Mr. White</a>
– Link2: <a href=”vote.jsp?poll_id=4568&candidate=green”>Vote for Mrs. 

Green</a>
• Attacker-provided URL: 

http://host/election.jsp?poll_id=4568%26candidate%3Dgreen
– Link 1: <a 

href=”vote.jsp?poll_id=4568&candidate=green&candidate=white”>Vote for Mr. 
White</a>

– Link 2: <a 
href=”vote.jsp?poll_id=4568&candidate=green&candidate=green”>Vote for Mrs. 
Green</a>

• If the server accepts only the first parameter value the result will be 
always the selection of Mr. Green



Server (Mis)Configuration: 
Unexpected Interactions

• FTP servers and web servers are often running on the same 
host

• If data can be uploaded using FTP and then requested using 
the web server it is possible to
– Execute programs using the CGI mechanism
– Execute commands using the Server-Side Include mechanism
– …

• If a web site allows one to upload files (e.g., images) it might 
be possible to upload content that is then requested as a code 
component (e.g., a PHP file)


