
CSC 574
Computer and Network Security

Web Security

Alexandros Kapravelos
kapravelos@ncsu.edu

(Derived from slides by Giovanni Vigna)

The World-Wide Web
• The World-Wide Web was originally conceived as a

geographically distributed document retrieval system with a
hypertext structure

• In the past 20+ years, the Web evolved into a full-fledged
platform for the execution of distributed applications

• The Web is also vulnerable to a number of attacks
• The impact of these attacks is enormous, because of the

widespread use of the service, the accessibility of the servers,
and the widespread use of the clients

Architecture

HTTP Reply

HTTP Request

Architecture

HTTP Reply
HTTP Request

Firewall

Tunnel

CacheHTTP Request

Cached Reply

Proxy

Proxy Server

Architecture

Application
 Server

Application

Gateway
Program

Application-specific
requestBrowser

Extension

JavaScript,
ActiveX,
Flash,
Extensions

CGI, PHP,
ASP, Servlet

HTTP Reply
HTTP Request

Firewall

Tunnel

CacheHTTP Request

Cached Reply

Proxy

Proxy Server

Standards and Technologies
• HTTP 1.0, 1.1
• URIs, URLs
• HTML, XML, XHTML
• DOM, BOM
• Cascading Style Sheets
• SSL/TLS, Socks
• CGI, Active Server Pages, Servlets
• JavaScript, VBScript
• Applets, ActiveX controls
• Web Services, SOAP

Web Vulnerability Analysis
• Vulnerabilities in the protocol(s)
• Vulnerabilities in the infrastructure
• Vulnerabilities in the server-side portion of the application
• Vulnerabilities in the client-side portion of the application
• Many vulnerability are the results of interactions of the various

components involved in the processing of a request
• Understanding the basic technologies is key

Technology Review
• How are resources referenced?
• How are resources transferred?
• How are resources represented?
• How are resources processed on the server side?
• How are resources processed on the client side?

URIs, URLs, URNs
• Uniform Resource Identifier

– a string that identifies a resource
• Uniform Resource Locator

– an identifier that contains enough information to access
the resource

• Uniform Resource Names
– used to identify an entity regardless of the fact that the

entity is accessible or even that it exists

URI Syntax
• The general URI syntax is specified in RFC 2396
• Specific types of URIs are described in separate standards
• Syntax: <scheme>://<authority><path>?<query>
• Examples:

– ftp://ftp.ietf.org/rfc/rfc1808.txt
– http://www.csc.ncsu.edu/~jdoe/My%20HomePage
– mailto:cs176b@cs.csb.edu
– telnet://melvyl.ucop.edu/

URI Syntax
• Scheme: a string specifying the protocol/framework
• Authority: a name space that qualifies the resource

– Most of the times, it is a server name
• <userinfo>@<host>:<port>

• Path: a pathname composed of “/” separated strings
• Query: an application-specific piece of information

HyperText Transfer Protocol

• Protocol used to transfer information between a web client
and a web server

• Based on TCP, uses port 80
• Version 1.0 is defined in RFC 1945
• Version 1.1 is defined in RFC 2616

HTTP
• Client

– Opens a TCP connection
– Sends a request

• Server
– Accepts the connection
– Processes the request
– Sends a reply

• Multiple requests can be sent using the same TCP connection

Requests
• A request is composed of a header and a body (optional)

separated by an empty line (CR LF)
• The header specifies:

– Method (GET, HEAD, POST)
– Resource (e.g., /hypertext/doc.html)
– Protocol version (HTTP/1.1)
– Other info

• General header
• Request header
• Entity header

• The body is considered as a byte stream

Methods
• GET requests the transfer of the entity referred by the URL
• HEAD requests the transfer of header meta-information only
• POST asks the server to process the included entity as “data”

associated with the resource identified by the URL
– Resource annotation
– Message posting (newsgroups and mailing list)
– Form data submission
– Database input

Less-Used Methods
• OPTIONS requests information about the communication

options available on the request/response chain identified by
the URL (a URL of “*” identifies the options of the server)

• PUT requests that the enclosed entity be stored under the
supplied URL (note that this is different from the POST
request where the URL specifies the server-side component
that will process the content)

Less-Used Methods
• DELETE requests that the origin server delete the resource

identified by the URL
• TRACE invokes a remote, application-layer loop-back of the

request message
– TRACE allows the client to see what is being received at the other

end of the request chain and use that data for testing or diagnostic
information

• CONNECT is used with proxies

Resources

• A resource can be specified by an absolute URI or an absolute
path

• Absolute URIs are used when requesting a resource through a
proxy
– GET http://www.example.com/index.html HTTP/1.1

• Absolute path URIs are used when requesting a resource to the
server that owns that resource
– GET /index.html HTTP/1.1

Request Example

GET /doc/activities.html HTTP/1.1
Host: longboard:8080
Date: Tue, 03 Nov 2015 8:34:12 GMT
Pragma: no-cache
Referer: http://www.ms.com/main.html
If-Modified-Since: Sat, 12 Oct 2016 10:55:15
GMT
<CR LF>

HTTP 1.1 Host Field
• In HTTP 1.0, it is not possible to discern, from the request line

which server was intended to process the request:
GET /index.html HTTP/1.0

• As a consequence it is not possible to associate multiple
server “names” to the same IP address

• In HTTP 1.1, the “Host” field is REQUIRED and specifies which
server is the intended recipient
GET /index.html HTTP/1.1
Host: foo.com

Replies
• Replies are composed of a header and a body separated by a

empty line (CR LF)
• The header contains:

– Protocol version (e.g., HTTP/1.0 or HTTP/1.1)
– Status code
– Diagnostic text
– Other info

• General header
• Response header
• Entity header

• The body is a byte stream

Status Codes
• 1xx: Informational - Request received, continuing process
• 2xx: Success - The action was successfully received,

understood, and accepted
• 3xx: Redirection - Further action must be taken in order to

complete the request
• 4xx: Client Error - The request contains bad syntax or cannot

be fulfilled
• 5xx: Server Error - The server failed to fulfil an apparently valid

request

Examples

• "200" ; OK
• "201" ; Created
• "202" ; Accepted
• "204" ; No Content
• “301" ; Moved Permanently
• "307" ; Temporary Redirect

• "400" ; Bad Request
• "401" ; Unauthorized
• "403" ; Forbidden
• "404" ; Not Found
• "500" ; Internal Server Error
• "501" ; Not Implemented
• "502" ; Bad Gateway
• "503" ; Service Unavailable

Reply Example
HTTP/1.1 200 OK
Date: Tue, 12 Oct 2016 8:35:12 GMT
Server: Apache/1.3.14 PHP/3.0.17 mod_perl/1.23
Content-Type: text/html
Last-Modified: Sun, 10 Oct 2016 18:11:00 GMT

<html>
 <head>
 <title>The Page</title>
 …
</html>

Header Fields
• General header fields: These refer to the message and not to

the resource contained in it
– Date, Pragma, Cache-Control, Transfer-Encoding..

• Request header fields:
– Accept, Host, Authorization, From, If-modified-since, User Agent,

Referer...
• Response header fields:

– Location, Server, WWW-Authenticate
• Entity header fields:

– Allow, Content-Encoding, Content-Length, Content-Type, Expires,
Last-Modified

HTTP Authentication
• Based on a simple challenge-response scheme
• The challenge is returned by the server as part of a 401

(unauthorized) reply message and specifies the
authentication schema to be used

• An authentication request refers to a realm, that is, a set of
resources on the server

• The client must include an Authorization header field with the
required (valid) credentials

HTTP Basic Authentication Scheme
• The server replies to an unauthorized request with a 401

message containing the header field

WWW-Authenticate: Basic realm=“ReservedDocs“

• The client retries the access including in the header a field
containing a cookie composed of base64 encoded username
and password

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

HTTP 1.1 Authentication
• Defines an additional authentication scheme based on

cryptographic digests (RFC 2617)
– Server sends a nonce as challenge
– Client sends request with digest of the username, the password, the

given nonce value, the HTTP method, and the requested URL
• To authenticate the users the web server has to have access

to the hashes of usernames and passwords

Hypertext Markup Language
• A simple data format used to create hypertext documents that are portable from one

platform to another
• Based on Standard Generalized Markup Language (SGML) (ISO 8879:1986)
• HTML 2.0

– Proposed in RFC 1866 (November 1995)
• HTML 3.2

– Proposed as World Wide Web Consortium (W3C) recommendation (January 1997)
• HTML 4.01

– Proposed as W3C recommendation (December 1999)
• XHTML 1.0

– Attempt by W3C to reformulate HTML into Extensible Markup Language (XML) (January 2000)
• HTML 5.0

– Proposed as W3C recommendation (October 2014)
• HTML 5.1

– Under development

HTML – Overview
• Basic idea is to “markup” document with tags, which add

meaning to raw text
• Start tag: <foo>
• Followed by text
• End tag: </foo>
• Self-closing tag: <bar />
• Void tags (have no end tag):
• Tag are hierarchical

HTML – Tags

<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p>I am the example text</p>
 </body>
</html>

HTML – Tags
• <html>

– <head>
• <title>

– Example

– <body>
• <p>

– I am the example text

HTML – Tags
• Tags can have “attributes” that provide metadata about the

tag
• Attributes live inside the start tag after the tag name
• Four different syntax

– <foo bar>
• foo is the tag name and bar is an attribute

– <foo bar=baz>
• The attribute bar has the value baz

– <foo bar='baz'>
– <foo bar="baz">

• Multiple attributes are separated by spaces
– <foo bar='baz' disabled required="true">

HTML – Hyperlink
• The anchor tag is used to create a hyperlink
• href attribute is used provide the URI
• Text inside the anchor tag is the text of the hyperlink

Google

HTML – Basic HTML 5 Page

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>CS279</title>
 </head>

 <body>
 Text
 </body>
</html>

HTML – Character References
• Special characters can be included in HTML using < > ' " & =

– Encode the character reference
– Also referred to in HTML < 5.0 as “entity reference” or “entity

encoding”
• Three types, each starts with & and ends with ;

– Named character reference
• &<predefined name>;

– Decimal numeric character reference
• &#<decimal unicode>;

– Hexadecimal numeric character reference
• &#x<hexadecimal unicode>;

HTML – Character References Example
• The ampersand (&) is used to start a character reference, so it

must be encoded as a character reference
• &
• &
• &
• &

HTML – Character References Example
• é
• é
• é
• é

HTML – Character References Example
• <
• <
• 0
• 0

HTML – Forms
• A form is a component of a Web page that has form controls,

such as text fields, buttons, checkboxes, range controls, or
color pickers
– Form is a way to create a complex HTTP request

• The action attribute contains the URI to submit the HTTP
request
– Default is the current URI

• The method attribute is the HTTP method to use in the
request
– GET or POST, default is GET

HTML – Forms
• Children input tags of the form are transformed into either

query URL parameters or HTTP request body
• Difference is based on the method attribute

– GET passes data in the query
– POST passes data in the body

• Data is encoded as either
“application/x-www-form-urlencoded” or
“multipart/form-data”
– GET always uses “application/x-www-form-urlencoded”
– POST depends on enctype attribute of form, default is

“application/x-www-form-urlencoded”
– "multipart/form-data" is mainly used to upload files

HTML – Forms
• Data sent as name-value pairs

– Data from the input tags (as well as others)
<input type="text" name="foo" value="bar”>

• Name is taken from the input tag’s name attribute
• Value is taken either from the input tag’s value attribute or the

user-supplied input
– Empty string if neither is present

application/x-www-form-urlencoded
• All name-value pairs of the form are encoded
• form-urlencoding encodes the name-value pairs using percent

encoding
– Except that spaces are translated to + instead of %20
– foo=bar

• Multiple name-value pairs separated by ampersand (&)

application/x-www-form-urlencoded
<form action="http://example.com/grades/submit" >
 <input type="text" name="student" value="bar">
 <input type="text" name="class">
 <input type="text" name="grade">
 <input type="submit" name="submit">
</form>

http://example.com/grades/submit?student=John+Doe&class=cs
+279&grade=A%2B&submit=Submit

application/x-www-form-urlencoded
<form action="http://example.com/grades/submit" method="POST">
 <input type="text" name="student”>
 <input type="text" name="class">
 <input type="text" name="grade">
 <input type="submit" name="submit">
</form>

POST /grades/submit HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:34.0)
Gecko/20100101 Firefox/34.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Connection: keep-alive
Content-Type: application/x-www-form-urlencoded
Content-Length: 65

student=John+Doe&class=CS+279&grade=A%2B&submit=Submit

HTML Frames
• Frames allow for the display of multiple separate views

(associated with separate URLs) together on one page
• Used in the early days to display banners or navigation

elements
– Now replaced by CSS directives

The frameset Element

<frameset cols="85%, 15%">
 <frame src="http://www.cs.ucsb.edu/~vigna" name="home">
 <frame src="frame.html" name="local">
 <noframes>
 Text to be displayed in browsers that do not support
frames
 </noframes>
</frameset>

The frameset Element

The iframe Element
• Inline frames
• Similar to frames, but does not need a frameset

<iframe src="http://www.kapravelos.com" name="home"
frameBorder="0"></iframe>

<iframe src="frame.html" name="frame"
frameBorder="0"></iframe>

Maintaining State
• HTTP is a stateless protocol
• Many Web applications require that state be maintained

across requests
• This can be achieved through a number of different means

– Embedding information in the returned page
• Modified URLs
• Hidden fields in forms

– Using cookies

Embedding Information in URLs
• When a user requests a page, the application embeds

user-specific information in every link contained in the page
returned to the user

• Client request:
GET /login.php?user=foo&pwd=bar HTTP/1.1

• Server reply:
<html>
...
Catalog
...
</html>

Embedding Information in Forms
• If a user has to go through a number of forms, information

can be carried through using hidden input tags
• Client request:

 GET /login.php?user=foo&pwd=bar HTTP/1.1

• Server reply:
<html>
... <form>
<input type=“hidden” name=“user” value=“foo” />
<input type=“submit” value=“Press here to see the catalog” />
...

• When the user presses on the form’s button, the string
“user=foo” is sent together with the rest of the form’s
contents

Embedding Information in Cookies
• Cookies are small information containers that a web server

can store on a web client
• They are set by the server by including the “Set-Cookie”

header field in a reply:
Set-Cookie: USER=foo; SHIPPING=fedex; path=/

• Cookies are passed (as part of the “Cookie” header field) in
every further transaction with the site that set the cookie
Cookie: USER=foo; SHIPPING=fedex;

Embedding Information in Cookies
• They are usually used to maintain “state” across separate

HTTP transactions
– User preferences
– Status of multi-step processes (e.g., shopping cart applications)
– Session token stored as a result of a username/password

authentication
• Cookies are accessible (e.g., through JavaScript) only by the

site that set them

Cookie Structure
• A cookie can have a number of fields:

– <name>=<value>: generic data (only required field)
– expires=<date>: expiration date
– path=<path>: set of resources to which the cookie applies
– domain=<domain name>: by default set to the hostname, but it could

specify a more generic domain (e.g., foo.com)
– secure: flag that forces the cookie to be sent over secure connections

only
– Httponly: flag that specifies that a cookie should not be accessible to

client-side scripts
• There are limitations to the number of cookies that a server can set

Sessions
• Sessions are used to represent a time-limited interaction of a

user with a web server
• There is no concept of a “session” at the HTTP level, and

therefore it has to be implemented at the web-application
level
– Using cookies
– Using URL parameters
– Using hidden form fields

• At the beginning of a session a unique ID is generated and
returned to the user

• From that point on, the session ID is used to index the
information stored on the server side

Executing Code on the Server
• The server-side component of an application executes code in

reaction to an HTTP request
• This simple mechanism allows for the creation of web-based

portal to database and other applications

The Common Gateway Interface
• Mechanism to invoke programs on the server side
• The program’s output is returned to the client
• Input parameters can be passed

– Using the URL (GET method)
• Advantage: The query can be stored as a URL

– Using the request body (POST method)
• Advantage: Input parameters can be of any size

http://www.ms.com/cgi-bin/prg.exe/usr/info?choice=yes&q=high

Program
Extra

Information
CGI

Directory
Query data

CGI Programs
• Can be written in any language
• Input to the program is piped to the process’ stdin
• Parameters are passed by setting environment variables

– REQUEST_METHOD :GET, HEAD or POST
– PATH_INFO : path in the URL that follows the program name and

precedes “?”
– QUERY_STRING: information that follows “?”
– CONTENT_TYPE : MIME type of the data for the POST method
– CONTENT_LENGTH : size of the data for the POST method
– HTTP_<field>: value of corresponding header field

CGI Variables
– SERVER_SOFTWARE : name/version of server software
– SERVER_NAME : server hostname
– GATEWAY_INTERFACE : CGI version
– SERVER_PROTOCOL : server protocol version
– SERVER_PORT : TCP port used by the server
– PATH_TRANSLATED : PATH_INFO for non-Unix OSs
– SCRIPT_NAME : name of the script
– REMOTE_HOST : hostname of the client
– REMOTE_ADDR : address of the client
– AUTH_TYPE : authentication mechanism used
– REMOTE_USER : authenticated user name
– REMOTE_IDENT : user name as returned by identd

Active Server Pages
• Microsoft’s answer to CGI scripts
• Pages that contain a mix of

– Text
– HTML tags
– Scripting directives (mostly VBScript and JScript)
– Server-side includes

• Page scripting directives are executed on the server side
before serving the page

• ASP.NET provide access to a number of easy-to-use built-in
objects

Active Server Pages

<% strName = request.querystring("Name")
 If strName <> “” Then%>
Welcome!
<% Response.write(strName)
 Else %>
You didn’t provide a name...
<% End If %>

Servlets And JavaServer Pages (J2EE)
• Servlets are Java programs that are executed on the server

– Similar to CGI programs
– They can be executed within an existing JVM without having to

create a new process
• JavaServer Pages (JSP) are static HTML intermixed with Java

code
– Similar to Microsoft’s Active Server Pages
– Allow one to specify both the dynamic and the static parts of a page
– They are compiled into servlets

PHP
• The “PHP Hypertext Processor” is a scripting language that

can be embedded in HTML pages to generate dynamic
content

• PHP code is executed on the server side when the page
containing the code is requested

• A common setup is a LAMP system, which is the composition
of
– Linux
– Apache
– MySQL
– PHP

Example
<html>
 <head> <title>Feedback Page</title></head>
 <body>
 <h1>Feedback Page</h1>
 <?php
$name = $_POST['name'];
$comment = $_POST['comment'];
$file = fopen("feedback.html", "a");
fwrite($file, "<p>$name said: $comment</p>\n");
fclose($file);
include(”feedback.html");
 ?>
 <p>And this is the end of it!</p>
 <hr />
 </body>
</html>

Web Application Frameworks
• Web App Frameworks provide support for the rapid

development of web applications
• Might be based on existing web servers or might provide a

complete environment (including the server implementation)
• Often based on the Model-View-Controller architectural

pattern
• Provide automated translation of objects to/from database
• Provide templates for the generation of dynamic pages

– Ruby on Rails
– Flask (Python)
– Node.js (JavaSCript)

Web Application Frameworks

Source: http://trends.builtwith.com/framework

http://trends.builtwith.com/framework

User Agents
• User Agents (most of the time browser) are the client side

component responsible for the retrieval and display of web
resources
– wget, curl
– Chrome, Firefox, Safari

• Some User Agents support the execution of client side code
– Java Applets
– ActiveX Controls
– JavaScript

Java Applets
• Java applets are compiled Java programs that are

– Downloaded into a browser
– Executed within the context of a web page

• Access to resources is regulated by an implementation of the
Java Security Manager

• Introduced in 1995, experienced initial success but was not
adopted widely

ActiveX Controls
• ActiveX controls are binary, OS-specific programs that are

downloaded and executed in the context of a web page
• ActiveX controls are supported only by Windows-based

browsers
• The code is signed using the Authenticode mechanism
• Once executed, they have complete access to the client’s

environment

JavaScript/JScript
EcmaScript/VBScript

• Scripting languages used to implement dynamic behavior in
web pages

• JavaScript initially introduced by NetScape in 1995 (LiveScript
was the original name)

• JScript is Microsoft’s version (now also called JavaScript)
• EcmaScript is a standardized version of JavaScript
• VBScript is based on Microsoft Visual Basic

Client-side Scripting
• Code is included using external references

<script src=“http://www.foocom/somecode.js”></script>

• Code is embedded into HTML pages using the SCRIPT tag and
storing the code in comments

<script LANGUAGE=“JavaScript”>
<!-- var name = prompt ('Please Enter your name below.','')

 if (name == null) {
 document.write ('Welcome to my site!')
 }

 else {
 document.write ('Welcome to my site '+name+'!')

 }
-->

 </script>

DOM and BOM
• The Document Object Model (DOM) is a programmatic

interface to the manipulation of client-side content:

var x = document.createElement('HR');
document.getElementById('inserthrhere').appendChild(x);

• The Browser Object Model (BOM) is a programmatic interface
to the browser properties:
location.href = 'newpage.html’;
history.back()

JavaScript Security
• JavaScript code is downloaded as part of an HTML page and

executed on-the-fly
• The security of JavaScript code execution is guaranteed by a

sandboxing mechanism
– No access to files
– No access to network resources
– No window smaller than 100x100 pixels
– No access to the browser’s history
– ...

• The details of how sandboxing is implemented depend on the
particular browser considered

JavaScript Security Policies (in Mozilla)
• “Same origin” policy

– JavaScript code can access only resources (e.g., cookies) that are
associated with the same origin (e.g., foo.com)

– The protocol, port (if one is specified), and host are the same for
both pages

• “Signed script” policy
– The signature on JavaScript code is verified and a principal identity

is extracted
– The principal’s identity is compared to a policy file to determine the

level of access
• “Configurable” policy

– The user can manually modify the policy file (user.js) to allow or
deny access to specific resources/methods for code downloaded
from specific sites

Same Origin Policy In Detail
• Every frame in a browser’s window is associated with a

domain
– A domain is determined by the server, protocol, and port from which

the frame content was downloaded
• Code downloaded in a frame can only access the resources

associated with the source domain of the frame
• If a frame explicitly include external code, this code will

execute within the frame domain even though it comes from
another host

<script type="text/javascript"> //Downloaded from foo.com
 src="http://www.bar.com/scripts/script.js"> //Executes as if it were

from foo.com
</script>

AJAX
• AJAX (Asynchronous JavaScript and XML) is a mechanism to

modify a web page based on the result of a request, but
without the need of user action

• It relies on two basic concepts:
– JavaScript-based DOM manipulation
– The XML-HTTP Request object

XML HTTP Request
• The XML HTTP Request object was introduced to allow

JavaScript code to retrieve XML data from a server the
execution of queries from JavaScript

• Unfortunately, the same object has to be accessed in different
way depending on the browser being used
– Most browsers:

• http_request = new XMLHttpRequest();

– Internet Explorer
• http_request = new ActiveXObject("Microsoft.XMLHTTP");

Requesting A Document
• Using the “onreadystatechange” property of an XML-HTTP

request object one can set the action to be performed when
the result of a query is received
– http_request.onreadystatechange = function(){

 code here
};

• Then, one can execute the request
– http_request.open('GET',

'http://www.foo.come/show.php?keyword=foo', true);
– Note that the third parameter indicates that the request is

asynchronous, that is, the execution of JavaScript will proceed while
the requested document is being downloaded

Waiting For The Document
• The function specified using the “onreadystatechange” property

will be called at any change in the request status
– 0 (uninitialized: Object is not initialized with data)
– 1 (loading: Object is loading its data)
– 2 (loaded: Object has finished loading its data)
– 3 (interactive: User can interact with the object even though it is not fully

loaded)
– 4 (complete: Object is completely initialized)

• The function will usually wait until the status is “complete”
– if (http_request.readyState == 4) {

 operates on data
 } else {
 not ready, return
 }

Modifying A Document
• After having received the document (and having checked for a

successful return code -- 200) the content of the request can
be accessed:
– As a string by calling: http_request.responseText
– As an XMLDocument object: http_request.responseXML

• In this case the object can be modified using the JavaScript DOM interface

Web Attacks
• Attacks against authentication
• Attacks against authorization
• Command injection attacks
• Unauthorized access to client information
• Man-in-the-middle attacks
• Attacks against HTTP protocol implementations

Monitoring and Modifying HTTP Traffic
• HTTP traffic can be analyzed in different ways

– Sniffers can be used to collect traffic
– Servers can be configured to create extensive logs
– Browsers can be used to analyze the contents received from a

server
– Client-side/server-side proxies can be used to analyze the traffic

without having to modify the target environment
• Client-side proxies are especially effective in performing

vulnerability analysis of web applications because they allow
one to examine and modify each request and reply
– Burp
– Chrome Postman Extension

Which Is The Best Way to Authenticate?
• IP address-based authentication
• HTTP-based authentication
• Certificate-based (SSL/TLS) authentication
• Form-based authentication

 Web-based Authentication
• IP address-based

– The IP source of a TCP connection (in theory) can be spoofed
– NAT-ing may cause several users to share the same IP
– The same user could use different IPs (for example, because of frequent

DHCP renewals)
• HTTP-based

– Not very scalable and difficult to manage at the application level
• Certificate-based

– Works (on the server-side) for TLS-based connections
– Few users have “real” certificates or know how to use them

• Form-based
– Form data might be sent in the clear

Basic Authentication
• A form is used to send username and password (over an

TLS-protected channel) to a server-side application
• The application:

– Verifies the credentials (e.g., by checking in a database)
– Generates a session authenticator which is sent back to the user

• Typically a cookie, which is sent as part of the header, e.g.:
Set-Cookie: JSESSION=“johndoe:bluedog”; secure

• Next time the browser contacts the same server it will include the
authenticator
– In the case of cookies, the request will contain, for example:

Cookie: auth=“johndoe:bluedog”
• Authentication is performed using this value

Better Authentication
• Notes on previous scheme:

– Authenticators should not have predictable values
– Authenticators should not be reusable across sessions

• A better form of authentication is to generate a random value
and store it with other session information in a file or
back-end database
– This can be automatically done using “sessions” in various

frameworks
• J2EE: JSESSIONID=1A530637289A03B07199A44E8D531429
• PHP: PHPSESSID=43b4a19d1962304012a7531fb2bc50dd
• ASP.NET: ASPSESSIONID=MBHHDGCBGGBJBMAEGLDAJLGF

Authentication Caveats
• If an application includes an authenticator in the URL it is

possible that browsers may leak the information as part of the
“Referer” [sic!] field
– User access page

http://www.foo.com/links.php?auth=28919830983
– User selects a link to http://www.bar.com/
– The www.bar.com site receives:

GET / HTTP/1.1
Host: www.bar.com
User-Agent: Mozilla
Referer: http://www.foo.com/links.php?auth=28919830983

More Caveats
• Authenticators should not be long-lived
• Note that a cookie’s expiration date is enforced by the

browser and not by the server
– An attacker can manually modify the files where cookies are stored

to prolong a cookie’s lifetime
• Expiration information should be stored on the server’s side or

included in the cookie in a cryptographically secure way
• For example:

– exp=t&data=s&digest=MACk(exp=t&data=s)

see Fu et al. “Dos and Don’ts of Client Authentication on the Web”

Web Single Sign-On
• Authentication management can be a difficult task
• It is possible to rely on trusted third parties for authentication

– OAuth
– OpenId
– SAML
– FIDO

Attacking Authentication
• Eavesdropping credentials/authenticators
• Brute-forcing/guessing credentials/authenticators
• Bypassing authentication

– SQL Injection
– Session fixation

Eavesdropping
Credentials and Authenticators

• If the HTTP connection is not protected by TLS it is possible to
eavesdrop the credentials:
– Username and password sent as part of an HTTP basic authentication

exchange
05/12/05 11:03:11 tcp 253.2.19.172.in-addr.arpa.61312 ->
this.cs.ucdavis.edu 80 (http)

 GET /webreview/ HTTP/1.1
 Host: raid2005.cs.ucdavis.edu
 Authorization: Basic cmFpZGNoYWlyOnRvcDY4OQ== [raidchair:top688]

– Username and password submitted through a form
– The authenticator included as cookie, URL parameter, or hidden field in a

form
• Cookies’ “secure” flag is a good way to prevent accidental leaking

of sensitive authentication information

Brute-forcing
Credentials and Authenticators

• If authenticators have a limited value domain they can be
brute-forced (e.g., 4-digit PIN)

• If authenticators are chosen in a non-random way they can be
easily guessed
– Sequential session IDs
– User-specified passwords
– Example: http://www.foo.bar/secret.php?id=BGH15110915103939

observed at 15:10 of November 9, 2015
• Long-lived authenticators make these attacks more likely to

succeed

Bypassing Authentication
• Form-based authentication may be bypassed using carefully

crafted arguments (e.g., using SQL injection)
• Weak password recovery procedures can be leveraged to

reset a victim’s password to a known value
• Authentication can be bypassed using forceful browsing

– See discussion on authorization, later
• Authentication can be bypassed because of EAR

– See discussion on EAR, later
• Authentication can be bypassed through session fixation

Session Fixation

(1) GET /login.py(2) session=55181(6) GET /balance.py?session=55181
(3) Attacker lures victim into clicking on

http://bank.com/login.py?session=55181

(4) GET /login.py?session=55181

(5) GET /form.py?user=joe&pwd=foo&session=55181

bank.com

Victim

Attacker

Session Fixation
• If application accepts blindly an existing session ID, then the

initial setup phase is not necessary
• Session IDs should always regenerated after login and never

allow to be “inherited”
• Session fixation can be composed with cross-site scripting to

achieve session id initialization (e.g., by setting the cookie
value)

• See: M. Kolsek, “Session Fixation Vulnerability in Web-based
Applications”

Lessons Learned
• Authentication is critical
• Do not transfer security-critical information in the clear
• Do not use repeatable, predictable, long-lived session IDs
• Do not allow the user to choose the session IDs
• If possible, use well-established third-party authentication

services

Authorization Attacks: Forceful Browsing
• Resources in a web application are identified by paths
• The web application developer assumes that the application

will be accessed through links, following the “intended flow”
• The user, however, is not bound to follow the prescribed links

and can “jump” to any publicly available resource
• If paths are predictable, one can bypass authorization checks
• Example:

– User is presented with list of documents only after authentication
– Requesting directly the URL http://www.acme.com/resources/

provides access

Authorization Attacks: Path Traversal
• Applications might build filename paths using user-provided

input
• Path/directory traversal attacks

– Break out of the document space by using relative paths
• GET /show.php?file=/../../../../../../etc/passwd
• Paths can be encoded, double-encoded, obfuscated, etc
• GET show.php?file=%2f%2e%2e%2f%2e%2e%2fetc%2fpasswd

Authorization Attacks: Directory Listing
• If automated directory listing is enabled, the browser may

return a listing of the directory if no index.html file is present
and may expose contents that should not be accessible

Lesson Learned
• Resources are identified by paths

– Web pages
– Filenames

• If the resources identifiers are predictable, it is possible to
bypass authorization checks

Authorization Attacks: Parameters
• Parameter manipulation

– The resources accessible are determined by the parameters to a
query

– If client-side information is blindly accepted, one can simply modify
the parameter of a legitimate request to access additional
information

• GET /cgi-bin/profile?userid=1229&type=medical
• GET /cgi-bin/profile?userid=1230&type=medical

• Parameter creation
– If parameters from the request query are blindly imported into the

application’s space, one might modify the behavior of an application
• GET /cgi-bin/profile?userid=1229&type=medical&admin=1

PHP’s register_global
• The register_global directive makes request information, such

as the GET/POST variables and cookie information, available
as global variables
– Variables can be provided so that particular, unexpected execution

paths are followed
– Variables could be set regardless of conditional statements

<?php
 if ($_GET[“password”]==“secret”) {
 $admin = true;
 }
 if ($admin) { ... }
?>

– Vulnerable to: GET /vuln.php?password=foo&admin=1
– All variables should be initialized/sanitized along every path

PHP’s register_global
• Register_global was “on” by default

– Security/usability trade-off
• This has been changed in releases after 4.2.0, but:

– Many existing PHP-based applications require the directive to be on
– Some PHP-based application solved the problem by adding code

that simulates register_global behavior

Authorization Attacks: Parameters
• Parameter Pollution: In case of multiple occurrences of the

same variable in the query string of a query, servers might
behave differently
– http://example.com/?color=red&color=blue

• color=red
• color=blue
• color=red,blue

• If the link on a web page are created on the basis of user input
it is possible to pollute parameters by injecting query
delimiters (the ampersand)

Parameter Pollution Example
• Original URL: http://host/election.jsp?poll_id=4568

– Link1: Vote for Mr. White
– Link2: Vote for Mrs.

Green
• Attacker-provided URL:

http://host/election.jsp?poll_id=4568%26candidate%3Dgreen
– Link 1: Vote for Mr.
White

– Link 2: Vote for Mrs.
Green

• If the server accepts only the first parameter value the result will be
always the selection of Mr. Green

Server (Mis)Configuration:
Unexpected Interactions

• FTP servers and web servers are often running on the same
host

• If data can be uploaded using FTP and then requested using
the web server it is possible to
– Execute programs using the CGI mechanism
– Execute commands using the Server-Side Include mechanism
– …

• If a web site allows one to upload files (e.g., images) it might
be possible to upload content that is then requested as a code
component (e.g., a PHP file)

