
(Derived from slides by William Robertson)

CSC 574
Computer and Network Security

Firewalls and IDS

Alexandros Kapravelos
kapravelos@ncsu.edu

Firewalls

- Recognized early on that network-level access control
would be useful

- e.g., ensuring internal services remain internal, defending
known-vulnerable machines

- Firewalls inspect network traffic and filter/modify it
according to some predicates (ruleset)

- Several classifications

- Packet filtering, stateful filtering, application-layer filtering

3

Packet Filtering

- Application of filtering predicates over individual packets

- IP addresses

- IP protocol

- Packet sizes

- TTLs

- Ports

- Straightforward to implement

- But, not capable of detecting some attacks

4

Stateful Filtering
- Firewall maintains state across packet sequences

- Application of filtering predicates over network streams

- Connection state (INVALID, NEW, ESTABLISHED,
RELATED)

- Temporal information

- Tagging

- More powerful detection primitives

- Drawbacks

- Prone to availability attacks

5

Firewall Attacks

- Firewalking

- Often useful to understand firewall policies

- Traceroute-like technique

- i.e., increment TTL until firewall discovered, increment
once more, check for ICMP errors

- Source port scanning

- Desynchronization (similar to IDS)

13

Intrusion Detection

- General term for detecting attacks against systems

- Embodiment of detection approach to security

- Assume that attacks will occur, develop techniques to
identify and counter threats

- Many ways to characterize intrusion detection systems
(IDS)

- Domain (e.g., network, host, application-based)

- Misuse- vs. anomaly-based

- Stateless vs. stateful

14

IDS Components

15

Detection Theory

- IDSs are essentially binary
classifiers

- Detection theory considers
two boolean variables

- Whether an event
occurred

- Whether an event was
detected

16

Event
Occurred

Event
Did Not
Occur

Event
Detected

True
positive

False
positive

Event Not
Detected

False
negative

True
negative

Events (Detection Domains)

- Detection is performed over some abstract event stream

- Goal is find evidence of malice over sequences of events

- Network packet headers, network packet contents,
network streams

- System calls, function calls, arbitrary control-flow
transfers, full execution traces

- Application-level events (e.g., HTTP messages, user
logins)

17

Misuse Detection

alert tcp any any -> 192.168.0.0/24 80 \
 (content: |90 90 90 90|"; msg: "Shellcode!";)

- Misuse detection: Search for direct evidence of attacks

- Essentially the "blacklist" approach

- Models of malice encoded as signatures

- Typical advantage: Capable of precise matching

- But, prone to false negatives

18

Anomaly Detection
benign any any -> 192.168.0.0/24 80 \
 (content: ascii; violation-msg: "Non-ASCII!";)

- Anomaly detection: Identify "previously unseen" behavior

- Presumption is that unknown behavior is indicative of
malice

- Essentially the "whitelist" approach

- Often combined with machine learning of models

- Typical advantage: Ability to detect 0-day attacks

- But, prone to false positives

19

Adversarial Machine Learning

- Assumption: Training data is synthetic, or real data but only
contains good behavior

- What if training set contains attacks, or not all benign behavior?

- Assumption: Notion of "normal" remains constant, or models can
be updated as conception of normality changes

- What if "normal" isn't constant?

- What if attacker can influence model updating?

- Assumption: Attacks are distinguishable from normal behavior
using models

- What if an attacker can create "normal"-looking attacks?

20

Stateless vs. Stateful

- Early systems were stateless

- Each event is considered in isolation

- Stateless techniques are efficient, but prone to evasion

- More advanced techniques are stateful

- Allows more precise, complicated matching predicates

- But, can lead to denial-of-service against IDS

- Stateful modeling still difficult to get right

21

Limitations
def malware_contradiction():
 if not D(malware_contradiction):
 launch_attack()

- IDS is known to be a difficult and generally intractable
problem

- Fred Cohen, reduction to halting problem

- In practice, false positives are the limiting factor for an IDS,
not false negatives!

- Base rate of attacks is low in most environments

- Even minuscule false positive rates are magnified

22

Base Rate Fallacy

- Let A, I be two boolean random variables

- I – an event represents an intrusion (w.l.o.g.)

- A – an alert is raised

- P(A|I) – probability an alert is raised if an intrusion occurs

- P(A|¬I) – false positive

- P(I|A) – if there is an intrusion, was there an alert?

23

Base Rate Fallacy

Detection rate dominated by false positive
rate! (If you want a high detection rate, most of

your alerts will be false positives)

Base Rate Fallacy Example

- Consider the case of a medical test that has 99% accuracy

- When 100 people have the condition, 99 decisions are
positive

- When 0 people have the disease, 99 decisions are negative

- During consultation, the doctor tells you he has good news
and bad news

- Bad news: You tested positive

- Good news: Only 1 in 10,000 have the condition

- What is the probability you have the condition?

25

P(A|I) =
0.99

P(¬A|¬I) =
0.99

P(I) =
0.0001

Base Rate Fallacy Example

False Positives

- A non-trivial false positive rate has several negative effects

- Obscures true attacks

- Induces user fatigue

- Can have a high associated cost

- Positive correlation between IDS visibility into monitored
system and reduction of false positives

- Less visibility leads to potential for desynchronization and
evasion

27

IDS Evaluation

- ROC plots commonly used
to evaluate or compare
IDSs

- IDS is run on test data

- Repeated for various
detection thresholds

- Plot TPs against FPs

- Indicates what TPR can be
expected for a given FPR

28

Line of no
discrimination

Goal

Better to
invert

Network-based IDS

Network Intrusion Detection

- Goal: Detect attacks on the wire

- Match detection models against network traffic

- Approach is desirable because it (potentially) protects many
machines

- But, there is an associated difficulty in accurately modeling
state on those machines...

30

Network IDS

31

- IDS can be applied to each layer of the network stack

Example: Unique IP Addresses

- Let's consider one point in the design space: detecting
anomalous network behavior

- In particular, how many unique IP addresses a user
contacts in a day

- We want to learn a model from training data that captures
the normal behavior of a user (i.e., in a day, user x
contacts around y unique IP addresses)

- How might we construct a model and how would we
apply it?

32

Example: Unique IP Addresses

- One very simple approach: apply Chebyshev's inequality

- Non-parametric upper bound on probability that the
difference between a random variable X and a learned μ
exceeds a threshold t

- Since we only care about increases in number of
addresses as an attack, we treat the inequality as
one-sided

33

Example: Unique IP Addresses

- Why are some advantages of this approach?

- Can be computed from packet headers

- Easy to acquire model parameters and evaluate model on
new observations

- Non-parametric (no assumption on underlying
distribution)

- Loose upper-bound (lower chance of false positives)

34

Anagram

- What if we want to detect more complicated attacks in a
general way?

- Idea: anomaly detection over network content

- Anagram uses a combination of n-grams and Bloom filters
to efficiently identify unknown, possibly malicious, network
traffic

- n-grams constructed by sliding window of size n over event
sequences (packet content)

- Semi-supervised: Extracted n-grams for both positive and
negative examples stored in Bloom filters

35

n-grams

36

n-gram Models

- Recording a frequency distribution is memory-intensive!

- 256n possible n-grams (size of feature space)

- Might want multiple models for different protocols

- Need a space-efficient way to record model

- Can we even estimate the true empirical distribution
accurately in an efficient way?

- Anagram performs per-packet classification, but the
feature vector drawn from an individual packet is very
sparse

37

Bloom Filters
- Instead of a frequency distribution, Anagram uses Bloom

filters

- Bloom filters are a probabilistic data structure for recording
value sets

- Bit array of m bits, k hash functions {f1,...,fk}

- Insertion and membership implemented by computing fi(x)
for all fi and setting / testing corresponding bit set

- Membership: If all bits set, element might be present,
otherwise element is definitely not present

- Careful selection of m, k, fi required to achieve desired FPR
and avoid saturation

38

Bloom Filters

39

Anagram

- Bloom filters used per-packet to compute:

- Nnew: number of new n-grams

- T: total number of n-grams

- Decision function

- The score is computed as:

- But, we also need a threshold to discriminate between
benign and anomalous scores (how?)

- Derived through empirical observation

40

NIDS Evasion

- Many ways to evade network IDS

- Flooding (actual packets)

- Flooding (fake attacks, create too many alerts)

- A big problem is desynchronization

- How does the IDS know the actual state of the monitored
hosts and applications?

- Much imprecision and ambiguity resulting from timers,
reassembly, imprecise protocol specification, buggy
implementations, ...

41

NIDS Evasion

NIDS Evasion
Overlapping TCP segments!

Host-based IDS

Host-based IDS

- Host-based intrusion detection integrates detection into the
endpoints

- Has the advantage that evasion becomes much more
difficult due to greater insight into monitored system,
applications

- But, is more complex, requires deployment on all
systems

- We'll look at a couple of examples

46

Tripwire
- Tripwire is a simple anomaly-based host IDS

- Intended to defend against literal system intrusions

- Attacker gains user access to system, elevates to root

- Replaces system binaries to gain backdoor persistence

- Tripwire monitors changes in system binaries

- Compute cryptographic hash of key system binaries

- Later, compare stored hash against computed hash

- Reference hash values stored on separate, read-only
medium

47

Tripwire
- Tripwire is a simple and (sometimes) effective idea

- Advantages

- Lightweight, takes advantage of simple invariant to detect
many attacks (even 0-days)

- Disadvantages

- Attack has already occurred!

- Detection only occurs when hashes are checked

- Doesn't catch attacks that change system files

- Requires separate checking system for high assurance

48

System Call Monitoring

- Let's consider another example: syscall monitoring

- Build an FSA of expected system calls automatically from
static source code analysis

- Runtime monitor compares sequence of issued syscalls
to FSA model

- If an invalid transition is observed, a violation is reported
and the program is terminated

- Let's see an example...

49

System Call Monitoring

int main(int argc, char** argv) {
 if (argc < 2) {
 return 1;
 }

 char buf[4096];
 int fd = open(argv[1], O_RDONLY);
 if (fd < 0) {
 return 1;
 }

 ssize_t n = read(fd, buf, sizeof(buf));
 if (n <= 0) {
 return 1;
 }

 write(1, buf, n);

 return 0;
}

50

execve

Syscall Model Challenges

- Original approach required source code

- But, this isn't always available

- Later approaches extended this to binary programs, but...

- How precise is the model?

- If the model is too loose an approximation (i.e., allows too
many edges that can't occur in practice) then the attacker has
more flexibility to evade the model

- If the model doesn't contain certain edges, then false positives
are possible (with a high cost)

- What if the attacker can construct an attack within the model?

51

Syscall Model Challenges

int main(int argc, char** argv) {
 int (*f)(void) = strtoul(argv[1], NULL, 16);
 return f();
}

- What model should be built from the above program?

52

Binary Syscall Models

53

- Can build a similar FSA
directly from a binary
program

- Construct a control-flow
graph (CFG)

- Map function calls to
reachable syscalls

- Same problems with
indirect jumps

