COMPA: Detecting Compromised Accounts on Social Networks

Manuel Egele* | Gianluca Stringhini; Christopher Kruegel; and Giovanni Vigna*

*University of California, Santa Barbara, Santa Barbara, CA
{maeg, gianluca,chris,vigna} @cs.ucsb.edu

f Carnegie Mellon University, Pittsburgh, PA
megele @cmu.edu

Abstract

As social networking sites have risen in popularity,
cyber-criminals started to exploit these sites to spread mal-
ware and to carry out scams. Previous work has extensively
studied the use of fake (Sybil) accounts that attackers set
up to distribute spam messages (mostly messages that con-
tain links to scam pages or drive-by download sites). Fake
accounts typically exhibit highly anomalous behavior, and
hence, are relatively easy to detect. As a response, attackers
have started to compromise and abuse legitimate accounts.
Compromising legitimate accounts is very effective, as at-
tackers can leverage the trust relationships that the account
owners have established in the past. Moreover, compro-
mised accounts are more difficult to clean up because a so-
cial network provider cannot simply delete the correspond-
ing profiles.

In this paper, we present a novel approach to detect
compromised user accounts in social networks, and we ap-
ply it to two popular social networking sites, Twitter and
Facebook. Our approach uses a composition of statistical
modeling and anomaly detection to identify accounts that
experience a sudden change in behavior. Since behavior
changes can also be due to benign reasons (e.g., a user
could switch her preferred client application or post up-
dates at an unusual time), it is necessary to derive a way to
distinguish between malicious and legitimate changes. To
this end, we look for groups of accounts that all experience
similar changes within a short period of time, assuming
that these changes are the result of a malicious campaign
that is unfolding. We developed a tool, called COMPA, that
implements our approach, and we ran it on a large-scale
dataset of more than 1.4 billion publicly-available Twitter
messages, as well as on a dataset of 106 million Facebook
messages. COMPA was able to identify compromised ac-
counts on both social networks with high precision.

1 Introduction

Online social networks, such as Facebook and Twitter,
have become increasingly popular over the last few years.
People use social networks to stay in touch with family, chat
with friends, and share news. The users of a social network
build, over time, connections with their friends, colleagues,
and, in general, people they consider interesting or trust-
worthy. These connections form a social graph that con-
trols how information spreads in the social network. Typ-
ically, users receive messages published by the users they
are connected to, in the form of wall posts, tweets, or status
updates.

The large user base of these social networks has attracted
the attention of cyber-criminals. According to a study from
2008, 83% of social network users received at least one un-
wanted message on such networks that year [1]. Also, large-
scale malware campaigns have been carried out over so-
cial networks [2], and previous work has shown that spam,
phishing, and malware are real threats on social networking
sites [3, 4].

To address the growing problem of malicious activ-
ity on social networks, researchers have started to pro-
pose different detection and mitigation approaches. Initial
work [5, 6, 7] has focused on the detection of fake accounts
(i.e., automatically created accounts with the sole purpose
of spreading malicious content). Unfortunately, systems
that detect fake accounts do not discriminate between Sybil
and compromised accounts. A compromised account is an
existing, legitimate account that has been taken over by an
attacker. Accounts can be compromised in a number of
ways, for example, by exploiting a cross-site scripting vul-
nerability or by using a phishing scam to steal the user’s
login credentials. Also, bots have been increasingly used
to harvest login information for social networking sites on
infected hosts [8].

While dedicated, malicious accounts are easier to cre-

ate, compromised accounts are more valuable to cyber-
criminals. The reason is that these accounts allow attackers
to leverage the associated account history and network of
trust to spread malicious content more effectively [9]. As
a result, attackers increasingly abuse legitimate accounts to
distribute their malicious messages [3, 4]. To identify cam-
paigns that involve both compromised and fake accounts,
the focus of the analysis has shifted to the messages them-
selves. In particular, researchers have proposed techniques
that search a social network for the presence of similar mes-
sages [10, 3]. The intuition is that attackers send many sim-
ilar messages as part of campaigns. Similarity is typically
defined in terms of overlap in message content or shared
URLs.

Of course, it is not sufficient to simply group similar
messages to detect malicious campaigns. The reason is
that many such clusters (groups) will contain benign mes-
sages, which range from simple “happy birthday” wishes
to template-based notifications sent by popular applications
such as Foursquare [11]. To distinguish benign from mali-
cious clusters, some systems utilize features that are solely
based on the URLs in messages [3, 12, 13]. Clearly, these
techniques suffer from limited scope, because they can-
not find malicious messages that do not contain URLs (we
found instances of such messages during our experimental
evaluation). Other systems [10] consider additional features
such as the size of clusters or the average number of connec-
tions for each user. While this broadens their coverage to
include campaigns that do not rely on URLSs, the reported
accuracy of less than 80% is rather sobering. Moreover,
and equally important, previous systems can only determine
whether a cluster of messages is malicious. That is, they
cannot distinguish between messages sent by compromised
accounts and those sent by fake accounts. This information
is crucial for social network operators to initiate appropri-
ate mitigation procedures. Specifically, fake accounts can
be safely deleted without affecting legitimate users. To ad-
dress compromised accounts, however, the social network
provider has to notify the victims, reset their passwords, and
engage the users in a password recovery process.

In this paper, we present a novel approach to detect com-
promised accounts on social networks. Our approach offers
a combination of three salient features. First, it does not de-
pend on the presence of URLs in messages. As a result, we
can detect a broad range of malicious messages, including
scam messages that contain telephone numbers and instant
messaging contacts. Second, our system is accurate and de-
tects compromised accounts with very low false positives.
Third, we focus on finding compromised accounts and leave
the detection of fake accounts to previous work [5, 6, 7] or
to the social network providers themselves. By identifying
compromised accounts, social network providers can focus
their mitigation efforts on real users.

The core idea underlying our approach is that it is pos-
sible to model the regular activities of individual users. If,
at any point, a user’s account gets compromised, it is likely
that there will be a noticeable change in the account’s be-
havior (and our experiments confirm this assumption). To
capture the past behavior of a user, we introduce a collec-
tion of statistical models, which we call a behavioral profile.
Each of our models corresponds to a characteristic feature
of a message (e.g., the time of the day when it was sent or
the language in which it was written in). These models cap-
ture generic user activity on social networks and are not tied
to a particular platform (as our experiments on Twitter and
Facebook demonstrate). Behavioral profiles make it possi-
ble to assess future messages. A message that appears to be
very different from a user’s typical behavior might indicate
a compromise.

Of course, a single message that violates the profile of a
user does not necessarily indicate that this account is com-
promised. The message might be an outlier or merely re-
flect a normal change in behavior. For this reason, like in
previous work, our approach looks for other, similar mes-
sages that have recently been posted on the social network
and that also violate the behavioral profiles of their respec-
tive users. This means that we cannot detect cases in which
an attacker posts a single, malicious message through one
compromised account. We feel that this is reasonable as at-
tackers typically aim to distribute their malicious messages
to a broader victim population. Moreover, our experiments
demonstrate that we can detect compromised accounts even
in case of small campaigns (in our experiments on Twitter,
for example, we require as little as ten similar messages per
hour).

In a nutshell, our approach (i) checks for a set of similar
messages, and (ii) requires that a significant subset of these
messages violate the behavioral profiles of their senders.
These two steps can be executed in any order: We can check
for messages that violate their respective behavioral profiles
first and then group those messages into clusters of similar
ones. This would allow us to implement similarity metrics
that are more sophisticated than those presented in previ-
ous work (i.e., simple checks for similar content or URLS).
Alternatively, we can first group similar messages and then
check whether a substantial fraction of these messages vio-
lates the corresponding behavioral profiles. Using this order
is more efficient as the system has to inspect a smaller num-
ber of messages.

We implemented our approach in a system called
CoMPA. Our system can be used by social network opera-
tors to identify compromised accounts and take appropriate
countermeasures, such as deleting the offending messages
or resetting the passwords of the victims’ accounts. Since
COMPA relies on behavioral patterns of users and not, like
related work, on suspicious message content (URLs [13] or

typical features of Sybil profiles [9]) it is able to detect types
of malicious messages that are missed by recently-proposed
techniques. In particular, our approach identified scam cam-
paigns that lure their victims into calling a phone number,
and hence, the corresponding messages do not contain links
(URLs).

We applied COMPA to two large-scale datasets from
Twitter and Facebook. The Twitter dataset consists of mes-
sages we collected from May 13, 2011 to August 12, 2011,
while the Facebook dataset contains messages ranging from
September 2007 to July 2009. Our results show that COMPA
is effective in detecting compromised accounts with very
few false positives. In particular, we detected 383,613 com-
promised accounts on Twitter, by analyzing three months
of data consisting of over 1.4 billion tweets. Further-
more, COMPA detected 11,087 compromised accounts on
Facebook, by analyzing 106 million messages posted by
users in several large geographic networks.

This paper makes the following contributions:

- We are the first to introduce an approach that fo-
cuses on detecting compromised accounts on social
networks. This provides crucial input to social net-
work providers to initiate proper mitigation efforts.

We propose a novel set of features to characterize reg-
ular user activity based on the stream of messages that
each user posts. We use these features to create mod-
els that identify messages that appear anomalous with
respect to a user’s account (message) history.

We demonstrate that our approach is able to effectively
detect compromised accounts with very low false pos-
itives. To this end, we applied our approach to two
large-scale datasets obtained from two large social net-
working sites (Twitter and Facebook).

2 Behavioral Profiles

A behavioral profile leverages historical information
about the activities of a social network user to capture this
user’s normal (expected) behavior. To build behavioral pro-
files, our system focuses on the stream of messages that a
user has posted on the social network. Of course, other fea-
tures such as profile pictures or friend activity could be use-
ful as well. Unfortunately, social networks typically do not
offer a way to retrieve historical data about changes in these
features, and therefore, we were unable to use them.

A behavioral profile for a user U is built in the following
way: Initially, our system obtains the stream of messages
of U from the social networking site. The message stream
is a list of all messages that the user has posted on the so-
cial network, in chronological order. For different social
networks, the message streams are collected in slightly dif-
ferent ways. For example, on Twitter, the message stream

corresponds to a user’s public timeline. For Facebook, the
message stream contains the posts a user wrote on her own
wall, but it also includes the messages that this user has
posted on her friends’ walls.

To be able to build a comprehensive profile, the stream
needs to contain a minimum amount of messages. Intu-
itively, a good behavioral profile has to capture the breadth
and variety of ways in which a person uses her social
network account (e.g., different client applications or lan-
guages). Otherwise, an incomplete profile might incorrectly
classify legitimate user activity as anomalous. Therefore,
we do not create behavioral profiles for accounts whose
stream consists of less than a minimum number S of mes-
sages. In our experiments, we empirically determined that
a stream consisting of less than S = 10 messages does
usually not contain enough variety to build a representative
behavioral profile for the corresponding account. Further-
more, profiles that contain less then S messages pose a lim-
ited threat to the social network or its users. This is because
such accounts are either new or very inactive and thus, their
contribution to large scale campaigns is limited. A detailed
discussion of this threshold is provided in Section 6.

Once our system has obtained the message stream for a
user, we use this information to build the corresponding be-
havioral profile. More precisely, the system extracts a set of
feature values from each message, and then, for each fea-
ture, trains a statistical model. Each of these models cap-
tures a characteristic feature of a message, such as the time
the message was sent, or the application that was used to
generate it. The features used by these models, as well as
the models themselves, are described later in this section.

Given the behavioral profile for a user, we can assess to
what extent a new message corresponds to the expected be-
havior. To this end, we compute the anomaly score for a
message with regard to the user’s established profile. The
anomaly score is computed by extracting the feature val-
ues for the new message, and then comparing these feature
values to the corresponding feature models. Each model
produces a score (real value) in the interval [0, 1], where
0 denotes perfectly normal (for the feature under consider-
ation) and 1 indicates that the feature is highly anomalous.
The anomaly score for a message is then calculated by com-
posing the results for all individual models.

2.1 Modeling Message Characteristics

Our approach models the following seven features when
building a behavioral profile.

Time (hour of day). This model captures the hour(s) of
the day during which an account is typically active. Many
users have certain periods during the course of a day where
they are more likely to post (e.g., lunch breaks) and others
that are typically quiet (e.g., regular sleeping hours). If a

user’s stream indicates regularities in social network usage,
messages that appear during hours that are associated with
quiet periods are considered anomalous.

Message Source. The source of a message is the name of
the application that was used to submit it. Most social net-
working sites offer traditional web and mobile web access
to their users, along with applications for mobile platforms
such as i0S and Android. Many social network ecosystems
provide access to a multitude of applications created by in-
dependent, third-party developers.

Of course, by default, a third-party application cannot
post messages to a user’s account. However, if a user
chooses to, she can grant this privilege to an application.
The state-of-the-art method of governing the access of third-
party applications is OAUTH [14]. OAUTH is implemented
by Facebook and Twitter, as well as numerous other, high-
profile web sites, and enables a user to grant access to her
profile without revealing her credentials.

By requiring all third-party applications to implement
OAUTH, the social network operators can easily shut down
individual applications, should that become necessary. In
fact, our evaluation shows that third-party applications are
frequently used to send malicious messages.

This model determines whether a user has previously
posted with a particular application or whether this is the
first time. Whenever a user posts a message from a new
application, this is a change that could indicate that an at-
tacker has succeeded to lure a victim into granting access to
a malicious application.

Message Text (Language). A user is free to author her
messages in any language. However, we would expect that
each user only writes messages in a few languages (typi-
cally, one or two). Thus, especially for profiles where this
feature is relatively stable, a change in the language is an
indication of a suspicious change in user activity.

To determine the language that a message was written
in, we leverage the libtextcat library. This library
performs n-gram-based text categorization, as proposed by
Cavnar and Trenkle [15]. Of course, for very short mes-
sages, it is often difficult to determine the language. This
is particularly problematic for Twitter messages, which are
limited to at most 140 characters and frequently contain ab-
breviated words or uncommon spelling.

Message Topic. Users post many messages that contain
chatter or mundane information. But we would also expect
that many users have a set of topics that they frequently
talk about, such as favorite sports teams, music bands, or
TV shows. When users typically focus on a few topics in
their messages and then suddenly post about some different
and unrelated subject, this new message should be rated as
anomalous.

In general, inferring message topics from short snip-
pets of text without context is difficult. However, some

social networking platforms allow users to label messages
to explicitly specify the topics their messages are about.
When such labels or tags are available, they provide a
valuable source of information. A well-known example
of a message-tagging mechanism are Twitter’s hashtags.
By prefixing the topic keyword with a hash character a
user would use #Olympics to associate her tweet with the
Olympic Games.

More sophisticated (natural language processing) tech-
niques to extract message topics are possible. However,
such techniques are outside the scope of this paper.

Links in Messages. Often, messages posted on social net-
working sites contain links to additional resources, such as
blogs, pictures, videos, or news articles. Links in messages
of social networks are so common that some previous work
has strongly focused on the analysis of URLSs, often as the
sole factor, to determine whether a message is malicious or
not. We also make use of links as part of the behavioral pro-
file of a user, but only as a single feature. Moreover, recall
that our features are primarily concerned with capturing the
normal activity of users. That is, we do not attempt to de-
tect whether a URL is malicious in itself but rather whether
a link is different than what we would expect for a certain
user.

To model the use of links in messages, we only make use
of the domain name in the URL of links. The reason is that
a user might regularly refer to content on the same domain.
For example, many users tend to read specific news sites
and blogs, and frequently link to interesting articles there.
Similarly, users have preferences for a certain URL short-
ening service. Of course, the full link differs among these
messages (as the URL path and URL parameters address
different, individual pages). The domain part, however, re-
mains constant. Malicious links, on the other hand, point to
sites that have no legitimate use. Thus, messages that link
to domains that have not been observed in the past indicate
a change. The model also considers the general frequency
of messages with links, and the consistency with which a
user links to particular sites.

Direct User Interaction. Social networks offer mecha-
nisms to directly interact with an individual user. The most
common way of doing this is by sending a direct message
that is addressed to the recipient. Different social networks
have different mechanisms for doing that. For example, on
Facebook, one posts on another user’s wall; on Twitter, it
is possible to directly “mention” other users by putting the
@ character before the recipient’s user name. Over time,
a user builds a personal interaction history with other users
on the social network. This feature aims to capture the in-
teraction history for a user. In fact, it keeps track of the
users an account ever interacted with. Direct messages are
sent to catch the attention of their recipients, and thus are
frequently used by spammers.

Proximity. In many cases, social network users befriend
other users that are close to them. For example, a typi-
cal Facebook user will have many friends that live in the
same city, went to the same school, or work for the same
company. If this user suddenly started interacting with peo-
ple who live on another continent, this could be suspicious.
Some social networking sites (such as Facebook) express
this proximity notion by grouping their users into networks.
The proximity model looks at the messages sent by a user.
If a user sends a message to somebody in the same network,
this message is considered as local. Otherwise, it is consid-
ered as not local. This feature captures the fraction of local
vs. non-local messages.

If ComPA is implemented directly by a social network
provider, the geo-locations of the users’ IP addresses can be
used to significantly improve the proximity feature. Unfor-
tunately, this information is not available to us.

3 Detecting Anomalous Messages
3.1 Training and Evaluation of the Models

In this section, we first discuss how we train models for
each of the previously-introduced features. We then de-
scribe how we apply a model to a new message to compute
an anomaly score. Finally, we discuss how the scores of
the different models are combined to reach a final anomaly
score that reflects how the new message is different from
the historic messages used when building the model.

Training. The input for the training step of a model is the
series of messages (the message stream) that were extracted
from a user account. For each message, we extract the rele-
vant features such as the source application and the domains
of all links.

Each feature model is represented as a set M. Each
element of M is a tuple < fv,c >. fv is the value
of a feature (e.g., English for the language model, or
example.com for the link model). ¢ denotes the num-
ber of messages in which the specific feature value fv was
present. In addition, each model stores the total number N
of messages that were used for training.

Our models fall into two categories:

- Mandatory models are those where there is one fea-
ture value for each message, and this feature value is
always present. Mandatory models are time of the day,
source, proximity, and language.

- Optional models are those for which not every mes-
sage has to have a value. Also, unlike for mandatory
models, it is possible that there are multiple feature
values for a single message. Optional models are /inks,
direct interaction, and topic. For example, it is possi-
ble that a message contains zero, one, or multiple links.

For each optional model, we reserve a specific element
with fv =null, and associate with this feature value
the number of messages for which no feature value is
present (e.g., the number of messages that contain no
links).

The training phase for the time of the day model works
slightly differently. Based on the previous description, our
system would first extract the hour of the day for each mes-
sage. Then, it would store, for each hour fv, the number of
messages that were posted during this hour. This approach
has the problem that hour slots, unlike the progression of
time, are discrete. Therefore, messages that are sent close
to a user’s “normal” hours could be incorrectly considered
as anomalous.

To avoid this problem, we perform an adjustment step
after the time of the day model was trained (as described
above). In particular, for each hour 7, we consider the val-
ues for the two adjacent hours as well. That is, for each
element < ¢, c; > of M, a new count ¢/; is calculated as the
average between the number of messages observed during
the 7" hour (c;), the number of messages sent during the
previous hour (c;_1), and the ones observed during the fol-
lowing hour (c;11). After we computed all ¢/;, we replace
the corresponding, original values in M.

As we mentioned previously, we cannot reliably build
a behavioral profile if the message stream of a user is too
short. Therefore, the training phase is aborted for streams
shorter than S = 10, and any message sent by those users
is not evaluated.

Evaluating a new message. When calculating the anomaly
score for a new message, we want to evaluate whether this
message violates the behavioral profile of a user for a given
model. In general, a message is considered more anomalous
if the value for a particular feature did not appear at all in
the stream of a user, or it appeared only a small number
of times. For mandatory features, the anomaly score of a
message is calculated as follows:

1. The feature fv for the analyzed model is first extracted
from the message. If M contains a tuple with fv as a
first element, then the tuple < fuv,c > is extracted
from M. If there is no tuple in M with fv as a first
value, the message is considered anomalous. The pro-
cedure terminates here and an anomaly score of 1 is
returned.

2. As a second step, the approach checks if fv is anoma-

lous at all for the behavioral profile being analyzed. ¢
1M

is compared to M, which is defined as M = #,

where ¢; is, for each tuple in M, the second element of

the tuple. If ¢ is greater or equal than M, the message

is considered to comply with the learned behavioral

profile for that model, and an anomaly score of O is re-
turned. The rationale behind this is that, in the past,
the user has shown a significant number of messages
with that particular fo.

3. If ¢ is less than M, the message is considered some-
what anomalous with respect to that model. Our ap-
proach calculates the relative frequency f of fv as

f= cfw” The system returns an anomaly score of 1

I
The anomaly score for optional features is calculated as:

1. The feature fo for the analyzed model is first extracted
from the message. If M contains a tuple with fv as a
first element, the message is considered to match the
behavioral profile, and an anomaly score of O is re-
turned.

2. If there is no tuple in M with fv as a first element, the
message is considered anomalous. The anomaly score
in this case is defined as the probability p for the ac-
count to have a null value for this model. Intuitively,
if a user rarely uses a feature on a social network, a
message containing an fv that has never been seen be-
fore for this feature is highly anomalous. The proba-
bility p is calculated as p = “=¢t. If M does not have a
tuple with null as a first element, c,,,,; is considered
to be 0. p is then returned as the anomaly score.

As an example, consider the following check against the
language model: The stream of a particular user is com-
posed of 21 messages. Twelve of them are in English, while
nine are in German. The M of the user for that particular
model looks like this:

(<English,12>,<German,9>).

The next message sent by that user will match one of three
cases:

- The new message is in English. Our approach extracts
the tuple <English,12> from M, and compares ¢ = 12
to M = 10.5. Since c is greater than M, the message
is considered normal, and an anomaly score of O is re-
turned.

- The new message is in Russian. Since the user never
sent a message in that language before, the message is
considered very suspicious, and an anomaly score of 1
is returned.

- The new message is in German. Our approach extracts
the tuple <German, 9> from M, and compares ¢ = 9
to M = 10.5. Since ¢ < M, the message is con-
sidered slightly suspicious. The relative frequency of

C

German tweets for the user is f = N = 0.42. Thus,

an anomaly score of 1 — f = 0.58 is returned. This
means that the message shows a slight anomaly in the
user average behavior. However, as explained in Sec-
tion 5, on its own this score will not be enough to flag
the message as malicious.

Computing the final anomaly score. Once our system has
evaluated a message against each individual model, we need
to combine the results into an overall anomaly score for this
message. This anomaly score is a weighted sum of the val-
ues for all models. We use Sequential Minimal Optimiza-
tion [16] to learn the optimal weights for each model, based
on a training set of instances (messages and correspond-
ing user histories) that are labeled as malicious and benign.
Of course, different social networks will require different
weights for the various features. A message is said to vi-
olate an account’s behavioral profile if its overall anomaly
score exceeds a threshold. In Section 5, we present a more
detailed discussion on how the threshold values are deter-
mined. Moreover, we discuss the weights (and importance)
of the features for the different social networks that we an-
alyzed (i.e., Twitter and Facebook).

3.2 Robustness of the Models

Malicious campaigns that are executed through compro-
mised accounts will, in general, fail to match the expected
behavior of a vast majority of their victims. One reason is
that it is very difficult for an attacker to make certain fea-
tures look normal, even if the attacker has detailed knowl-
edge about the history of a victim account. In particular,
this is true for the application source and the links features.
Consider a user who always posts using her favorite Twit-
ter client (e.g., from her iPhone). Since the attacker does
not control this third-party application, and the social net-
work (Twitter) automatically appends the source informa-
tion to the message, a malicious message will not match the
victim’s history. Furthermore, to send messages from an
iPhone application, the attacker would have to instrument
a physical iPhone device to log into the victims’ accounts
and post the malicious messages. Clearly, such an attack
model does not scale. To satisfy the link model, an attacker
would need to host his malicious page on a legitimate, third-
party domain (one of the domains that the user has linked
to in the past). It is very unlikely that an attacker can com-
promise arbitrary third-party sites that the different victims
have referenced in the past.

Other feature models can be matched more easily, as-
suming that the attacker has full knowledge about the his-
tory of a victim account. In particular, it is possible to
post at an expected time, use a language that the victim
has used in the past, and craft the message so that both
the topic and direct user interactions match the observed
history. However, crafting customized messages is very

resource-intensive. The reason is that this would require the
attacker to gather the message history for all victim users.
Since social network sites typically rate-limit access to user
profiles, gathering data for many victims is a non-trivial en-
deavor (we initially faced similar limitations when perform-
ing our experiments; and we had to explicitly ask the social
networks to white-list our IP addresses).

The need to customize messages makes it also more dif-
ficult to coordinate large-scale attacks. First, it requires
delaying messages for certain victims until an appropriate
time slot is reached. This could provide more time for the
social network to react and take appropriate countermea-
sures. Second, when messages have different topics, at-
tackers cannot easily perform search engine optimizations
or push popular terms, simply because victim users might
not have used these terms in the past. Also, the proxim-
ity feature can help limiting the spread of a campaign. If a
user always messages users that are close to her, the num-
ber of possible victims is reduced. Of course, the burden
for the attacker to blend his messages into the stream of his
victims decreases with the number of victims. That is, tar-
geted attacks against individuals or small groups are more
challenging to detect. However, the precision of the behav-
ioral profiles that COMPA generates (see Section 6.5) makes
us confident that similar mechanisms can contribute to the
problem of identifying such small-scale targeted attacks.

Overall, given the challenges to make certain features ap-
pear normal and the practical difficulties to craft customized
messages to satisfy the remaining models, our feature set is
robust with regard to large-scale attacks that leverage com-
promised accounts. Our experiments show that COMPA is
successful in identifying campaigns that use compromised
accounts to distribute malicious messages.

3.3 Novelty of the modelled features

We also compared our features with respect to existing
work. However, the purpose of our system is very differ-
ent from the goals of the ones proposed in previous work.
These systems generally aim at detecting accounts that have
been specifically created to spread spam or malicious con-
tent [5, 6, 7, 17]. Since these accounts are controlled in an
automated fashion, previous systems detect accounts that
always act in a similar way. Instead, we look for sudden
changes in behavior of legitimate but compromised social
network accounts. Table 1 lists in detail the features previ-
ous systems used to achieve their goals, and compares them
to the features used by our system. In particular, we studied
the works from Benvenuto et al. [5], Gao et al. [10], Grier
etal. [4], Lee et al. [6], Stringhini et al. [7], Yang et al. [17],
Cai et al. [18], and Song et al. [19].

As it can be seen, our system does not use any of the Net-
work Features or any of the Friends Features. Such features
aim to detect whether a certain account has been created au-

tomatically, therefore, they are not useful for our purpose.
The reason is that, since the profiles we want to detect are
legitimate ones that got compromised, these features would
look normal for such profiles. Also, we do not use any of the
Single Message Features. These features aim to detect a ma-
licious message when it contains words that are usually as-
sociated with malicious content (e.g., cheap drugs), or when
the URL is listed in a blacklist such as SURBL [20]. Since
we did not want to limit our approach to flagging messages
that contain known malicious sites or well-known words,
we did not include such features in our models. In the fu-
ture, we could use these features to improve our system.

In ComMPA, we focus on Stream Features. These features
capture the characteristics of a user’s message stream, such
as the ratio of messages that include links, or the similar-
ity among the messages. Looking at Table 1, it seems that
five of our features (except the Language and Proximity fea-
tures) have been previously used by at least one other sys-
tem. However, the way these systems use such features is
the opposite of what we do: Previous work wants to detect
similarity, while we are interested in anomalies. For ex-
ample, the message timing feature has been used by Grier
et al. [4], by Gao et al. [10], and by COMPA for building
the time of the day model. However, what previous work is
looking for are profiles that show a high grade of automa-
tion (by looking for profiles that send messages at the same
minute every hour), or for short-lived, bursty spam cam-
paigns. Instead, we want to find profiles that start posting at
unusual times.

Only the user interactions feature has been used in a sim-
ilar fashion by another system. Gao et al. [3] use it as in-
dication of possibly compromised accounts. Similarly to
our system, they flag any account that ever had a legiti-
mate interaction with another user, and started sending ma-
licious content at a later time. However, they identify “mali-
cious content” based only on URL blacklists and suspicious
words in the messages. Thus, they are much more limited
in their detection capabilities, and their approach mislabels
fake profiles that try to be stealthy by sending legitimate-
looking messages.

4 Grouping of Similar Messages

A single message that violates the behavioral profile of
a user does not necessarily indicate that this user is com-
promised and the message is malicious. The message might
merely reflect a normal change of behavior. For example,
a user might be experimenting with new client software or
expanding her topics of interest. Therefore, before we flag
an account as compromised, we require that we can find a
number of similar messages (within a specific time interval)
that also violate the accounts of their respective senders.

This means that we cannot detect cases in which an at-

[[51BI[41]6][[71][17]][18]][19][COMPA]
Network Features

Avg # conn. of neighbors v

Avg messages of neighbors v

Friends to Followers (F2F) | v | v v

F2F of neighbors v

Mutual links v iv|v
User distance v

Single Message Features
Suspicious content v
URL blacklist v

Friends features
Friend name entropy v
Number of friends v v
Profile age v

Stream Features
Activity per day v
Applications used v v
Following Rate v
Language v
Message length v
Messages sent v
Message similarity viv|iviv|v
Message timing viv v
Proximity v
Retweet ratio v
Topics v v
URL entropy v
URL ratio viv viv]|v
URL repetition
User interaction viv v v

]
]

Table 1. Comparison of the features used by previous
work

tacker posts a single, malicious message through one com-
promised account. While it is very possible that our models
would correctly identify that message as suspicious, alerting
on all behavioral profile violations results in too many false
positives. Hence, we use message similarity as a second
component to distinguish malicious messages from spuri-
ous profile violations. This is based on the assumption that
attackers aim to spread their malicious messages to a larger
victim population. However, it is important to note that this
does not limit COMPA to the detection of large-scale cam-
paigns. In our experiments on the Twitter platform, for ex-
ample, we only require ten similar messages per hour before
reporting accounts as compromised.

As mentioned previously, we can either first group simi-
lar messages and then check all clustered messages for be-
havioral profile violations, or we can first analyze all mes-
sages on the social network for profile violations and then
cluster only those that have resulted in violations. The lat-
ter approach offers more flexibility for grouping messages,
since we only need to examine the small(er) set of messages
that were found to violate their user profiles. This would al-
low us to check if a group of suspicious messages was sent

by users that are all directly connected in the social graph,
or whether these messages were sent by people of a cer-
tain demographics. Unfortunately, this approach requires to
check all messages for profile violations. While this is cer-
tainly feasible for the social networking provider, our access
to these sites is rate-limited in practice. Hence, we need to
follow the first approach: More precisely, we first group
similar messages. Then, we analyze the messages in clus-
ters for profile violations. To group messages, we use the
two simple similarity measures, discussed in the following
paragraphs.

Content similarity. Messages that contain similar text
can be considered related and grouped together. To this end,
our first similarity measure uses n-gram analysis of a mes-
sage’s text to cluster messages with similar contents. We
use entire words as the basis for the n-gram analysis. Based
on initial tests to evaluate the necessary computational re-
sources and the quality of the results, we decided to use
four-grams. That is, two messages are considered similar if
they share at least one four-gram of words (i.e., four con-
secutive, identical words).

URL similarity. This similarity measure considers two
messages to be similar if they both contain at least one
link to a similar URL. The naive approach for this simi-
larity measure would be to consider two messages similar
if they contain an identical URL. However, especially for
spam campaigns, it is common to include identifiers into
the query string of a URL (i.e., the part in a URL after the
question mark). Therefore, this similarity measure discards
the query string and relies on the remaining components of
a URL to assess the similarity of messages. Of course, by
discarding the query string, the similarity measure might be
incorrectly considering messages as similar if the target site
makes use of the query string to identify different content.
Since YouTube and Facebook use the query string to
address individual content, this similarity measure discards
URLSs that link to these two sites.

Many users on social networking sites use URL shorten-
ing services while adding links to their messages. In prin-
ciple, different short URLs could point to the same page,
therefore, it would make sense to expand such URLs, and
perform the grouping based on the expanded URLs. Un-
fortunately, for performance reasons, we could not expand
short URLSs in our experiments. On Twitter, we observe sev-
eral million URLs per day (most of which are shortened).
This exceeds by far the limits imposed by any URL short-
ening service.

We do not claim that our two similarity measures rep-
resent the only ways in which messages can be grouped.
However, as the evaluation in Section 6 shows, the similar-
ity measures we chose perform very well in practice. Fur-
thermore, our system can be easily extended with additional
similarity measures if necessary.

5 Compromised Account Detection

Our approach groups together similar messages that are
generated in a certain time interval. We call this the ob-
servation interval. For each group, our system checks all
accounts to determine whether each message violates the
corresponding account’s behavioral profile. Based on this
analysis, our approach has to make a final decision about
whether an account is compromised or not.

Suspicious groups. A group of similar messages is
called a suspicious group if the fraction of messages that vi-
olates their respective accounts’ behavioral profiles exceeds
a threshold th. In our implementation, we decided to use a
threshold that is dependent on the size of the group. The ra-
tionale behind this is that, for small groups, there might not
be enough evidence of a campaign being carried out unless
a high number of similar messages violate their underlying
behavioral profiles. In other words, small groups of similar
messages could appear coincidentally, which might lead to
false positives if the threshold for small groups is too low.
This is less of a concern for large groups that share a sim-
ilar message. In fact, even the existence of large groups
is already somewhat unusual. This can be taken into con-
sideration by choosing a lower threshold value for larger
groups. Accordingly, for large groups, it should be suffi-
cient to raise an alert if a smaller percentage of messages
violate their behavioral profiles. Thus, the threshold th
is a linear function of the size of the group n defined as
th(n) = max(0.1, kn + d).

Based on small-scale experiments, we empirically deter-
mined that the parameters ¥ = —0.005 and d = 0.82 work
well. The max expression assures that at least ten percent
of the messages in big groups violate their behavioral pro-
files. Our experiments show that these threshold values are
robust, as small modifications do not influence the quality
of the results. Whenever there are more than th messages in
a group (where each message violates its profile), COMPA
declares all users in the group as compromised.

Bulk applications. Certain popular applications, such
as Nike+ or Foursquare, use templates to send similar mes-
sages to their users. Unfortunately, this can lead to false
positives. We call these applications bulk applications. To
identify popular bulk applications that send very similar
messages in large amounts, COMPA needs to distinguish
regular client applications (which do not automatically post
using templates) from bulk applications. To this end, our
system analyzes a randomly selected set of S messages for
each application, drawn from all messages sent by this ap-
plication. COMPA then calculates the average pairwise Lev-
enshtein ratios for these messages. The Levenshtein ratio is
a measure of the similarity between two strings based on
the edit distance. The values range between O for unrelated
strings and 1 for identical strings. We empirically deter-

mined that the value 0.35 effectively separates client from
bulk applications.

CoMmPA flags all suspicious groups produced by client
applications as compromised. For bulk applications, a fur-
ther distinction is necessary, since we only want to discard
groups that are due to popular bulk applications. Popular
bulk applications constantly recruit new users. Also, these
messages are commonly synthetic, and they often violate
the behavioral profiles of new users. For existing users, on
the other hand, past messages from such applications con-
tribute to their behavioral profiles, and thus, additional mes-
sages do not indicate a change in behavior. If many users
made use of the application in the past, and the messages
the application sent were in line with these users’ behavioral
profiles, COMPA considers such an application as popular.

To assess an application’s popularity, COMPA calculates
the number of distinct accounts in the social network that
made use of that application before it has sent the first mes-
sage that violates a user’s behavioral profile. This number is
multiplied by an age factor (which is the number of seconds
between the first message of the application as observed
by COMPA and the first message that violated its user’s
behavioral profile). The intuition behind this heuristics is
the following: An application that has been used by many
users for a long time should not raise suspicion when a new
user starts using it, even if it posts content that differs from
this user’s established behavior. Manual analysis indicated
that bulk applications that are used to run spam and phish-
ing campaigns over compromised accounts have a very low
popularity score. Thus, COMPA considers a bulk applica-
tion to be popular if its score is above 1 million. We assume
that popular bulk applications do not pose a threat to their
users. Consequently, COMPA flags a suspicious group as
containing compromised accounts only if the group’s pre-
dominant application is a non-popular bulk application.

6 Evaluation

We implemented our approach in a tool, called COMPA
and evaluated it on Twitter and Facebook; we collected
tweets in real time from Twitter, while we ran our Facebook
experiments on a large dataset crawled in 2009.

We show that our system is capable of building meaning-
ful behavioral profiles for individual accounts on both net-
works. By comparing new messages against these profiles,
it is possible to detect messages that represent a (possibly
malicious) change in the behavior of the account. By group-
ing together accounts that contain similar messages, many
of which violate their corresponding accounts’ behavioral
profiles, COMPA is able to identify groups of compromised
accounts that are used to distribute malicious messages on
these social networks. We continuously ran COMPA on a
stream of 10% of all public Twitter messages on a single

computer (Intel Xeon X3450, 16 GB ram). The main lim-
itation was the number of user timelines we could request
from Twitter, due to the enforced rate-limits. Thus, we are
confident that COMPA can be scaled up to support online so-
cial networks of the size of Twitter with moderate hardware
requirements.

6.1 Data Collection

Twitter Dataset

We obtained elevated access to Twitter’s streaming and
RESTful API services. This allowed us to collect around
10% of all public tweets through the streaming API, result-
ing in roughly 15 million tweets per day on average. We
collected this data continuously starting May 13, 2011 until
Aug 12, 2011. In total, we collected over 1.4 billion tweets
from Twitter’s stream. The stream contains live tweets as
they are sent to Twitter. We used an observation interval
of one hour. Note that since the stream contains randomly
sampled messages, COMPA regenerated the behavioral pro-
files for all involved users every hour. This was necessary,
because it was not guaranteed that we would see the same
user multiple times.

To access the historical timeline data for individual ac-
counts, we rely on the RESTful API services Twitter pro-
vides. To this end, Twitter whitelisted one of our IP ad-
dresses, which allowed us to make up to 20,000 RESTful
API calls per hour. A single API call results in at most
200 tweets. Thus, to retrieve complete timelines that ex-
ceed 200 tweets, multiple API requests are needed. Fur-
thermore, Twitter only provides access to the most recent
3,200 tweets in any user’s timeline. To prevent wasting API
calls on long timelines, we retrieved timeline data for either
the most recent three days, or the user’s 400 most recent
tweets, whatever resulted in more tweets.

On average, we received tweets from more than 500,000
distinct users per hour. Unfortunately, because of the API
request limit, we were not able to generate profiles for all
users that we saw in the data stream. Thus, as discussed in
the previous section, we first cluster messages into groups
that are similar. Then, starting from the largest cluster,
we start to check whether the messages violate the behav-
ioral profiles of their senders. We do this, for increasingly
smaller clusters, until our API limit is exhausted. On av-
erage, the created groups consisted of 30 messages. This
process is then repeated for the next observation period.

Facebook Dataset

Facebook does not provide a convenient way of collecting
data. Previous work deployed honey accounts on Face-
book, and collected data for the accounts that contacted
them [7]. Unfortunately, this approach does not scale, since

a very large number of honey profiles would be required
to be able to collect a similar number of messages as we
did for Twitter. Therefore, we used a dataset that was
crawled in 2009. We obtained this dataset from an inde-
pendent research group that performed the crawling in ac-
cordance with the privacy guidelines at their research in-
stitution. Unfortunately, Facebook is actively preventing
researchers from collecting newer datasets from their plat-
form by various means, including the threat of legal action.

The dataset was crawled from geographic networks on
Facebook. Geographic networks were used to group to-
gether people that lived in the same area. The default pri-
vacy policy for these networks was to allow anybody in the
network to see all the posts from all other members. There-
fore, it was easy, at the time, to collect millions of messages
by creating a small number of profiles and join one of these
geographic networks. For privacy reasons, geographic net-
works have been discontinued in late 2009. The dataset we
used contains 106,373,952 wall posts collected from five
geographic networks (i.e., London, New York, Los Ange-
les, Monterey Bay, and Santa Barbara). These wall posts
are distributed over almost two years (Sept. 2007 - July
2009).

6.2 Training the Classifier

To determine the weights that we have to assign to each
feature, we applied Weka’s SMO [21] to a labeled training
dataset for both Twitter and Facebook.

While the Facebook dataset contains the network of a
user, Twitter does not provide such a convenient proximity
feature. Therefore, we omitted this feature from the evalua-
tion on Twitter. For Twitter, the weights for the features are
determined from our labeled training dataset consisting of
5,236 (5142 legitimate, 94 malicious) messages with their
associated feature values as follows: Source (3.3), Personal
Interaction (1.4), Domain (0.96), Hour of Day (0.88), Lan-
guage (0.58), and Topic (0.39).

To manually determine the ground truth for an account in
our training set, we examined the tweets present in that ac-
count’s timeline. If an account under analysis uses URLSs in
tweets, we follow these links and inspect the landing pages.
Should we find that the URL lead to a phishing page, we
classify the account as compromised. As we discuss in Sec-
tion 6.6, phishing campaigns frequently make use of URLs
to guide potential victims to phishing websites that prompt
the visitor to disclose her account credentials. Another
source of information we used to assess whether an account
was compromised are application description pages. Each
tweet sent by a third-party application contains a link to a
website chosen by the developer. If such a link leads to a
malicious page, we also consider the account as compro-

mised '. Finally, we exploit the fact that humans can extract
the topic of a message from small amounts of information.
That is, we would flag an account as compromised if the
topic of tweets in the timeline abruptly switches from per-
sonal status updates to tweets promoting work from home
opportunities and free electronic gadgets (common scams).
As we will show later in this section, a significant portion
of the tweets that indicate that an account is compromised
get removed. This makes it time consuming to manually
identify compromised accounts on Twitter. Although the
number of malicious samples in our training dataset is lim-
ited, the feature values turned out to be stable over different
training set sizes.

Figure 1 illustrates how the weights for each feature vary
with different sizes of the training set. Each set of five bars
corresponds to one feature. Each bar within a set represents
the observed weights for this feature (i.e., average, min, and
max) that were produced by 25 iterations with a fixed train-
ing set size. For each iteration, the contents of the training
set were randomly chosen. Overall, this experiment was re-
peated five times with different training set sizes. It can be
seen that when smaller training sets are used, the observed
weights vary heavily. This variance becomes small for lager
training datasets indicating that the weights are fairly stable.

P e
| |
S

00—
Time Source Topic Domain Personal Language

Interaction

Figure 1. Features evolving with different sizes of train-
ing sets. Each experiment was conducted 25 times on ran-
dom subsets of 25%, 50%, 70%, 90%, and 99% of the 5,236
labeled training instances. The fraction of positive to nega-
tive samples remained constant.

On Facebook, based on a labeled training dataset of
279 messages (181 legitimate, 122 malicious), the weights
were: Source (2.2), Domain (1.1), Personal Interaction
(0.13), Proximity (0.08), and Hour of Day (0.06). Weka

'While Twitter has been filtering links to potentially malicious URLs in posted
messages for a while, they only started filtering these application pages after we in-
formed Twitter that an attacker can choose this page to be a malicious site.

determined that the Language feature has no effect on the
classification. Moreover, as discussed earlier, assessing the
message topic of an unstructured message is a complicated
natural language processing problem. Therefore, we omit-
ted this feature from the evaluation on the Facebook dataset.
Similar to analyzing Twitter messages, we also assessed
changes of topic across wall posts in the Facebook dataset to
identify compromised accounts for the training data. Addi-
tionally, we inspected Facebook application pages and their
comment sections where users can leave feedback. As the
Facebook dataset was collected in 2009, we would also con-
sider an account as compromised if the application that sent
that post was blocked by Facebook in the meantime.

6.3 Detection on Twitter

The overall results for our Twitter evaluation are pre-
sented in Table 2. Due to space constraints, we will only
discuss the details for the fext similarity measure here.
However, we found considerable overlap in many of the
groups produced by both similarity measures. More pre-
cisely, for over 8,200 groups, the two similarity measures
(content and URL similarity) produced overlaps of at least
eight messages. COMPA found, for example, phishing cam-
paigns that use the same URLSs and the same text in their
malicious messages. Therefore, both similarity measures
produced overlapping groups.

The text similarity measure created 374,920 groups with
messages of similar content. 365,558 groups were reported
as legitimate, while 9,362 groups were reported as compro-
mised. These 9,362 groups correspond to 343,229 compro-
mised accounts. Interestingly, only 12,238 of 302,513 ap-
plications ever produced tweets that got grouped together.
Furthermore, only 257 of these applications contributed to
the groups that were identified as compromised.

For each group of similar messages, COMPA assessed
whether the predominant application in this group was a
regular client or a bulk application. Our system identified
12,347 groups in the bulk category, of which 1,647 were
flagged as compromised. Moreover, COMPA identified a
total of 362,573 groups that originated from client applica-
tions. Of these, 7,715 were flagged as compromised.

Overall, our system created a total of 7,250,228 behav-
ioral profiles. COMPA identified 966,306 messages that vio-
late the behavioral profiles of their corresponding accounts.
Finally, 400,389 messages were deleted by the time our sys-
tem tried to compare these messages to their respective be-
havioral profiles (i.e., within an hour).

False Positives

Using the text similarity measure, COMPA identified
343,229 compromised Twitter accounts in 9,362 clusters.
To analyze the accuracy of these results, we need to an-

lNetwork & Similarity Measure I Twitter Text I Twitter URL I Facebook Text
Groups Accounts Groups Accounts | Groups | Accounts
Total Number 374,920 14,548 48,586
Compromised 9,362 343,229 1,236 54,907 671 11,499
False Positives 4% (377) |3.6% (12,382) | 5.8% (72) | 3.8% (2,141) |3.3% (22) |3.6% (412)
Bulk Applications 12,347 1,569 N/A N/A
Compromised Bulk Applications 1,647 178,557 251 8,254 N/A N/A
False Positives 8.9% (146) | 2.7% (4,854) |14.7% (37) |13.3% (1,101) N/A N/A
Client Applications 362,573 12,979 N/A N/A
Compromised Client Applications 7,715 164.672 985 46,653 N/A N/A
False Positives 3.0% (231) | 4.6% (7,528) | 3.5% (35)| 2.2% (1,040) N/A N/A

Table 2. Evaluation Results for the Text (Twitter and Facebook) and URL (Twitter) Similarity measure

swer two questions: First, do we incorrectly label non-
compromised accounts as compromised (false positives)?
We try to answer this question in this subsection. Second,
do we miss accounts that have been compromised (false
negatives)? We discuss this question in the next subsection.

False positives might arise in two cases: First, legitimate
users who change their habits (e.g., a user experiments with
a new Twitter client) might be flagged as compromised.
Second, fake accounts, specifically created for the purpose
of spreading malicious content, might trigger our detection,
but these are not compromised accounts. Arguably, the sec-
ond source of false positives is less problematic than the
first one, since the messages that are distributed by fake ac-
counts are likely malicious. However, since social network
providers need to handle compromised accounts differently
from fake accounts (which can be simply deleted), we want
our system to only report compromised accounts.

To address the first reason for false positives, we
analyzed the groups that our similarity measures gen-
erated. First, we aggregated similar (repeated) groups
into long-lasting campaigns. Two groups belong to the
same campaign if all pairwise Levenshtein ratios between
ten randomly-chosen messages (five messages from each
group) is at least 0.8. We could aggregate 7,899 groups
into 496 campaigns. We then manually analyzed a sub-
set of the accounts present for each campaign. Addition-
ally, 1,463 groups did not belong to any campaign, and we
assessed each of these manually. During manual analy-
sis, we opted to err on the conservative side by counting
groups whose accounts contain messages written in non-
Latin based languages as false positives.

In total, 377 of the 9,362 groups (4%) that COMPA
flagged as containing compromised accounts could not be
verified as such, and thus, constitute false positives. Note
that each group consists of multiple tweets, each from a dif-
ferent Twitter account. Thus, the above mentioned results
are equivalent to flagging 343,229 user as compromised,
where 12,382 (3.6%) are false positives.

Three months after we finished our experiments, we tried

to retrieve all messages that we found were indicative of
compromised accounts. Only 24% were still available. Fur-
thermore, we would expect that the majority of messages
sent by legitimate accounts are persistent over time. Thus,
we also tried to retrieve a random sample of 160,000 mes-
sages contained in clusters that COMPA found to be benign.
82% of these messages were still reachable. Additionally,
we also tried to access 64,368 random messages that we col-
lected during our experiments as described in the following
subsection. Of these, 84% were still accessible.

This means that for 76% of the messages that COMPA
identified as being sent by a compromised account, either
Twitter or the user herself removed the message. However,
96.2% of the accounts that sent these tweets were still ac-
cessible. For less than one percent (0.6%) of the accounts,
Twitter states that they were suspended. The remaining
3.2% return a “Not found” error upon access. These per-
centages are almost perfectly in line with accounts that
CowmpA did not flag as compromised (95.5%, 0.5%, and
4%, respectively), and a random sample of 80,000 accounts
(94%, 4%, and 2%). Twitter actively suspends spam ac-
counts on their network. Thus, these results indicate that
Twitter does not consider the accounts flagged by COMPA
as fake. However, the significant amount of removed mes-
sages for such accounts leads us to believe that COMPA was
successful in detecting compromised accounts.

To estimate the second source of false positives, we
developed a classifier based on the work of Stringhini et
al. [7]. This allows us to detect accounts that were fake ac-
counts as opposed to compromised. Stringhini’s system de-
tects fake accounts that are likely spammers, based on fea-
tures related to automatically created and managed accounts
(such as the ratio between the friend requests that are sent
and the requests that are accepted, the fraction of messages
with URLs, and how similar the messages are that a single
user sends). This system proved to be effective in detecting
accounts that have been specifically created to spread mali-
cious content. However, the system does not usually detect
compromised accounts. This is because such accounts usu-

ally have a long history of legitimate Twitter usage, and,
hence, the few tweets that are sent out after the compromise
do not affect the features their classifier relies on.

We used this classifier to analyze a random sample of
94,272 accounts that COMPA flagged as compromised. The
idea is that any time an account is detected as a spammer,
this is likely to be an account specifically created with a
malicious intent, and not a legitimate, yet compromised ac-
count. Out of the analyzed accounts, only 152 (0.16%) were
flagged as spammers. We then manually checked these
accounts to verify if they were actually false positives of
CoMPA. 100 of these 152 accounts turned out to be com-
promised, and thus, true positives of COMPA. The reason
for flagging them as spam accounts is that they have not
been very active before getting compromised. Therefore,
after the account was compromised, the spam messages had
more influence on the features than the legitimate activity
before the compromise. The remaining 52 accounts were
not compromised but had been specifically created to spam.
Howeyver, these 52 accounts were distributed over 34 clus-
ters with an average cluster size of 30. Furthermore, no
cluster consisted solely of false positives. The main reason
why they were detected as behavior violations by COMPA
is that they posted an update in an hour during which they
had never been active before. This result underlines that
the compromised accounts that COMPA reports are substan-
tially different than the dedicated, fake accounts typically
set up for spamming.

Historical information. We also investigated how the
length of a user’s message stream influences the quality of
the behavioral profiles COMPA builds (recall that COMPA
does not build a behavioral profile when a user has posted
fewer than 10 messages). To this end, we calculated the
probability of a false positive depending on the number of
tweets that were available to calculate the behavioral pro-
file. As Figure 2 illustrates, COMPA produces less false pos-
itives for accounts whose historical data is comprehensive.
The reason for this is that the models become more accurate
when more historical data is available.

False Negatives

To assess false negatives, we used COMPA to create 64,368
behavioral profiles for randomly selected users over a pe-
riod of 44 days. To this end, every minute, COMPA retrieved
the latest tweet received from the Twitter stream and built a
behavioral profile for the corresponding user. 2,606 (or 4%)
of these profiles violated their account’s behavioral profile.
415 of these were sent by known, popular bulk applications.
We manually inspected the remaining 2,191 tweets that vi-
olated their accounts’ behavioral profiles (we performed the
same manual analysis that was previously used to determine
the ground truth for our training set). We did not find evi-
dence of any malicious activity that COMPA missed.

0.035

0.030 £

0.025

0.020 -

0.015 -

Probability for a false-positive

0.010 -

0.005 -

0.000

. . .
50 100 150 200
Amount of historical data (i.e., # of tweets)

Figure 2. Probability of false positives depending on the
amount of historical data on Twitter

In a next step, we extracted all URLs posted on Twitter
during one day, and we checked them against five popular
blacklists. The idea behind this is that if a URL is known
to be malicious, it is likely to be posted either by a compro-
mised or by a fake account. We extracted 2,421,648 URLs
(1,956,126 of which were unique) and checked them against
the Spamhaus Domain Blacklist [22], Google Safebrows-
ing [23], PhishTank [24], Wepawet [25], and Exposure [26].
We first expanded shortened URLs before checking the
landing page against the blacklists. In total, 79 tweets con-
tained links that were present in at least one blacklist (these
79 tweets contained 46 unique URLs). We ran COMPA on
each of the 79 messages to see if they were actually sent by
compromised accounts.

Our system flagged 33 messages as violating their user’s
profile. The reason COMPA did not flag these accounts in
the first place is that the clusters generated by these mes-
sages were too small to be evaluated, given the API limit we
mentioned before. If we did not have such a limit, COMPA
would have correctly flagged them. Seven more messages
contained URLs that were similar to those in the 33 mes-
sages. Even though these compromised accounts did not
violate their behavioral profiles, they would have been de-
tected by COMPA, because they would have been grouped
together with other messages that were detected as violating
their behavioral profiles.

Of the remaining 39 accounts that COMPA did not flag
as compromised, 20 were detected as fake accounts by the
classifier by Stringhini et al. [7]. We manually investigated
the remaining 19 results. 18 of them contained links to
popular news sites and blogs, which were mainly black-
listed by Google Safebrowsing. We think users posted legit-
imate links to these pages, which might have become com-

promised at a later point in time (or are false positives in
Google Safebrowsing). Thus, we do not consider accounts
that linked to such pages as either compromised or fake.

The remaining message linked to a phishing page, but
did not violate the profile of the account that posted it. We
consider this as a message by a compromised account, and,
therefore, a false negative of COMPA.

6.4 Detection on Facebook

As the Facebook dataset spans almost two years we in-
creased the observation interval to eight hours to cover this
long timespan. Furthermore, we only evaluated the Face-
book dataset with the text similarity measure to group sim-
ilar messages.

Our experiments indicated that a small number of popu-
lar applications resulted in a large number of false positives.
Therefore, we removed the six most popular applications,
including Mafia Wars from our dataset. Note that these
six applications resulted in groups spread over the whole
dataset. Thus, we think it is appropriate for a social network
administrator to white-list applications at a rate of roughly
three instances per year.

In total, COMPA generated 206,876 profiles in 48,586
groups and flagged 671 groups as compromised (i.e, 11,499
compromised accounts). All flagged groups are created by
bulk applications. 22 legitimate groups were incorrectly
classified (i.e., 3.3% false positives) as compromised; they
contained 412 (3.6%) users.

6.5 Profile Accuracy

One example to illustrate the accuracy of the behavioral
profiles COMPA creates is the following. On July 4, 2011,
the Twitter account of the politics division of Fox News
(@foxnewspolitics) got compromised [27]. The attackers
used the account to spread wrong information about an as-
sassination of president Obama. As this incident was lim-
ited in scope, COMPA did not observe enough messages to
create a group. Therefore, we instructed COMPA to cre-
ate a behavioral profile for @foxnewspolitics and have it
compare the offending tweets against this profile. COMPA
detected significant deviations from the created behavioral
profile for all but the language models. Thus, the offending
tweets posed a clear violation of the behavioral profile of
the @foxnewspolitics account.

6.6 Case Studies

In this section, we describe some interesting findings
about the compromised accounts detected by COMPA.

”Get more Followers” scams On Twitter, the majority of
the accounts that COMPA flagged as compromised were part

of multiple large-scale phishing scams that advertise more
Followers”. These campaigns typically rely on a phishing
website and a Twitter application. The phishing website
promises more followers to a user. The victim can either
get a small number of followers for free, or she can pay for
a larger set of followers. Many users consider the number
of their followers as a status symbol on the Twitter network,
and the “base version” of the service is free. This combina-
tion seems to be an irresistible offer for many. The phish-
ing sites requires the user to share their username and pass-
word with the website. Additionally, the user needs to give
read and write access to the attacker’s application. Once the
victim entered her credentials and authorized the applica-
tion, the application immediately posts a tweet to the vic-
tim’s account to advertise itself. Subsequently, the attackers
make good on their promise and use their pool of existing,
compromised accounts to follow the victim’s account. Of
course, the victim also becomes part of the pool and will
start following other users herself.

Phone numbers COMPA also detected scam campaigns
that do not contain URLs. Instead, potential victims
are encouraged to call a phone number. Such messages
would read, for example, “Obama is giving FREE Gas
Cards Worth $250! Call now-> 1 888-858-5783 (US
Only)@@@.” In our evaluation, 0.3% of the generated
groups did not include URLs. Existing techniques, such
as [13], which solely focus on URLs and their reputation,
would fail to detect such campaigns.

Detecting Worms Online social networks have been re-
peatedly confronted with XSS worm outbreaks that rapidly
infect thousands of accounts. Since the behavior of the af-
fected accounts is expected to diverge from their usual be-
havioral profiles, we show in Appendix A that COMPA suc-
cessfully detects such outbreaks.

7 Limitations

An attacker who is aware of COMPA has several pos-
sibilities to prevent his compromised accounts from being
detected by COMPA. First, the attacker can post messages
that align with the behavioral profiles of the compromised
accounts. As described in Section 3, this would require
the attacker to invest significant time and computational re-
sources to gather the necessary profile information from his
victims. Furthermore, social networks have mechanisms in
place that prevent automated crawling, thus slowing down
such data gathering endeavors.

Second, an attacker could send messages that evade
our similarity measures, and thus, although such messages
might violate their compromised accounts’ behavioral pro-
files, they would not get grouped together. To counter such

evasion attempts, COMPA can be easily extended with ad-
ditional and more comprehensive similarity measures. For
example, it would be straight-forward to create a similar-
ity measure that uses the landing page instead of the URLs
contained in the messages to find groups of similar mes-
sages. Furthermore, more computationally expensive simi-
larity measures, such as text shingling or edit distances for
text similarity can also be implemented. Other similarity
measures might leverage the way in which messages prop-
agate along the social graph to evaluate message similarity.

8 Related Work

The popularity of social networks inspired many scien-
tific studies in both, networking and security. Early detec-
tion systems for malicious activity on social networks fo-
cused on identifying fake accounts and spam messages [5,
6, 7] by leveraging features that are geared towards recog-
nizing characteristics of spam accounts (e.g., the presence
of URLs in messages or message similarity in user posts).
Cai et al. [18] proposed a system that detects fake profiles
on social networks by examining densely interconnected
groups of profiles. These techniques work reasonably well,
and both Twitter and Facebook rely on similar heuristics to
detect fake accounts [28, 29].

In response to defense efforts by social network
providers, the focus of the attackers has shifted, and a ma-
jority of the accounts carrying out malicious activities were
not created for this purpose, but started as legitimate ac-
counts that were compromised [3, 4]. Since these accounts
do not show a consistent behavior, previous systems will
fail to recognize them as malicious. Grier et al. [4] studied
the behavior of compromised accounts on Twitter by enter-
ing the credentials of an account they controlled on a phish-
ing campaign site. This approach does not scale as it re-
quires identifying and joining each new phishing campaign.
Also, this approach is limited to phishing campaigns. Gao
et al. [10] developed a clustering approach to detect spam
wall posts on Facebook. They also attempted to determine
whether an account that sent a spam post was compromised.
To this end, the authors look at the wall post history of spam
accounts. However, the classification is very simple. When
an account received a benign wall post from one of their
connections (friends), they automatically considered that
account as being legitimate but compromised. The prob-
lem with this technique is that previous work showed that
spam victims occasionally send messages to these spam ac-
counts [7]. This would cause their approach to detect le-
gitimate accounts as compromised. Moreover, the system
needs to know whether an account has sent spam before it
can classify it as fake or compromised. Our system, on the
other hand, detects compromised accounts also when they
are not involved in spam campaigns. As an improvement

to these techniques, Gao et al. [10] proposed a system that
groups similar messages posted on social networks together,
and makes a decision about the maliciousness of the mes-
sages based on features of the message cluster. Although
this system can detect compromised accounts, as well as
fake ones, their approach is focused on detecting accounts
that spread URLs through their messages, and, therefore, is
not as generic as COMPA.

Thomas et al. [13] built Monarch to detect malicious
messages on social networks based on URLs that link to
malicious sites. By relying only on URLs, Monarch misses
other types of malicious messages. For example, the scams
based on phone numbers that COMPA detected would not
be detected. It also would not detect a XSS worm spreading
without a URL, as well as a new, emerging kind of spam
that includes incomplete links in the tweet (e.g., a missing
http://). These spam messages ask users to copy and
paste a fragmented URL in the browser address bar [30],
where the URL is automatically reassembled. Lee et al. [12]
proposed WARNINGBIRD, a system that detects spam links
posted on Twitter by analyzing the characteristics of HTTP
redirection chains that lead to a final spam page.

Xu et al. [31] present a system that, by monitoring a
small number of nodes, detects worms propagating on so-
cial networks. This paper does not directly address the prob-
lem of compromised accounts, but could detect large-scale
infections such as koobface [2].

Yang et al. [17] studied new Twitter spammers that act
in a stealthy way to avoid detection. In their system, they
use advanced features such as the topology of the network
that surrounds the spammer. They do not try to distinguish
compromised from spam accounts.

9 Conclusions

In this paper, we presented a novel approach to detect
compromised accounts in social networks. More precisely,
we developed statistical models to characterize the behav-
ior of social network users, and we used anomaly detection
techniques to identify sudden changes in their behavior. We
developed COMPA, a prototype tool that implements this
approach, and we applied it to a large stream of messages.
The results show that our approach reliably detects compro-
mised accounts, even though we do not have full visibility
of every message exchanged on Facebook and Twitter.

Acknowledgements

This work was supported by the Office of Naval Re-
search (ONR) under Grant N000140911042, the Army Re-
search Office (ARO) under grant W911NF0910553, and
the National Science Foundation (NSF) under grants CNS-
0845559 and CNS-0905537.

References

[1]

(2]

(3]

[4]

(5]

(10]

[11]
[12]

[13]

[14]
[15]

Harris Interactive Public Relations Research, “A
Study of Social Networks Scams,” 2008.

J. Baltazar, J. Costoya, and R. Flores, “KOOBFACE:
The Largest Web 2.0 Botnet Explained,” 2009.

H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B. Zhao,
“Detecting and Characterizing Social Spam Cam-
paigns,” in Internet Measurement Conference (IMC),
2010.

C. Grier, K. Thomas, V. Paxson, and M. Zhang,
“@spam: the underground on 140 characters or less,”
in ACM Conference on Computer and Communica-
tions Security (CCS), 2010.

F. Benvenuto, G. Magno, T. Rodrigues, and
V. Almeida, “Detecting Spammers on Twitter,” in
Conference on Email and Anti-Spam (CEAS), 2010.

K. Lee, J. Caverlee, and S. Webb, “Uncovering so-
cial spammers: social honeypots + machine learning,”
in International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2010.

G. Stringhini, C. Kruegel, and G. Vigna, “Detecting
Spammers on Social Networks,” in Annual Computer
Security Applications Conference (ACSAC), 2010.

B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert,
M. Szydlowski, R. Kemmerer, C. Kruegel, and G. Vi-
gna, “Your Botnet is My Botnet: Analysis of a Bot-
net Takeover,” in ACM Conference on Computer and
Communications Security (CCS), 2009.

L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda, “All
Your Contacts Are Belong to Us: Automated Identity
Theft Attacks on Social Networks,” in Wold Wide Web
Conference (WWW), 2009.

H. Gao, Y. Chen, K. Lee, D. Palsetia, and A. Choud-
hary, “Towards Online Spam Filtering in Social Net-
works,” in Symposium on Network and Distributed
System Security (NDSS), 2012.

“foursquare,” http://foursquare.com.

S. Lee and J. Kim, “WarningBird: Detecting Suspi-
cious URLs in Twitter Stream,” in Symposium on Net-
work and Distributed System Security (NDSS), 2012.

K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song,
“Design and Evaluation of a Real-Time URL Spam
Filtering Service,” in IEEE Symposium on Security
and Privacy, 2011.

“Oauth community site,” http://oauth.net.

W. B. Cavnar and J. M. Trenkle, “N-gram-based text
categorization,” in In Proceedings of SDAIR-94, 3rd
Annual Symposium on Document Analysis and Infor-
mation Retrieval, 1994, pp. 161-175.

[16] J. C. Platt, “Fast Training of Support Vector Machines
Using Sequential Minimal Optimization,” in Advances
in Kernel Methods - Support Vector Learning, 1998.

[17] C. Yang, R. Harkreader, and G. Gu, “Die Free or
Live Hard? Empirical Evaluation and New Design for
Fighting Evolving Twitter Spammers,” in Symposium
on Recent Advances in Intrusion Detection (RAID),
2011.

[18] Z. Cai and C. Jermaine, “The Latent Community
Model for Detecting Sybils in Social Networks,” in
Symposium on Network and Distributed System Secu-
rity (NDSS), 2012.

[19] J.Song, S. Lee, and J. Kim, “Spam Filtering in Twitter
using Sender-Receiver Relationship,” in Symposium
on Recent Advances in Intrusion Detection (RAID),
2011.

[20] “Surbl,” http://www.surbl.org.

[21] “Weka - data mining open source program,” http:
/Iwww.cs.waikato.ac.nz/ml/weka/.

[22] “Spamhaus dbl,” http://www.spamhaus.org.

[23] “Google safebrowsing,” http://code.google.com/apis/
safebrowsing/.

[24] “Phishtank,” http://www.phishtank.com.
[25] “Wepawet,” http://wepawet.iseclab.org.
[26] “Exposure,” http://exposure.iseclab.org/.

[27] “Fox news’s hacked twitter feed declares obama
dead,” http://www.guardian.co.uk/news/blog/2011/
jul/04/fox-news-hacked-twitter-obama-dead, 2011.

[28] C. Ghiossi, “Explaining Facebook’s Spam Preven-
tion Systems,” http://blog.facebook.com/blog.php?
post=403200567130, 2010.

[29] Twitter, “The twitter rules,” http://support.twitter.com/
entries/18311-the-twitter-rules, 2010.

[30] F-Secure, “The increasingly shapeshifting web,”
http://www.f-secure.com/weblog/archives/00002143.
html.

[31] W. Xu, F. Zhang, and S. Zhu, “Toward worm detec-
tion in online social networks,” in Annual Computer
Security Applications Conference (ACSAC), 2010.

[32] “Nielsen,” http://blog.nielsen.com.

A Detecting Worms

Twitter has been affected by multiple worm outbreaks.
For example, in September 2010 a XSS worm exploited
a vulnerability in the way in which Twitter parsed URLs
in tweets. More specifically, if a URL contained an
”@” symbol, Twitter would interpret everything follow-
ing that character as JavaScript. Therefore, a user who
hovered her mouse over a tweet containing a URL simi-
lar to http://x.xx/@ ”onmouseover="alert(1) would execute
the JavaScript event handler in her browser. Of course, the
real worm used JavaScript that would self propagate the
worm instead of the alert statement. Obviously, post-
ing the tweet that contained the body of the worm happened
without the user’s consent, and, therefore, we have to con-
sider such accounts as compromised. Note that the URL
preceding the @ sign was irrelevant for the attack. There-
fore, existing detection approaches that examine the mali-
ciousness of URLs would fail to detect this XSS worm at-
tack, as the attacker could chose any benign domain (e.g.,
http://www.google.com).

To evaluate whether COMPA is capable of detecting
worm outbreaks, we simulated the worm outbreak on real
Twitter data. That is, we chose a random message Sy of a
random user Uy on the Twitter network. We assumed that
the worm would propagate from user A to user B iff user B
follows user A, and user B was active on Twitter within a
time window T around the point in time when user A posts
the offending message. Due to the lack of detailed usage
information, we determine the activity of a user by observ-
ing when they tweet. Thus, a user is deemed active 7/2
before and after she posted any status updates through the
Twitter web interface. Note that this definition of activity
(i.e., a user is only deemed active when she is posting) is

conservative, as users are often browsing Twitter or reading
other people’s tweets, even if they do not post at the same
time. Furthermore, the worm only propagates itself if the
tweet that user B sent was posted through the Twitter web
site. That is, alternative clients are assumed not to contain
the same vulnerability in their URL parsing routines. The
XSS worm we are simulating is aggressive in that it spreads
as soon as the user hovers the mouse over the tweet. We
assume that if a user is active, she will hover her mouse
over the tweet, and thus, get infected. For every propaga-
tion step, we record the IDs of users A and B, as well as
the ID of the tweet that was used to determine that user B
is active (i.e., the tweet user B sent within the time window
T). According to [32], web users spend roughly 10 minutes
per day on social networks. Thus, we assumed a value of
10 minutes for 7 in our simulation.

Subsequently, we downloaded the timelines of the users
infected by the simulated worm. Then, we substituted the

tweets that were responsible for the worm propagation with
a copy of the XSS worm. Finally, we ran COMPA on these

timelines. Although the way we simulated the worm out-
break means that the timing and source models are drawn
from real information (i.e., we only substituted the text of
the tweet), COMPA was able to successfully detect the out-
break and the compromised accounts after the worm spread
to 2,256 accounts in 20 minutes. This means that the ”worm
group” contained enough tweets that violated their respec-
tive users’ behavioral profiles. It turns out that our propaga-
tion strategy was chosen conservatively as news reports> of
previous Twitter worms report of 40,000 infected accounts
within 10 minutes. Thus, assuming the distribution of pro-
file violations is similar for such aggressive worms, COMPA
would detect such a large scale outbreak even faster.

2http://eu.lechcrunch.com/2010/09/2 1/warning-mouseover-tweets-security-flaw-
is-wreaking-havoc-on-twitter/

