
CSP Is Dead, Long Live CSP! On the Insecurity of
Whitelists and the Future of Content Security Policy

Lukas Weichselbaum
Google Inc.

lwe@google.com

Michele Spagnuolo
Google Inc.

mikispag@google.com

Sebastian Lekies
Google Inc.

slekies@google.com
Artur Janc
Google Inc.

aaj@google.com

ABSTRACT
Content Security Policy is a web platform mechanism de-
signed to mitigate cross-site scripting (XSS), the top security
vulnerability in modern web applications [24]. In this paper,
we take a closer look at the practical benefits of adopting
CSP and identify significant flaws in real-world deployments
that result in bypasses in 94.72% of all distinct policies.

We base our Internet-wide analysis on a search engine cor-
pus of approximately 100 billion pages from over 1 billion
hostnames; the result covers CSP deployments on 1,680,867
hosts with 26,011 unique CSP policies – the most compre-
hensive study to date. We introduce the security-relevant
aspects of the CSP specification and provide an in-depth
analysis of its threat model, focusing on XSS protections.
We identify three common classes of CSP bypasses and ex-
plain how they subvert the security of a policy.

We then turn to a quantitative analysis of policies de-
ployed on the Internet in order to understand their secu-
rity benefits. We observe that 14 out of the 15 domains
most commonly whitelisted for loading scripts contain un-
safe endpoints; as a consequence, 75.81% of distinct policies
use script whitelists that allow attackers to bypass CSP. In
total, we find that 94.68% of policies that attempt to limit
script execution are ineffective, and that 99.34% of hosts
with CSP use policies that offer no benefit against XSS.

Finally, we propose the ’strict-dynamic’ keyword, an
addition to the specification that facilitates the creation of
policies based on cryptographic nonces, without relying on
domain whitelists. We discuss our experience deploying such
a nonce-based policy in a complex application and provide
guidance to web authors for improving their policies.

Keywords
Content Security Policy; Cross-Site Scripting; Web Security

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS’16 October 24-28, 2016, Vienna, Austria
© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4139-4/16/10.

DOI: http://dx.doi.org/10.1145/2976749.2978363

1. INTRODUCTION
Cross-site scripting – the ability to inject attacker-con-

trolled scripts into the context of a web application – is
arguably the most notorious web vulnerability. Since the
first formal reference to XSS in a CERT advisory in 2000
[6], generations of researchers and practitioners have inves-
tigated ways to detect [18, 21, 29, 35], prevent [22, 25, 34]
and mitigate [4, 23, 28, 33] the issue. Despite these efforts,
XSS is still one of the most prevalent security issues on the
web [24, 30, 37], and new variations are constantly being
discovered as the web evolves [5, 13, 14, 20].

Today, Content Security Policy [31] is one of the most
promising countermeasures against XSS. CSP is a declara-
tive policy mechanism that allows web application develop-
ers to define which client-side resources can be loaded and
executed by the browser. By disallowing inline scripts and
allowing only trusted domains as a source of external scripts,
CSP aims to restrict a site’s capability to execute malicious
client-side code. Hence, even when an attacker is capable of
finding an XSS vulnerability, CSP aims to keep the appli-
cation safe by preventing the exploitation of the bug – the
attacker should not be capable of loading malicious code
without controlling a trusted host.

In this paper, we present the results of the first in-depth
analysis of the security of CSP deployments across the web.
In order to do so, we first investigate the protective capabil-
ities of CSP by reviewing its threat model, analyzing possi-
ble configuration pitfalls and enumerating little-known tech-
niques that allow attackers to bypass its protections.

We follow with a large-scale empirical study using real-
world CSP policies extracted from the Google search in-
dex. Based on this data set, we find that currently at
least 1,680,000 Internet hosts deploy a CSP policy. Af-
ter normalizing and deduplicating our data set, we identify
26,011 unique CSP policies, out of which 94.72% are triv-
ially bypassable – an attacker can use automated methods
to find endpoints that allow the subversion of CSP protec-
tions. Even though in many cases considerable effort was
spent in deploying CSP, 90.63% of current policies contain
configurations that immediately remove any XSS protection,
by allowing the execution of inline scripts or the loading of
scripts from arbitrary external hosts. Only 9.37% of the
policies in our data set have stricter configurations and can
potentially protect against XSS. However, we find that at
least 51.05% of such policies are still bypassable, due the
presence of subtle policy misconfigurations or origins with
unsafe endpoints in the script-src whitelist.

Based on the results of our study, we conclude that main-
taining a secure whitelist for a complex application is infea-
sible in practice; hence, we propose changes to the way CSP
is used. We suggest that the model of designating trust
by specifying URL whitelists from which scripts can exe-
cute should be replaced with an approach based on nonces
and hashes [3], already defined by the CSP specification and
available in major browser implementations.

In a nonce-based policy, instead of whitelisting hosts and
domains for script execution, the application defines a single-
use, unguessable token (nonce) delivered both in the CSP
policy and as an HTML attribute of legitimate, application-
controlled scripts. The user agent allows the execution only
of those scripts whose nonce matches the value specified in
the policy; an attacker who can inject markup into a vul-
nerable page does not know the nonce value, and is thus
not able to execute malicious scripts. In order to ease the
adoption process of this nonce-based approach, we present
a new CSP source expression for ’script-src’, provision-
ally called ’strict-dynamic’. With ’strict-dynamic’, dy-
namically generated scripts implicitly inherit the nonce from
the trusted script that created them. This way, already-
executing, legitimate scripts can easily add new scripts to
the DOM without extensive application changes. However,
an attacker who finds an XSS bug, not knowing the correct
nonce, is not able to abuse this functionality because they
are prevented from executing scripts in the first place.

In order to prove the feasibility of this approach, we present
a real-world case study of adopting a nonce-based policy in
a popular application.

Our contributions can be summarized as follows:

• We present the results of the first in-depth analysis
of the CSP security model, analyzing the protections
against web bugs provided by the standard. We iden-
tify common policy misconfigurations and present three
classes of CSP bypasses that disable the protective ca-
pabilities of a policy.

• We conduct a large-scale empirical study of the bene-
fits of real-world CSP deployments by extracting poli-
cies from the Google search index. Based on a corpus
of approximately 106 billion pages, of which 3.9 bil-
lion are protected with CSP, we identify 26,011 unique
policies. We find that at least 94.72% of these poli-
cies are ineffective at mitigating XSS, due to policy
misconfigurations and insecure whitelist entries.

• Based on our findings, we propose a change to how
Content Security Policy is deployed in practice: in-
stead of whitelisting, we advocate for a nonce-based
approach. To further this approach, we present ’strict-
dynamic’, a new feature of the CSP3 specification cur-
rently implemented in the Chromium browser. We
discuss the benefits of this approach and present a
case study of deploying a policy based on nonces and
strict-dynamic in a popular web application.

The rest of this paper has the following structure: in Sec-
tion 2, we provide an in-depth introduction to CSP. Thereby,
we cover the technical foundations in 2.1, the CSP threat
model and common security pitfalls when designing a policy
in 2.2 and 2.3. Subsequently, we present the result of our
empirical study in Section 3. In order to do so, we first out-
line our research questions in 3.1, introduce our data set in

3.2, and explain our methodology in 3.3, before we present
the results and our analysis in 3.4. Based on the results of
this study, we then propose a way to improve CSP in Section
4. Finally, we present related work in Section 5, before we
conclude in Section 6.

2. CONTENT SECURITY POLICY

2.1 Overview
The Content Security Policy (CSP) is a declarative mech-

anism that allows web authors to specify a number of se-
curity restrictions on their applications, to be enforced by
supporting user agents.

CSP is intended as “a tool which developers can use to
lock down their applications in various ways, mitigating the
risk of content-injection vulnerabilities (. . .) and reducing
the privilege with which their applications execute.” [3]

CSP is evolving quickly: the version currently undergoing
specification is CSP3, and the standard is unevenly imple-
mented by user agents. For example, Chromium has full
CSP2 support and implements most of the working draft
of CSP3, in some cases behind experimental runtime flags,
while Mozilla Firefox and WebKit-based browsers just re-
cently obtained full CSP2 support [8]. When discussing the
details of CSP, we do not focus on any particular revision
of the standard, but instead attempt to provide a broad
overview across implementations and versions [31].

A CSP policy is delivered in the Content-Security-Policy
HTTP response header or in a <meta> element. The func-
tionality of CSP can be divided into three categories:

Resource loading restrictions. The most well-known
and commonly used aspect of CSP is limiting the ability to
load various subresources to a set of origins allowed by the
developer, known as a source list. Commonly used direc-
tives are script-src, style-src, img-src, and the catch-
all default-src; a full list of directives regulating resources
is shown in Table 1. As a special case, several additional
configuration options are available for the script-src and
style-src directives; these allow more fine-grained control
over scripts and stylesheets and are discussed below.

Auxiliary URL-based restrictions. Certain classes of
attacks cannot be prevented by policing fetched sub-resources,
but similarly require a concept of trusted origins with which
the document can interact. A common example is the frame-
ancestors directive, which defines the origins that are al-
lowed to frame a document in order to prevent clickjack-
ing [10]. Similarly, base-uri and form-action define which
URLs can be targets of <base#href> and <form#action>

elements in order to prevent some post-XSS attacks [38].

Miscellaneous confinement and hardening options.
Due to the lack of other common mechanisms for enabling
security restrictions in web applications, CSP has become
the home for several loosely fitting security features. This in-
cludes the block-all-mixed-content and upgrade-insecure-

requests keywords, which prevent mixed content bugs and
improve HTTPS support; plugin-types, which restricts al-
lowed plugin formats; and sandbox, which mirrors the secu-
rity features of HTML5 sandbox frames.

In order to make web applications compatible with a Con-
tent Security Policy useful against XSS, web authors often
have to refactor the HTML markup generated by the appli-
cation logic, as well as by frameworks and templating sys-

Directive Controlled resource type
default-src All resources (fallback)
script-src Scripts
style-src Stylesheets
img-src Images
media-src Media (audio, video)
font-src Fonts
frame-src Documents (frames)
object-src Plug-in formats (object, embed)
child-src Documents (frames), [Shared]Workers
worker-src [Shared]Workers
manifest-src Manifests

Table 1: CSP directives and controlled resources

tems. In particular, inline scripts, the usage of eval and
equivalent constructs, inline event handlers and javascript:

URIs must be avoided or refactored with CSP-friendly al-
ternatives.

In addition to the default behavior of enforcing policy re-
strictions, CSP can be configured in Report-Only mode, in
which violations are recorded but not enforced. In both
cases, the report-uri directive can be used to send viola-
tion reports to inform the application’s owner of incompat-
ible markup.

Content-Security-Policy: script-src ’self’; style-src
cdn.example.org third-party.org; child-src https:

Listing 1: Example of a traditional CSP policy

2.1.1 Source lists
CSP source lists (commonly known as whitelists) have

been a core part of CSP and are the traditional way to
specify trust relationships. For example, as shown in List-
ing 1, an application might choose to trust only its hosting
domain for loading scripts, but allow fonts or images from
cdn.example.org and third-party.org, and require frames
to be loaded over HTTPS, while enforcing no restrictions on
other resource types.

For any directive, the whitelist can be composed of host-
names (example.org, example.com), possibly including the
* wildcard to extend trust to all subdomains (*.example.org);
schemes (https:, data:); and the special keywords ’self’,
denoting the origin of the current document, and ’none’,
enforcing an empty source list and prohibiting the loading
of any resources whatsoever.

Starting with CSP2, authors also have the option to spec-
ify paths in their whitelists (example.org/resources/js/).
Interestingly, path-based restrictions cannot be relied on to
limit the location from which resources can be loaded; a
broader discussion of this issue is provided in Section 2.3.4.

2.1.2 Restrictions on script execution
Because of the significance of scripting in modern web

applications, the script-src directive provides several key-
words to allow more granular control over script execution:

1. unsafe-inline allows the execution of inline <script>
blocks and JavaScript event handlers (effectively re-
moving any CSP protection against XSS).

2. unsafe-eval allows the use of JavaScript APIs that
execute string data as code, such as eval(), setTime-

out(), setInterval(), and the Function constructor.
Otherwise, these APIs are blocked by a policy with a
script-src directive.

3. A CSP nonce allows the policy to specify a one-time
value that acts as an authorization token for scripts
(script-src ’nonce-random-value’). Any script on
the page with the correct nonce="random-value" at-
tribute will be allowed to execute.

4. A CSP hash allows the developer to list cryptographic
hashes of expected scripts within the page (script-
src ’sha256-nGA...’). Any inline script whose digest
matches the value supplied in the policy will be allowed
to execute.

Nonces and hashes can similarly be used with the style-

src directive to allow the loading of inline stylesheets and
external CSS whitelisted via a nonce value.

Content-Security-Policy: script-src ’nonce-BPNLMA4’
’sha256-OPc+f+ieuYDM...’ object-src ’none’;

Listing 2: Locked down policy using a nonce and a hash

2.2 The threat model of CSP
In order for CSP to offer a security benefit, it must pre-

vent attackers from exploiting flaws that would otherwise
enable malicious actions against the application’s users. In
its current form, CSP offers protections from three types of
vulnerabilities [3]:

• XSS: the ability to inject and execute untrusted scripts
in a vulnerable application (protected with the script-
src and object-src directives)

• Clickjacking: forcing users to take unwanted actions
in an affected application by overlaying hidden frames
on attacker-controlled pages (protected by restricting
framing with frame-ancestors)

• Mixed content: Accidentally loading resources from in-
secure protocols on pages delivered over HTTPS (pro-
tected with the upgrade-insecure-requests and block-

all-mixed-content keywords and by restricting the
loading of scripts and sensitive resources to https:).

It follows that only a small subset of CSP directives are
useful for XSS protection. Furthermore, the ability to exe-
cute malicious scripts in the context of an application sub-
verts the protections offered by all other directives, as dis-
cussed in Section 2.2.2.

2.2.1 Benefits of adopting CSP
Since some popular user agents do not yet support CSP

or offer only partial support[8], CSP should only be used
as a defense-in-depth to hinder attack attempts in case the
primary security mechanism has failed. Accordingly, appli-
cations using CSP must also employ traditional protection
mechanisms; e.g., employ frameworks with strict contextual
escaping for generating markup, use the X-Frame-Options

header to protect against clickjacking, and ensure that re-
sources on secure pages are fetched over HTTPS.

The actual benefit of setting a Content Security Policy
arises only when the primary security mechanism has turned

out to be insufficient – CSP can help protect users when de-
velopers introduce programming mistakes that would other-
wise lead to XSS, clickjacking, or mixed content bugs.

In practice, however, clickjacking protection with X-Frame-

Options is rarely subverted, and active mixed content (scripts
and other active content loaded over HTTP from a HTTPS
web page) is already blocked by default in modern user
agents. Thus, the primary value of CSP – and indeed, the
main motivation for the creation of the standard [3] – lies in
preventing the exploitation of XSS, as it is the only class of
vulnerabilities which both can be mitigated by CSP and is
commonly inadvertently introduced by developers.

2.2.2 Defending against XSS
The security benefit of CSP is overwhelmingly concen-

trated in two directives that prevent script execution: script-
src and object-src (plugins such as Adobe Flash can exe-
cute JavaScript in the context of their embedding page), or
default-src in their absence.

An attacker who can inject and execute scripts is able to
bypass the restrictions of all other directives. As a result,
applications that use a policy without safe script-src and
object-src source lists gain very limited benefit from CSP.
For additional directives to provide a meaningful security
benefit, the site must first use a safe policy that success-
fully prevents script execution. In general, non-script direc-
tives might serve as a defense against some post-XSS [38] or
“scriptless” [13] attacks, such as exfiltrating data by hijack-
ing form URIs, or phishing by spoofing the page UI using
attacker-controlled styles, but they improve security only if
CSP is already effective as a protection against XSS.

To achieve the primary goal of preventing unwanted script
execution, a policy must meet three requirements:

• The policy must define both the script-src and object-

src directives (or default-src in their absence)

<script src="//evil.com"></script>

<object data="//evil.com/evil.swf">
<param name="allowscriptaccess" value="always">

</object>

Listing 3: CSP bypass due to missing directives

• The script-src source list cannot contain the unsafe-
inline keyword (unless accompanied by a nonce) or
allow data: URIs.

<script src="data:text/javascript,evil()"></script>

Listing 4: Bypass for unsafe-inline and data: URIs

• The script-src and object-src source lists cannot
contain any endpoints that allow an attacker to con-
trol security-relevant parts of the response or contain
unsafe libraries.

<script src="/api/jsonp?callback=evil"></script>

<script src="angular.js"></script> <div ng-app>
{{ executeEvilCodeInUnsafeSandbox() }} </div>

Listing 5: XSS CSP whitelist bypasses

If any of these conditions is not met, the policy is not effec-
tive at preventing script execution and consequently offers
no protection from content-injection attacks.

We now turn to an analysis of the types of endpoints that,
when hosted on a whitelisted origin, allow an attacker to
bypass CSP protections against script execution.

2.3 Script execution bypasses
One of the underlying assumptions of CSP is that domains

whitelisted in the policy only serve safe content. Hence, an
attacker should not be able to inject valid JavaScript in the
responses of such whitelisted origins.

In the following subsections, we demonstrate that in prac-
tice, modern web applications tend to utilize several patterns
that violate this assumption.

2.3.1 JavaScript with user-controlled callbacks
Although many JavaScript resources are static, in some

situations a developer may want to dynamically generate
parts of a script by allowing a request parameter to set a
function to execute when the script is loaded. For example,
JSONP interfaces that wrap a JavaScript object in a callback
function are typically used to allow the loading of API data,
by sourcing it as a script from a third-party domain:

<script
src="/path/jsonp?callback=alert(document.domain)//">
</script>

/* API response */
alert(document.domain);//{"var": "data", ...});

Listing 6: Loading JSONP data

Unfortunately, if a domain whitelisted in the policy con-
tains a JSONP interface, an attacker can use it to execute
arbitrary JavaScript functions in the context of a vulner-
able page by loading the endpoint as a <script> with an
attacker-controlled callback [39]. If attackers can control the
entire beginning of the JSONP response, they gain uncon-
strained script execution. If the character set is restricted
and thus only the function name is controllable, they can use
techniques such as SOME [12] which are often qualitatively
equivalent to full, unconstrained XSS.

2.3.2 Reflection or symbolic execution
Restrictions on CSP script execution can be (often acci-

dentally) circumvented by a cooperating script in a whitelisted
origin. For example, a script can use reflection to look up
and invoke a function in the global scope, as depicted in
Listing 7.

// Can be used to invoke window.* functions with
// arbitrary arguments via markup such as:
// <input id="cmd" value="alert,safe string">
var array =

document.getElementById(’cmd’).value.split(’,’);
window[array[0]].apply(this, array.slice(1));

Listing 7: JavaScript reflection gadget

Such JavaScript gadgets would normally not compromise
security, because their arguments are under the control of
the developer whose page loads the script. A problem arises
when such scripts obtain data by inspecting the DOM, which
can be partly attacker-controlled if the application has a
markup-injection bug – an attacker can then execute ar-
bitrary functions, possibly with unconstrained arguments,
bypassing CSP.

A practical example is the behavior of the popular An-
gularJS library, which allows the creation of single-page ap-
plications with powerful templating syntax and client-side
template evaluation (Listing 8).

<script src="whitelisted.com/angular.js"></script>
<div ng-app>{{ 1000 - 1 }}</div>

Listing 8: Bypassing CSP by loading AngularJS

To achieve its goal, AngularJS parses templates in des-
ignated parts of the page and executes them. The ability
to control templates parsed by Angular can be considered
equivalent to executing arbitrary JavaScript. By default,
Angular uses the eval() function to evalute sandbox ex-
pressions, which is prohibited by CSP policies without the
unsafe-eval keyword. However, Angular also ships with a
“CSP compatibility mode” (ng-csp), in which expressions
are evaluated by performing symbolic execution, making it
possible to call arbitrary JavaScript code despite CSP.

As a consequence, an attacker who can load the Angular
library from a domain whitelisted in the CSP can use it as
a JS gadget to bypass script execution protections. This is
possible even if the attacked application doesn’t make use
of Angular itself – the only requirement is for the Angular
library to be hosted on one of the domains whitelisted in
script-src. Thus, the mere presence of any Angular library
in a trusted domain subverts the protections offered by CSP.

2.3.3 Unexpected JavaScript-parseable responses
For compatibility reasons, web browsers are generally le-

nient about checking whether the MIME type of a response
matches the page context from which the response is used.
Any response that can be parsed as JavaScript without syn-
tax errors – and in which attacker-controlled data appears
before the first runtime error – can lead to script execution.
CSP can thus be bypassed with the following types of re-
sponses:

• Comma-separated value (CSV) data with partially
attacker-controlled contents:

Name,Value
alert(1),234

• Error messages echoing request parameters:
Error: alert(1)// not found.

• User file uploads, even if their contents are properly
HTML-escaped or sanitized

Thus, if a whitelisted domain hosts any endpoints with
such properties, an attacker can “forge” script responses and
execute arbitrary JavaScript. Similar concerns apply to the
object-src whitelist: if an attacker can upload a resource
that will be interpreted as a Flash object to a domain white-
listed for object-src, script execution will be possible.

It is important to note that none of the above bypass pat-
terns pose a direct security risk, so developers typically have
no reason to change them. However, when an application
adopts CSP such endpoints become a security problem be-
cause they allow a policy to be bypassed.

More problematically, this issue affects not only the ap-
plication’s origin, but also all other domains whitelisted in
script-src. These domains often include trusted third par-
ties and CDNs that might not be aware of CSP – and thus
have no reason to identify and fix behaviors that allow CSP
bypasses.

2.3.4 Path restrictions as a security mechanism
To address issues about insufficient granularity of domain-

based source lists, CSP2 introduced the ability to constrain
whitelists to specific paths on a given domain (e.g. exam-

ple.org/foo/bar). Developers now have the option to des-
ignate specific directories on a trusted domain for loading
scripts and other resources.

Unfortunately, as a result of a privacy concern related to
the handling of cross-origin redirects [15], this restriction has
been relaxed. If a source list entry contains a redirector (an
endpoint returning a 30x response that points to another
location), that redirector can be used to successfully load
resources from whitelisted origins even if they do not match
the path allowed in the policy.

Content-Security-Policy: script-src example.org
partially-trusted.org/foo/bar.js

// Allows loading of untrusted resources via:
<script src="//example.org?

redirect=partially-trusted.org/evil/script.js">

Listing 9: Bypassing CSP path restrictions

Because of this behavior and the prevalence of redirectors
in complex web applications (often used in security contexts
such as OAuth and to prevent referer leaks), path restric-
tions cannot be relied upon as a security mechanism in CSP.

We have shown how some seemingly benign programming
patterns allow a content-injection attacker to bypass script
execution protections offered by CSP, and in turn remove
any anti-XSS benefit of a policy – its primary focus. We
now turn to analyzing the consequences of such bypasses for
real-world policies.

3. EMPIRICAL STUDY ON CSP
The goal of our work is to investigate the prevalence and

protection capabilities offered by CSP in practice. In order
to do so, we conducted a large-scale empirical study to col-
lect and analyze real-world CSP policies. In this section, we
describe the methodology and the results of this study.

3.1 Research Questions
Our study is divided into two major parts. First, we aim

to understand how CSP is currently used; second, we want
to analyze the security properties of the deployed policies.

3.1.1 How is CSP used on the web?
As previous research [36, 27] has shown, the CSP adop-

tion rate lags behind the expectations of the security com-
munity. Hence, in the first part of our study we aim to shed
light on the current state of CSP, in order to understand
how widely CSP is used. Furthermore, we’d like to under-
stand whether CSP is used exclusively for XSS protection
or whether other prevalent use cases exist. Since many ma-
jor web applications need to be changed to be compatible
with CSP, it is unclear whether CSP policies in the wild are
already used for XSS protection, or are in a rather experi-
mental state in which enforcement is still disabled. As such,
we are interested in the ratio between policies in enforcing
mode and policies in report-only mode. In the second part
of this study, we will use the enforced policies to conduct
our security analysis.

3.1.2 How secure are real-world CSP policies?
As described in Section 2, there are quite a few pitfalls

that might render a policy’s protection capabilities ineffec-
tive. Avoiding such mistakes in policy creation requires ex-
tensive knowledge. In the second part of our study, we aim
to identify how many policies are affected by mistakes and
thus can be bypassed. We also investigate which kinds of
mistakes are the most prevalent.

Additionally, we aim to analyze the security of strict poli-
cies, and of whitelists in particular.

3.2 Data set
In order to answer the questions posed above, we used

a data set that is representative of the web as a whole: a
search index consisting of about 6.5 petabytes of data. The
index contains the response headers and bodies of pages on
the public Internet crawled within the past 20 days by the
Google search crawling infrastructure.

3.3 Methodology
In the following subsections, we outline the methodology

used to extract and analyze Content Security Policies from
the given data set.

3.3.1 Detecting Content Security Policies
In order to extract CSP policies from the data set, we

wrote a MapReduce job. For each URL in the index with a
CSP policy, we extracted the following tuple:

(URL,CSP, isCSPReportOnly)

Based on this list of tuples, we then extracted a set of
unique policies for each host, effectively removing duplicate
policies on a per-host basis.

3.3.2 Normalizing CSP policies
Several websites automatically generate CSP policies that

include random nonces, hashes, or report URIs. In this pro-
cess, some generation routines randomly switch the order
of certain directives or directive values. In order to make
the policies in our data set comparable, we first normalized
the policies. We implemented a CSP parser as described in
the specification1 and stored a parsed copy of every CSP
for later in-depth evaluation. For each of the policies, we
applied the following normalization steps:

• First, we removed superfluous white spaces and re-
placed all variable values, such as nonces and report
URIs, with fixed placeholders.

• Second, we ordered and deduplicated all directives and
directive values.

3.3.3 Deduplicating CSPs
During our analysis, we noticed that off-the-shelf web ap-

plications like message boards and e-commerce platforms are
spread across many different hosts, while deploying the exact
same CSP policy. To address this, we decided to deduplicate
the CSPs, based on the normalized policy string. Thus, our
final data set contains a single entry for each unique policy
that we found across the web.

1https://www.w3.org/TR/CSP2/#policy-parsing

3.3.4 Identifying XSS-protection policies
As described earlier, CSP supports many directives that

are not primarily meant for defending against XSS, such as
img-src and frame-ancestors. Since our study aims to as-
sess the security of a policy in terms of its XSS mitigation
capabilities, we needed a way to distinguish policies that
attempt to defend against XSS from all other policies. Ac-
cording to our definition, an XSS-protection policy must be
in enforcing mode and must contain at least one of the fol-
lowing two directives: script-src or default-src.

3.3.5 Assessing the security of policies
In order to assess whether a CSP policy can be bypassed to

execute attacker-controlled scripts, we conduct the following
checks:

1. Usage of ’unsafe-inline’: A policy with the
’unsafe-inline’ keyword is inherently insecure if it
doesn’t also specify a script nonce. Such policies are
flagged as bypassable.

2. Missing object-src: A policy that specifies
script-src but lacks the object-src directive (and
does not set default-src) allows script execution by
injecting plugin resources, as shown in Listing 3.

3. Use of wildcards in whitelists: A policy is also
insecure if a security-relevant whitelist contains a gen-
eral wildcard or a URI scheme2, allowing the inclusion
of content from arbitrary hosts.

4. Unsafe origin in whitelists: When a domain host-
ing an endpoint with a CSP bypass is whitelisted, the
protective capabilities of CSP are rendered void, as
discussed in Section 2.3. In order to assess the secu-
rity of policies, we compiled a list of hosts with such
bypassable endpoints. If a whitelist entry of a given
policy appears in this list, we flag the policy as bypass-
able. In the next section, we outline how we created
this list.

3.3.6 Identifying domains with endpoints allowing
CSP byasses

In order to identify domains that are insecure for whitelist-
ing in CSP, we extracted pages from the search index that
employ one of the practices described in Section 2.2. As
noted previously, hosting the AngularJS library and expos-
ing JSONP endpoints are two of many ways to create CSP
bypasses.

JSONP endpoints:
In order to identify JSONP endpoints, we extracted all

URLs from the search index that contain a GET parameter
with one of the following names: callback, cb, json, jsonp.
Subsequently, we verified the resulting data set by changing
the value of the corresponding parameter, requesting the
resource, and checking whether the changed value was re-
flected in the beginning of the response. We checked that
all endpoints allow full XSS or a SOME attack by verifying
the allowed characters in the response. According to our
data 39 % of the JSONP bypasses allow arbitrary JS exe-
cution while the rest allows arbitrary calls to existing func-
tions via the SOME attack, which in real world applications
is considered equally as harmful as full XSS [12].
2http:, https: or data:

Total
script-src

default-src
style-src
img-src
font-src

frame-src
connect-src

object-src
report-uri

media-src
child-src

frame-ancestors
form-action

base-uri
reflected-xss

upgrade-insecure-r…
referrer

block-all-mixed-cont…
plugin-types

sandbox

2601126011
2257322573

2229422294
2034620346
2017920179

1731117311
1685816858

1414314143
1251412514

1077310773
1070910709

26022602
21112111

17341734
779779
711711
489489
418418
312312
256256
147147

Number of Policies

D
ir

ec
tiv

es

Figure 1: Distribution of CSP directives among
unique CSPs

AngularJS:
For the AngularJS library, we created a small signature

that matches a specific part of the source code (both minified
and non-minified). For each match, we then extracted the
version of the file by matching the included version string.

3.4 Results and Analysis

3.4.1 The state of CSP on the web
We used one of Google’s indices as our data set for detect-

ing CSP policies. At the time of this analysis, this particu-
lar index contained approximately 106 billion unique URLs,
spanning 1 billion hostnames and 175 million top private
domains.3 We believe this index is representative of the
current state of the web, since all URLs were visited by the
Google crawler within a time frame of about 20 days prior
to our analysis.

In this data set, we found that 3,913,578,446 (3.7 %) URLs
carried a CSP policy. This number, however, is not a good
approximation of the CSP adoption rate because applica-
tions with large numbers of URLs might be overrepresented
within the overall data set. When considering the distribu-
tion across domains, the overall picture looks different: only
1,664,019 (0.16 %) of all hostnames across 274,214 top pri-
vate domains deploy a CSP policy. Out of this list, 1 million
hostnames were mapped to one of five e-commerce4 applica-
tions, using only a few distinct policies. To account for this,
we deduplicated the data set using the normalized policy.
By doing so, we identified 26,011 unique policies.

3.4.2 How CSP is used
CSP’s main goal is to protect against XSS attacks. How-

ever, it has many other use cases. Hence, as a first step, we
sought to determine whether CSP is used for its intended
purpose. Figure 1 shows a list of all CSP directives, ordered
by the number of occurrences. The list clearly shows that
the script-src and/or default-src directive are used in
the majority of policies. In contrast, the frame-ancestors

directive, which can be used to control the framing behavior

3See https://github.com/google/guava/wiki/InternetDom
ainNameExplained for an explanation of the term “top pri-
vate domain.”
4For example, Alibaba mini shops had the same CSP de-
ployed across more than 600,000 hostnames.

of a page, is used in only 8.1 % of policies. Furthermore, out
of the 26,011 unique policies, only 9.96 % are in report-only
mode, whereas the other 90.04 % are switched to enforcing
mode. In these numbers, we see clear evidence that CSP is
meant as an XSS protection.

3.4.3 Security analysis: overview
The goal of our analysis was to find out whether CSP in

its current form can be used to effectively protect from XSS
flaws. In order to do so, we compiled three distinct data
sets:

1. All policies: This data set contains all unique CSP
policies, both in report-only and enforcing mode.

2. XSS-protection policies: This data set contains all
enforcing policies that contain at least one directive
for protecting against XSS (script-src, object-src
or default-src). This data set excludes all policies
for non-XSS-protection use cases.

3. Strict XSS-protection policies: Finally, we com-
piled a set of the strongest CSP policies in the overall
data set. These policies are strict in the sense that they
do not include any inherently unsafe directive values
such as ’unsafe-inline’, a URI scheme or the general
* wildcard for whitelisting all hosts.

Table 2 presents the final results. The results for each
data set are presented in a single row of the table. In the
following sections, we discuss these results in detail.

3.4.4 Security of CSP in general
In order to assess the security properties of the detected

CSP policies, we automatically applied the checks described
in Section 2.2. Based on the analysis of the configuration and
whitelist bypassability, we observed that 94.72 % of policies
in the overall data set do not offer any protection from XSS.
It’s important to note that some of these policies are not in
enforcing mode or are not used to protect against XSS; how-
ever, even for the XSS-protection policies, the percentage of
bypassable policies is very similar: 94.68 %.

Unfortunately, most of the policies are inherently inse-
cure. Of the XSS protection policies, 87.63 % employed
the ’unsafe-inline’ keyword without specifying a nonce,
which essentially disables the protective capabilities of CSP.
This surprisingly high number might be explained by the
fact that many web applications need to rewrite large parts
of their code in order to be compatible with CSP. Some of
these pages might still be in a transitional phase, in which
they require the ’unsafe-inline’ keyword. Although this
problem might be fixed in the long run, many policies con-
tain other obvious problems. For example, we determined
that 9.4 % of the policies contain neither the default-src

nor the object-src directive. Hence attackers are able to
exploit an XSS vulnerability by injecting a malicious Flash
object capable of executing JavaScript. Furthermore, 21.48
% of the policies utilize a general wildcard or a URI scheme
(http: or https:) within the script-src or default-src

directives and thus allow the inclusion of scripts from arbi-
trary, potentially attacker-controlled hosts.

Given these numbers, it seems that the vast majority of
the policies are not capable of effectively protecting against
XSS exploits. However, because CSP might be immature,
the numbers could be inflated by early adoption issues. In
order to account for this fact, we compiled a set of policies

Data
Set

Total Report
Only

Bypassable
Unsafe
Inline

Missing
object-src

Wildcard
in Whitelist

Unsafe
Domain

Trivially
Bypassable
Total

Unique
CSPs

26,011 2,591
9.96%

21,947
84.38%

3,131
12.04%

5,753
22.12%

19,719
75.81%

24,637
94.72%

XSS Poli-
cies

22,425 0
0%

19,652
87.63%

2,109
9.4%

4,816
21.48%

17,754
79.17%

21,232
94.68%

Strict XSS
Policies

2,437 0
0%

0
0%

348
14.28%

0
0%

1,015
41.65%

1,244
51.05%

Table 2: Security analysis of all CSP data sets, broken down by bypass categories

script-src value Usage
self 90.95%
unsafe-inline 87.26%
unsafe-eval 81.65%
Nonce 0.92%
https: 3.64%
http: 0.85%
data: 4.04%
General wildcard 1.18%
Host w. wildcard 69.59%
Host w. path 6.92%
SHA-256 Hash 1.65%
SHA-384 Hash 0.04%
SHA-512 Hash 0.01%

Table 3: Most common features used in script-src

that do not contain trivial problems, such as the ’unsafe-

inline’ keyword or a general wildcard in the whitelist. In
total, we found 2,437 policies that match these criteria. We
observed that with our automatic policy analysis tool, we
were still able to bypass 51.05 % of these strict policies.
Although some of these bypasses were caused by missing
object-src and default-src directives, the majority of by-
passes were caused by unsafe origins within the script-src

whitelist. In the following section, we discuss our analysis
of whitelists in detail.

3.4.5 Security of whitelists
For each host within the whitelist the maintainer needs to

ensure that an attacker is not capable of injecting malicious
content, which could be included via a <script> or an <ob-

ject> tag. As described in Section 2.3.1, JSONP endpoints
and AngularJS libraries are two of many ways to achieve
this. If even just one domain exposes such endpoints, the
anti-XSS capabilities of CSP are rendered useless. Hence,
the bigger a whitelist gets, the more difficult it is to main-
tain the security of the corresponding policy.

Figure 2 depicts the number of CSP policies with a specific
number of whitelisted domains. At the median, a policy has
12 distinct whitelisted hosts. Also, there is a long tail of
policies with a large number of entries. The policy with the
longest whitelist, for example, contained 512 hosts.

By querying the index we found 194,908 domains with
JSONP endpoints and 101,330 domains hosting the Angu-
larJS library. For each policy within our data set, we then
checked whether one of the whitelisted domains was con-
tained in this list. Via this fully automated approach, we

0 10 20 30 40 50 60 70 80 90 100 110
0

500

1000

1500

2000

0%

25%

50%

75%

100%

Number of whitelisted domains

N
um

be
r

of
 C

S
P

s
w

ith
 x

 w
hi

te
lis

te
d

do
m

ai
ns

P
er

ce
nt

ag
e

of
 C

S
P

s
w

ith
 a

t m
os

t x
 w

hi
te

lis
te

d
do

m
ai

ns

Figure 2: Number of CSPs with a given number of
whitelisted domains

found that 41.65 % of all strict policies and 79.17 % of all
XSS-protecting policies have insecure whitelists (see Table
4). While these numbers are surprisingly high, they repre-
sent only the lower bound. Since many CSP bypasses are
application-dependent, it is difficult to fully automate the
discovery process. Hence, we believe that the actual num-
ber of insecure policies is even higher.

Figure 3 shows that maintaining long whitelists is infea-
sible in practice. The graph shows how bypassability corre-
lates with the length of a whitelist. While very short white-
lists are still quite safe, longer whitelists are much less se-
cure. For example, at the median of 12 entries, we managed
to bypass 94.8 % of all policies.

Table 5 lists the top 15 whitelist host entries, ordered by
the number of occurrences. The results clearly underline
the fact that maintaining whitelists is difficult. Of the top
15 domains, 12 introduce full CSP bypasses, 2 introduce
bypasses if combined with unsafe-eval, and for only 1 we
were not able to find a bypass automatically.

Figure 4 demonstrates that the top 10 domains for whitelist
bypasses are sufficient to bypass 68% of all unique CSPs.
However, even if JSONP and AngularJS endpoints were re-
moved from the top 10 domains, the remaining hosts would
still allow bypassing 66% of observed policies.

As a result of our analysis we conclude that deploying CSP
in the traditional whitelist-based model to prevent XSS is
not feasible, because in practice the script-execution restric-
tions can commonly be subverted. In Section 4 we propose

Data Set Total Unsafe domain JSONP Bypass AngularJS Bypass object-src Bypass
XSS Policies 22,425 17,754 17,381 12,617 2,915
Strict XSS Policies 2,437 1,015 968 576 77

Table 4: Number of CSPs that could be bypassed due to JSONP, AngularJS or vulnerable Flash files

0 10 20 30 40 50 60 70 80 90 100 110
0%

25%

50%

75%

100%

Number of whitelisted domains

P
er

ce
nt

 o
f C

S
P

s
w

ith
 x

 w
hi

te
lis

te
d

do
m

ai
ns

th
at

 a
re

 tr
iv

ia
lly

 b
yp

as
sa

bl
e

Figure 3: Correlation of whitelist bypasses and num-
ber of whitelisted domains

a way to solve this problem by crafting CSP policies which
replace domain whitelists with script nonces.

4. IMPROVING CSP
In practice, the vast majority of websites currently us-

ing CSP deploy a policy that offers no security protections
against XSS. Aside from obvious configuration issues (poli-
cies with ’unsafe-inline’ and those that do not specify
object-src), the primary reason for the insecurity of poli-
cies is the bypassability of script-src whitelists. On the
modern web, an approach based on whitelisting domains
(even if accompanied with paths) appears to be too inflexi-
ble to offer developers security gains and prevent XSS.

At the same time, CSP already offers more granular meth-
ods of granting trust to scripts: cryptographic nonces and
hashes. In particular, nonces allow the developer to explic-
itly annotate every trusted script (both inline and external),
while prohibiting attacker-injected scripts from executing.

In order to improve the overall security of CSPs in the
wild, we thus propose a slightly different way of writing poli-
cies. Instead of relying on whitelists, application maintain-
ers should apply a nonce-based protection approach. The
following listing depicts a whitelist-based CSP policy and a
script satisfying this policy:

Content-Security-Policy: script-src example.org

<script src="//example.org/script.js?callback=foo">
</script>

Unfortunately, the whitelist of this policy contains an un-
safe host and thus the depicted policy is insecure. The at-
tacker could abuse the JSONP endpoint by injecting a script
with the following URL: https://example.org/script?
callback=malicious_code.

www.google-analytics.com

*.googleapis.com

*.google.com

*.google-analytics.com

*.yandex.ru

*.gstatic.com

mc.yandex.ru

yandex.st

ajax.googleapis.com

*.googlesyndication.com
0

2000

4000

6000

8000

0%

25%

50%

75%

100%

N
um

be
r

of
 b

yp
as

sa
bl

e
C

S
P

s

fir
st

 x
 J

S
O

N
P

/A
ng

ul
ar

 e
nd

po
in

ts
P

er
ce

nt
ag

e
of

 C
S

P
s

by
pa

ss
ab

le
 w

ith

Figure 4: Top 10 script-src host whitelist bypasses
+ accummulated total bypasses.

In order to avoid this problem, we propose rewriting such
policies in the following way:

Content-Security-Policy:
script-src ’nonce-random123’
default-src ’none’

<script nonce="random123"
src="https://example.org/script.js?callback=foo">

</script>

By using a nonce, scripts can be whitelisted individually.
Even if an attacker is capable of finding an XSS, the nonce
value is unpredictable, so it is not possible for the attacker
to inject a valid script pointing to the JSONP endpoint.

One useful feature of CSP is that it allows for the central
enforcement of security decisions. A security team might,
for example, use CSP for enforcing a set of trusted hosts
from which scripts are allowed to be loaded, instead of rely-
ing on the goodwill of developers to not include scripts from
untrusted sites. In a single nonce-based policy, however, this
is not possible; a resource is only required to adhere to either
the whitelist or the nonce. Hence, adding a whitelist to a
nonce-based policy removes the benefits of a nonce. Interest-
ingly, browsers allow the enforcement of multiple policies. If
two policies are specified for a page, the browser ensures that
a resource adheres to both policies. Hence, this feature can
be used to get the benefits of both worlds: one nonce-based
policy can be used to whitelist individual scripts, while a
second whitelist-based policy can be used to centrally en-
force security decisions. Two policies can be transferred to
the client in the same HTTP response header by separating
them with a comma:

Count Percentage script-src value JSONP Bypass AngularJS Bypass Bypassable
8825 33.93% www.google-analytics.com yes, if unsafe-eval no yes, if unsafe-eval

7201 27.68% *.googleapis.com yes yes yes
6307 24.25% *.google-analytics.com yes, if unsafe-eval no yes, if unsafe-eval

5817 22.36% *.google.com yes no yes
5475 21.05% *.yandex.ru yes no yes
5146 19.78% *.gstatic.com no yes yes
5076 19.51% vk.com yes no yes
4728 18.18% mc.yandex.ru yes no yes
4423 17.00% yandex.st no yes yes
4189 16.10% ajax.googleapis.com yes yes yes
3829 14.72% *.googlesyndication.com yes no yes
3621 13.92% *.doubleclick.net yes no yes
3617 13.91% yastatic.net no yes yes
2959 11.38% connect.facebook.net no no no
2809 10.80% www.google.com yes no yes

Table 5: Bypassability of the 15 most common whitelisted hosts in script-src

Content-Security-Policy:
<!-- whitelist - based CSP -->
script-src https://example.org
default-src https://foobar.org,
<!-- nonce - based CSP -->
script-src ’nonce-random123’

Another problem with nonce-based policies arises, how-
ever, when new scripts are added to the page by JavaScript:
because JS libraries might not be aware of CSP and do not
know the correct CSP nonce, dynamically inserted scripts
would be blocked from executing by CSP, and parts of the
application would fail.

To address this problem and to facilitate safe policies
without relying on source lists, we propose a new source
expression for script-src: ’strict-dynamic’. ’strict-

dynamic’ is a draft CSP3 specification5 and is implemented
in Chrome and Opera. We describe the adoption process
and results in a popular production application in 4.2.

4.1 Propagating trust to dynamic scripts
The addition of the proposed ’strict-dynamic’ keyword

to a script-src source list has the following consequences:

• Dynamically added scripts are allowed to execute. In
practice, this means that script nodes created by doc-

ument.createElement(’script’) will be allowed by
the policy, regardless of whether the URL from which
they are loaded is in the script-src whitelist.

• Other script-src whitelist entries are ignored. The
browser will not execute a static or parser-inserted
script unless it is accompanied by a valid nonce.

The core observation behind this approach is that scripts
added by calling createElement() are already trusted by
the application – the developer has explicitly chosen to load
and execute them. On the other hand, an attacker who has
found a markup-injection bug will not be able to directly
call createElement() without first being able to execute
JavaScript; and the attacker cannot inject a malicious script
and execute JavaScript without knowing the proper nonce
defined in the policy.

5https://www.w3.org/TR/CSP3/#strict-dynamic-usage

This mode of using CSP offers the promise of enabling
nonce-based policies, in which the capability to execute scripts
is controlled by the developer by setting nonces on trusted
scripts, and allowing trust to propagate to subscripts by set-
ting ’strict-dynamic’.

As an example, a developer could set a policy similar to
the following:

Content-Security-Policy:
script-src ’nonce-random123’ ’strict-dynamic’;
object-src ’none’;

With such a policy, the owner would need to add nonces
to static <script> elements, but would be assured that only
these trusted scripts and their descendants would execute.
This mode of deploying CSP can significantly improve the
security of a policy and facilitate adoption.

4.2 Case study for ’strict-dynamic’
In February 2015, we adopted a whitelist-based enforcing

Content Security Policy in Google Maps Activities, a com-
plex and JavaScript-heavy web application used by 4 million
monthly active users. We started with a simple policy, in-
cluding a nonce and whole origins, but had to extend it
progressively – making 5 major changes throughout 2015 –
to cope with changes in the application, APIs and libraries,
while keeping the whitelisted paths as secure and restrictive
as possible. In order to avoid breakages in production, we
had to periodically update origins to reflect changes to the
API and the content-serving infrastructure. This led to an
explosion in size of the script-src whitelist: it grew to 15
long paths, which unfortunately still had to include at least
one JSONP endpoint, compromising the effectiveness of the
policy in terms of XSS protection.

Since noncing of scripts in the markup was already in
place, switching from a whitelist-based approach to a nonce-
only policy with ’strict-dynamic’ required no refactoring
effort. The switch also allowed us to drastically simplify the
policy, avoiding breakages, while at the same time making it
more secure and much easier to maintain – in fact, we have
not had to make changes to the policy since then.

So far, we have deployed a nonce-only policy with ’strict-

dynamic’ with very little effort on Google Photos, Cloud
Console, History, Cultural Institute and others.

4.3 Limitations
Nonce-based policies that use ’strict-dynamic’ offer the

promise of a more secure and simple-to-deploy CSP, but they
are not a panaceum for XSS. Authors will still need to pay
attention to both security and compatibility considerations:

4.3.1 Security
• Injections into the src-attribute of dynamically cre-

ated scripts: With ’strict-dynamic’, if the root cause
of an XSS bug is the injection of untrusted data into
a URL passed to the src-attribute of a script created
via the createElement() API, the bug will become
exploitable, whereas with a whitelist-based policy, the
location of the script would be restricted to sources
allowed in the policy.

• Injections into a nonced <script>: If the injection
point is inside a <script> trusted by the developer
with a nonce, an attacker will be able to execute their
malicious script without restrictions. This, however, is
still possible with traditional policies.

• Post-XSS/scriptless attacks: Even if a policy prevents
an attacker from executing arbitrary scripts in the con-
text of the application, other limited, but also damag-
ing attacks might still be possible[38, 13].

4.3.2 Compatibility
• Parser-inserted scripts: If an application uses APIs

such as document.write() to dynamically add scripts,
they will be blocked by ’strict-dynamic’ even if they
point to a whitelisted resource. Adopters will have to
refactor such code to use another API such as cre-

ateElement(), or explicitly pass a nonce to the
<script> element created with document.write().

• Inline event handlers: ’strict-dynamic’ does not elim-
inate the time-consuming process of removing markup
incompatible with CSP, such as javascript: URIs
or inline event handlers. Developers will still need to
refactor such patterns before adopting CSP.

Despite these caveats, based on an analysis of hundreds
of XSS bugs in a Google-internal data set, we expect that a
large majority of XSS will be mitigated using nonce-based
policies, and that adopting such policies is significantly eas-
ier for developers than the traditional approach based on
whitelists.

5. RELATED WORK
One of the first papers that proposed whitelisting of scripts

to thwart injection attacks was published in 2007 [16]. The
system called Browser-Enforced Embedded Policies (BEEP),
aims to restrict script inclusion at the browser level based
on a policy provided by the application owner. Similar to
BEEP, Oda et al. proposed SOMA [26], which extends the
idea of BEEP from scripts to other web resources. These
ideas were picked up by Stamm et al. who published the
initial CSP paper called “Reining in the Web with Content
Security Policy” [31]. Afterward, CSP was picked up by sev-
eral browser vendors and standardization committees. In
2011, Firefox [32] as well as Chromium [2] shipped first ex-
perimental prototypes. Subsequently, several iterations of
CSP have been standardized and shipped.

Initially, CSP got a lot of attention and many sites started
experimenting with it. However, since CSP requires large-
scale changes the adoption rate is still small. In 2014, Weiss-
bacher et al. published the first study on the adoption of
CSP [36]. In their study, they found that only 1 % out of
the top 100 web pages utilized CSP. In order to explore the
reasons behind this low adoption rate, they conducted ex-
periments by deploying CSP policies to three distinct sites.
Thereby, they found that creating an initial policy is very
difficult, because secure policies require extensive changes
to existing applications. This problem was investigated by
Doupé et al. Their system, named deDacota [7], employs au-
tomatic code rewriting in order to externalize inline scripts.
This in turn enables their system to automatically deploy a
CSP policy to the given application.

Kerschbaumer et al. aimed to solve a similar problem.
They observed that many pages utilize the insecure ’unsafe-
inline’ keyword in order to avoid the rewriting of their ap-
plications. Hence, Kerschbaumer et al. created a system
to automatically generate CSP policies via a crowd-sourced
learning approach [19]. Over time, their system learned the
legitimate scripts observed by multiple users and ensures
that only these legitimate scripts are whitelisted within the
policy, via script hashes.

Another problem in CSP was investigated by Johns. In
his paper [17], he addressed the security issues caused by
dynamically generated scripts. To counter the threat im-
posed by JSONP-like endpoints, he proposed not to whitelist
scripts based on their origin, but to whitelist scripts based
on their checksum; i.e., the script’s hash. However, this ap-
proach only works for static files, not for dynamic ones such
as JSONP. Hence, he proposed a script templating mecha-
nism that allows developers to separate dynamic data values
from static code. In this way, a script’s hash can be calcu-
lated for its static parts, while it is still capable of containing
dynamic data values.

Another paper by Hausknecht et al. investigates the ten-
sion between browser extensions and CSP [11]. The authors
conducted a large-scale study of browser extensions from the
Chrome web store and found that many extensions tamper
with the CSP of a page. Hence, they propose an endorse-
ment mechanism that allowed an extension to ask the web
page for permission before changing the security policy.

In Section 4, we present a new way of writing CSP poli-
cies. Instead of whitelists, we recommend the use of script
nonces. The idea of using nonces to prevent XSS has been
proposed before. The first paper to do so presented a system
called Noncespaces [9]. Noncespaces automatically prepends
legitimate HTML tags with a random XML namespace. If
an injection vulnerability occurs in the application, the at-
tacker is not capable of predicting this random namespace
and thus is not able to inject a valid script tag.

Another system that picked up the idea of instruction
set randomization is xJs [1]. xJS XORs all the legitimate
JavaScript code with a secret key that is shared between
the server and the browser and is refreshed for each request.
Since the browser decrypts the scripts at runtime and the at-
tacker cannot know the secret key, it is impossible to create
a valid exploit payload.

6. CONCLUSION
In this paper, we presented an assessment of the practical

security benefits of adopting CSP in real-world applications,
based on a large-scale empirical study.

We performed an in-depth analysis of the security model
of CSP and identified several cases where seemingly safe poli-
cies provided no security improvement. We investigated the
adoption of CSP on over 1 billion hostnames, and identified
1.6 million hosts using 26,011 unique policies in the Google
search index.

Unfortunately, the majority of these policies are inher-
ently insecure. Via automated checks, we were able to demon-
strate that 94.72 % of all policies can be trivially bypassed
by an attacker with a markup-injection bug. Furthermore,
we analyzed the security properties of whitelists. Thereby,
we found that 75.81 % of all policies and 41.65 % of all strict
policies contain at least one insecure host within their white-
lists. These numbers lead us to the believe that whitelists
are impractical for use within CSP policies.

Hence, we proposed a new way of writing policies. In-
stead of whitelisting entire hosts, we recommend enabling
individual scripts via an approach based on CSP nonces.

In order to ease the adoption of nonce-based CSP, we fur-
thermore proposed the ’strict-dynamic’ keyword. Once
specified within a CSP policy, this keyword enables a mode
inside the browser to inherit nonces to dynamic scripts.
Hence, if a script trusted with a nonce creates a new script at
runtime, this new script will also be considered legitimate.
Although this technique departs from the traditional host
whitelisting approach of CSP, we consider the usability im-
provements significant enough to justify its broad adoption.
Since this is designed to be an opt-in mechanism, it does not
reduce the protective capabilities of CSP by default.

We expect that that the combination of a nonce-based ap-
proach and the ’strict-dynamic’ keyword will allow devel-
opers and organizations to finally enjoy real security benefits
offered by the Content Security Policy.

7. REFERENCES
[1] E. Athanasopoulos, V. Pappas, A. Krithinakis, S. Ligouras,

E. P. Markatos, and T. Karagiannis. xjs: practical xss
prevention for web application development. In USENIX
conference on Web application development, 2010.

[2] A. Barth. Bug 54379 - add basic parser for content security
policy, 2011.

[3] A. Barth, D. Veditz, and M. West. Content security policy
level 2. W3C Working Draft, 2014.

[4] D. Bates, A. Barth, and C. Jackson. Regular expressions
considered harmful in client-side xss filters. WWW ’10.

[5] H. Bojinov, E. Bursztein, and D. Boneh. Xcs: cross channel
scripting and its impact on web applications. CCS ’09.

[6] CERT. Advisory ca-2000-02 malicious html tags embedded
in client web requests, Feb. 2000.

[7] A. Doupé, W. Cui, M. Jakubowski, M. Peinado, C. Kruegel,
and G. Vigna. dedacota: toward preventing server-side xss
via automatic code and data separation. In CCS’13.

[8] M. Foundation. Csp policy directives, 2016.

[9] M. V. Gundy and H. Chen. Noncespaces: Using
randomization to enforce information flow tracking and
thwart cross-site scripting attacks. In NDSS, 2009.

[10] R. Hansen and J. Grossman. Clickjacking, 2008.

[11] D. Hausknecht, J. Magazinius, and A. Sabelfeld. May
i?-content security policy endorsement for browser
extensions. In DIMVA’15.

[12] B. Hayak. Same origin method execution (some):
Exploiting a callback for same origin policy bypass, 2014.

[13] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and
J. Schwenk. Scriptless attacks: stealing the pie without
touching the sill. In CCS’12.

[14] M. Heiderich, J. Schwenk, T. Frosch, J. Magazinius, and
E. Z. Yang. mxss attacks: Attacking well-secured
web-applications by using innerhtml mutations. In CCS’13.

[15] E. Homakov. Using content-security-policy for evil, 2014.

[16] T. Jim, N. Swamy, and M. Hicks. Defeating script injection
attacks with browser-enforced embedded policies. In
WWW’07.

[17] M. Johns. Script-templates for the content security policy.
Journal of Information Security and Applications, 2014.

[18] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static
analysis tool for detecting web application vulnerabilities.
In S&P’06.

[19] C. Kerschbaumer, S. Stamm, and S. Brunthaler. Injecting
csp for fun and security.

[20] A. Klein. Dom based cross site scripting or xss of the third
kind. Web Application Security Consortium Articles 4,
2005.

[21] S. Lekies, B. Stock, and M. Johns. 25 million flows later:
large-scale detection of dom-based xss. In CCS’13.

[22] M. T. Louw and V. Venkatakrishnan. Blueprint: Robust
prevention of cross-site scripting attacks for existing
browsers. In Security and Privacy, 2009. IEEE, 2009.

[23] G. Maone. Noscript.

[24] MITRE. Common vulnerabilities and exposures - the
standard for information security vulnerability names.

[25] Y. Nadji, P. Saxena, and D. Song. Document structure
integrity: A robust basis for cross-site scripting defense. In
NDSS, 2009.

[26] T. Oda, G. Wurster, P. C. van Oorschot, and A. Somayaji.
Soma: Mutual approval for included content in web pages.
In CCS’08.

[27] K. Patil and B. Frederik. A measurement study of the
content security policy on real-world applications.
International Journal of Network Security, 2016.

[28] D. Ross. IE 8 xss filter architecture/implementation. Blog:
http://goo.gl/eOiPsI, 2008.

[29] P. Saxena, S. Hanna, P. Poosankam, and D. Song. Flax:
Systematic discovery of client-side validation vulnerabilities
in rich web applications. In NDSS, 2010.

[30] W. Security. Website security statistics report, May 2013.

[31] S. Stamm, B. Sterne, and G. Markham. Reining in the web
with content security policy. In WWW’10.

[32] B. Sterne. Creating a safer web with content security
policy, 2011.

[33] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns.
Precise client-side protection against dom-based cross-site
scripting. In USENIX Security, 2014.

[34] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,
and G. Vigna. Cross site scripting prevention with dynamic
data tainting and static analysis. In NDSS, 2007.

[35] G. Wassermann and Z. Su. Static detection of cross-site
scripting vulnerabilities. In ICSE’08.

[36] M. Weissbacher, T. Lauinger, and W. Robertson. Why is
csp failing? trends and challenges in csp adoption. In
RAID’14.

[37] D. Wichers. Owasp top-10 2013. OWASP Foundation,
February, 2013.

[38] M. Zalewski. Postcards from the post-xss world. Online at
http://lcamtuf.coredump.cx/postxss, 2011.

[39] M. Zalewski. The subtle / deadly problem with csp. Online
at http://goo.gl/sK4w7q, 2011.

