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Abstract

Despite their 40 year history, native executable decom-
pilers have found very limited practical application in com-
mercial projects. The success of Java decompilers is well
known, and a few decompilers perform well by recognising
patterns from specific compilers.

This paper describes the experience gained from apply-
ing a native executable decompiler, assisted by a com-
mercial disassembler and hand editing, to a real-world
Windows-based application. The clients had source code
for a prototype version of the program, and an executable
that performed better, for which the source code was not
available. The project was to recover the algorithm at the
core of the program, and if time permitted, the recovery of
other pieces of source code.

Despite the difficulties, the core algorithm was success-
fully decompiled, and a portion of the rest of the program
as well. There were surprises, including the ability to re-
cover almost all original class names, and the complete
class hierarchy.

Keywords: Reverse engineering, decompilation, source
code recovery, native executable file, experience.

1. Introduction

Decompilation researchers are regularly asked if they
can recover lost source code for various native executable
files. To date, the answer has always been the same: gen-
eral decompilation is not a mature technology, there will
be some chance with a good disassembler, and otherwise
they have no realistic alternative to rewriting. Around Au-
gust 2003, however, one potential source code recovery
project seemed much more tractable. Their application
was a Windows-based executable for speech analysis with
heavy mathematics processing, and they had source code

to a prototype version of the program. The clients were
investors who purchased the rights to the program know-
ing that it needed further development. There was no time
pressure. Importantly, they were not interested in decom-
piling the entire application; they were mainly interested in
the core algorithm, and were intending to rewrite the user
interface. The version for which they had source code com-
piled and ran, but the results were not as repeatable or as
reliable as those of the final version, for which they did not
have source code. The goal was therefore to provide source
code for a program that provided the same results as the
supplied executable program, using the prototype source
code as a base.

The clients were told that there would be no guarantees.
They would be contributing to decompilation research as
well as having their algorithm recovered. They agreed to
this; despite the potential problems, the only alternative
was to accept the lower reliability of the prototype ver-
sion. Rewriting was not an option, since the original au-
thors were not available, and the final algorithms were not
documented in any detail.

If all went well, the clients were also interested in some
aspects of the main program, for example, functions that
displayed the results in various graphs.

This is an experience paper reporting the decompilation
of a real-world Windows-based application. Such a project
is rarely attempted, and seldom reported in the literature.

The remainder of the paper is structured as follows. Sec-
tion 2 provides a background on decompilers and how the
decompiler Boomerang, which is currently under develop-
ment, was used in this project. Section 3 lists the various
problems that were encountered, and the solutions used to
overcome them. The important issue of testing the decom-
piled code is discussed in Section 4. The results and lessons
learned are summarised in Sections 5 and 6. Issues that re-
main for future work are discussed in Section 7, Section 8
asks if this project was unique, and Section 9 concludes the

paper.



2. Decompilation

A decompiler is a reverse engineering tool that takes as
input a program in the form of an executable file, and pro-
duces a high level language representation of that program
[8]. For the purposes of this paper, the executable file will
contain native machine code, although decompilers exist
for Java bytecodes [21], Visual Basic, and so on. Decom-
pilers find application in software security, maintenance,
interoperability, verification, and more. While Java decom-
pilers are largely successful, general native executable de-
compilers so far rarely generate a correct, readable, high-
level representation of the program.

Decompilation has a surprisingly long history, going
back to the early 1960s [20]. While general decompilers
are immature, pattern based decompilers [13], which are
tied to a particular compiler, can be commercially success-
ful (e.g. [9, 15]). Source Recovery [14] have a commercial
C++ decompiler for Hewlett-Packard native executables.

One of the first decompilers to use general techniques
was dcc [4, 3, 5]. Dcc is limited to the 80286 platform,
whereas REC can decompile programs compiled for a va-
riety of platforms [2]. However, source code for REC is not
publicly available.

Native decompilers are more successful when starting
from assembly language. Mycroft translated legacy BCPL
programs into an assembly-like language before decompi-
lation [12], while Ward was able to decompile mainframe
and 80186 assembler to C in an industrial setting [18, 19].

2.1. The Decompilation Process

Figure 1 shows how decompilation can bridge the gap in
the edit-compile cycle of a program.
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Figure 1: Decompilation bridges the “edit-
compile cycle” break.

The process of decompilation for this project was as fol-
lows. A commercial disassembler, IDA Pro [7], was used to
explore the executable file. Using the disassembler, various
procedures of interest could be identified. For example, the
procedures exported by the Dynamically Linked Libraries

(DLLs) were immediately of interest, and with some effort,
it was possible to find the procedure that is called when
key user interface elements were activated (toolbar buttons,
menu commands, etc.) Once a procedure was identified,
it was entered into a special symbol file; Section 3.2 has
more. It was given a suitable name, and its parameters were
named and typed. One procedure was focused on at a time.

With this preparation, the Boomerang decompiler (Sec-
tion 2.2) was run. The decompiler may have crashed for
various reasons. If this happened, it was debugged, and ei-
ther the bug was fixed, other command line switches were
passed to it, or new switches were added to the decompiler
to work around the problem.

Once some output was obtained, it was inspected. In ev-
ery case, there were obvious problems with the decompiled
output. Where practical, these were corrected by modify-
ing Boomerang. Otherwise, the output was edited to make
the code correct, or more readable. For example, certain
idiomatic sequences of instructions (Section 3.6) had to be
replaced with known equivalents in C code.

At this stage, it may have been possible to compare
the code against the corresponding prototype source code
(if any). It was often possible to rename generic vari-
able names (e.g. local6) to meaningful names (e.g.
tickSize.cx). As understanding of the code gradually
increased with this process, it was usually possible to dis-
cover the type of parameters to the current procedure. If it
was a pointer to a structure which had a close equivalent
in the prototype source code, then structure members could
be named. It was firstly named in the disassembler, then
the structure definition was copied into the symbol file, and
the decompilation of this procedure was repeated. It was
important to take structure definitions from the disassem-
bler, not from the prototype source code, because of the
likelihood that a member variable could have been added,
removed, or moved since the prototype was written. Incor-
rect information is worse than no information at all.

The process was repeated until all procedures of interest
were decompiled. At that stage, the code had to be tested
(Section 4). Often the tested code would fail, because some
variable was not initialised (in the code that had been de-
compiled to that point). Searching for where a memory
location was initialised was a frequent problem.

2.2. Boomerang

Boomerang is an attempt at a general, open source, retar-
getable decompiler of native executable files [1]. While a
compiler has a machine dependent back end, a decompiler
has a machine dependent front end. The loader and decoder
(main parts of the front end) are said to be source machine
dependent. Boomerang has several front ends, translating
the instruction stream into an intermediate representation



called Register Transfer Language (RTL). A machine inde-
pendent analysis engine transforms the RTL into high level
form, and a back end emits the results in a high level lan-
guage. Presently, there is only one back end, for the C
language. Compiler techniques such as data-flow analysis
(using the Static Single Assignment form) and control-flow
analysis are used. Boomerang is able to decompile small
test programs (e.g. calculating Fibonacci numbers), with
no user intervention, to readable, compilable C. It handles
recursion, recovers parameters and return values, switch
statements, and so on. Larger programs provide more op-
portunity for things to go wrong in a decompilation; de-
compilation effort seems to increase at least linearly with
the size of the input program. Clearly, Boomerang was not
ready for general commercial use, and is still a long way
from that stage.

3. Problems and Solutions

The following subsections discuss the problems that
emerged during the project, and what steps were taken to
either fix the problem, or work around it.

3.1. Program Size

The first problem was the sheer size of the program.
The main 32-bit executable file was 670KB in size, with
two DLLs of 138KB and 36KB. The prototype program
was written in an early version of Microsoft Visual C++
(MSVC), and compiled to a main 16-bit executable file of
about 250KB. Because of the technology differences, it is
difficult to compare how much functionality was added be-
tween the prototype and the final version. Contrast these
sizes with the test files that Boomerang was known to be
able to handle, all of which were well under 20KB.

Source code for the prototype version gave the names of
the procedures of interest. Fortunately, these happened to
be exported by the larger DLL. Procedure names are usu-
ally only available in an executable file if the procedure is
called by name, e.g. from the main program to a DLL. It
was quickly determined there were about 8 procedures of
major interest, each originally only a few pages of C source
code.

3.2. Library Code

It is important to recognise library code which has been
statically linked into the program for three main reasons:
naming the library functions improves the readability of
the decompiled code dramatically, it produces a wealth of
type information, and library code is not part of the user’s
program. The compiler (of the decompiled code) will add
library code automatically.

Library code (e.g. printf, MoveTo) can be recog-
nised using a form of pattern matching (e.g. [16], first
implemented in the dcc decompiler [4]). This is currently
missing from Boomerang; however technology similar to
this is in the disassembler IDA Pro, where it is called
FLIRT. This disassembler was used to identify the ad-
dresses of code to avoid decompiling.

Each procedure to be decompiled could have several li-
brary functions that it calls (which are not to be decom-
piled). This was one of the motivations for adding a com-
mand line option to read a symbol file. The symbol file can
contain multiple lines of the form:
0x450260 __nodecode void CStringDestruct();

In the above line, the procedure starting at 0x450260
is given a name and a return type. The _ nodecode
modifier prevents decompilation. The present inability to
specify classes (Section 7) is worked around with a naming
convention. Most calls to destructors disappear in the final
code anyway; presently they are deleted by hand.

For this project, recognising library functions did not
eliminate very much of the bulk of the code section to be
examined. The main executable was dynamically linked
with library code; “library code” (mostly jump instruc-
tions) took up less than 5% of the total code section. The
main DLL of interest was statically linked with library
code; 80% of the code section was library code. Because
of the closeness of this part of the code with the prototype
source code, it was already known which 8 or so procedures
were of major interest.

3.3. Entry Points

Decompilers can use a variety of approaches to the prob-
lem of separating code and data. For a good survey of
these, see Section 2.1 of [17]. Boomerang uses data-flow
guided Recursive Traversal: each procedure is decoded,
then those it calls, starting with the main procedure. Lo-
cating main is source machine dependent. This approach
avoids decompiling the runtime startup code, which like
library code is not part of the user’s source code, and is
also inserted automatically by the compiler. While Linux
and Solaris programs are typically dynamically linked to
library functions, Windows-based programs (particularly
older programs) often are statically linked to libraries.

Windows-based programs, while containing a top level
procedure called winmain, have hundreds of entry points,
very few of which are reachable directly from winmain.
Many of these are pointed to by operating system specific
structures such as message maps (Section 6.1). Other entry
points are callback procedures, which can be deduced from
the parameters to library functions that take such parame-
ters.

The temporary solution was to add command line



switches (—e for new entry point and —nm to not decom-
pile main)so that a single procedure could be decompiled.

3.4. Types and Structure Members

Calls to library functions are a rich source of type in-
formation, since the types of the library functions’ param-
eters (if any) and return type (if any) are published. This
was not so much of a concern with the mathematically ori-
ented DLL, since it dealt mainly with the types float,
double, and int, together with arrays and structures of
these. However, Graphical User Interface (GUI) code (such
as in the main executable) deals with many types, such
as points, bitmaps, brushes, fonts, etc. Real-world pro-
grams often contain extensive GUI code, and therefore rely
on types, much more so than the text based test programs
Boomerang had been tested with to date.

When this project started, Boomerang had very weak
support for types. By the end, there was support for named
structure members, which appear in the C output with
the . and —> operators. Type information from calls
to library functions were also propagated to other vari-
ables. As an example, an expression could now resolve to
pView->printClientRect.right. These two ma-
jor updates to Boomerang improved readability dramati-
cally, compared with the earlier * (int*) (pvView+56).
Also added during the project was the ability to paste com-
plete structure definitions from header files into the symbol
file mentioned earlier. Figure 2 shows an example from
a view class. Boomerang could now correctly type most
parameters, local variables, and global variables.

typedef struct {
CView vw;
RECT printClientRect;
int field 58[11];
CFont dispFontVert;
CFont printFontVert;
CFont dispFontHoriz;
CFont printFontHoriz;
int m_nDataRows;
int nHDiv;
int showGraph[3];

} CLongPlotLine;
Figure 2: A class definition from a symbol file.

The example class (in the original source code) was de-
rived from class CView (a built-in, abstract class). This
is implemented (by this compiler and most others) by in-
serting a complete CView structure at the start of the
CLongPlotLine structure. Hence, in the Boomerang
structure file, the line CvView wvw; is prepended to the
class’ definition. Some fields whose purpose was not dis-
covered (they were not present in the prototype source

code) retain generic names such as field_58.

3.5. Floating Point Semantics

Mathematically oriented programs deal largely with
floating point numbers. Floating point instructions were
relatively uncommon in the programs Boomerang had been
tested with to date. As a result, bugs were uncovered in the
semantic specification of some floating point instructions.
The Pentium processor has a particularly complex set of
floating point instructions; the semantics of some instruc-
tions are so complex that several current disassemblers still
output incorrect results. Early versions of Intel manuals
also have errors (e.g. the description of FSUB ST(i), ST
and FSUBR ST(i), ST [10, 11]).

The solution was found to be simple but laborious:
check and recheck the semantics of each instruction (in the
Semantics Specification Language (SSL) file) against the
published specifications. In a few of the worst cases, it was
found necessary to write an assembly language test pro-
gram. This program was single stepped with a debugger in
order to determine the exact semantics of an instruction.

3.6. Idioms

10002BA7 D9 EA fldl2e ; push logoe
10002BA9 DC 0D+ fmul ds:d690 ; push argument
10002BAF D9 CO fld st

10002BB1 D9 FC frndint

10002BB3 D9 C9 fxch st(1l)

10002BB5 D8 E1 fsub st, st(l)

10002BB7 D9 FO £f2xml

10002BBY9 D9 E8 fl1dil

10002BBB DE Cl1 faddp st(l), st
10002BBD D9 FD fscale

10002BBF DD D9 fstp st(l)

10002BC1 DD 1D+ fstp expSF ; Store result

Figure 3: Assembly language sequence resulting
from in-lining a call to the C exp(x) function.

Idiomatic instruction sequences (idioms) are sequences
whose meaning is not obvious from the meaning of the in-
dividual instructions. The MSVC compiler used several
idioms to implement certain pieces of high level code. For
example, Figure 3 shows a sequence of 11 instructions im-
plementing a call to the C library function exp (x) (raising
e=2.718... to the power of x). In this case, x is the constant
-690. 0, producing a number with the smallest magnitude
representable in a single precision floating point number.
As with natural language idioms, “you just have to know”
that this language element (here a pattern of instructions)
has an associated meaning (here “raises e to the power of
X ).



40214F B8 AB+ mov eax, 2AAAAAABh ;232%/6
402158 F7 E9 imul ecx ; edx = ecx/6
40215A 8B CA mov ecx, edx

40215C Cl1 E9+ shr ecx, 31 ; -1 if result -ve
40215F 03 D1 add edx, ecx ; adjust
402161 89 54+ mov [esp+...], edx ;store result

Figure 4: Using a multiply instruction to perform
integer division by a constant.

Another common idiom was to use a multiply instruction
to perform division by an integer constant. Figure 4 shows
code for dividing register ecx by 6, and storing the result in
a stack variable. The 32-bit multiply instruction produces
a 64-bit result, with the high word in register edx. The
adjustment implements the C requirement of truncation to-
wards zero. For this project, such idiomatic sequences were
replaced by hand.

3.7. Resources

MSVC executables store many string constants in “string
resources”. The intention is to make the strings easier to
internationalise. These are identified in the source code by
a named definition, e.g. IDS_SYNTAX_ERROR . In the
executable file, however, these appear as integer constants.
Strings are strong clues about program behaviour, so proper
representation of strings vastly improves comprehension of
the decompiled program.

The string (and other) resources are stored in a part of the
executable file separate from the code and data, and hence
is not normally disassembled or decompiled. While string
resources may be merely laborious to name and convert
to C strings for decompilation, other resources are much
more difficult to deal with. Arguably, part of the “decom-
piled output” of a GUI program is the set of dialog boxes,
bitmaps, icons, cursors, and so on that are needed to com-
pile the application. Ideally, these should be represented in
some platform independent way.

The temporary solution was to use a resource browser to
look up the strings, and manually enter them as C strings
in the decompiled output.

3.8. Object Orientation

While the DLLs were written in C, the main executable
was written in C++. The Microsoft Visual C++ compiler
was used, so the original source code was organised into
documents, views, frame windows, and the like, using sep-
arate classes for each. The operating system components
like fonts and windows were “wrapped” in classes such
as CFont and CWnd. Since Boomerang’s only target lan-
guage was C, not C++, there was a large gap between what
Boomerang could produce and what the clients would like

to see.

The temporary solution was to do a lot of hand editing.
Representation of classes will require some extensions to
Boomerang’s internal representation.

3.9. Register Calling Convention

Unix calling conventions for the Pentium processor (e.g.
Linux, Solaris/X86) do not pass procedure parameters in
registers. Some MSVC procedures use the “thiscall” call-
ing convention, where the first parameter is passed in ma-
chine register ecx. This fits particularly well with C++
class functions, which have an implicit this parameter,
hence the name.

This was worked around with the __custom tag, e.g.

0x00450B00 _ _nodecode __ custom int

CWnd_ShowWindow (
r[25]: wvoid* this,
m[r[28] + 4]: int bShow);

When ___custom is used, all parameters are preceded
by an expression representing the address of that parame-
ter and a colon. In the example above, m[r [28]+4] is
the standard location for the first argument (r [28] is the
Pentium stack pointer).

Obviously, direct support for several of the more com-
mon register calling conventions would be advantageous.
For example, it appears that Borland code commonly
passes up to 3 parameters in registers. Boomerang now
has direct support for thiscall.

3.10. Indirect Calls to Callee-pop Procedures

When using the disassembler to explore the executable
program prior to decompilation, it was good to see that
the disassembler automatically calculated offsets from the
stack pointer correctly, even after push, pop, and call
instructions. However, when there was an indirect call to
a procedure that happened to be callee-pop (i.e. the called
procedure removes the stack arguments), the disassembler
was often not able to find the number of bytes popped by
the callee, and so stack offsets past that call would be in-
correct. These errors are detected at the end of the calling
procedure, when the disassembler finds that the stack is un-
balanced. It became a routine but tedious task to hunt these
down early in the process of recovering a procedure, and
enter the stack change manually (fortunately, there is pro-
vision in IDA Pro for this).

This may be an area where Boomerang could overtake
IDA Pro in the near future. Analysis is partly written which
should allow Boomerang to discover a candidate target for
most indirect calls, and thus determine their side effect on
the value of the stack pointer.



3.11. _ftol ()

There is an issue with truncating a floating point num-
ber to an integer on the Pentium processor. There is no
single instruction to perform this operation (other than
cvttss2si, one of the SSE2 instructions, and that in-
struction does not exist in earlier Pentium chips). The stan-
dard fistp instruction (Floating point Integer STore and
Pop) converts from floating point to integer, but observes
the current rounding mode; the default is to round to near-
est. The library function _ftol (and _ftol2 in later
compilers) sets the rounding mode to truncate towards zero,
performs the conversion, then restores the rounding mode.
It happens that this is very slow on modern Pentium pro-
cessors, so this library call is to be avoided in performance
code. The problem for decompilation is that this function,
unlike most others, does not pass the floating point param-
eter on the regular integer stack, but instead on the top of
the floating point stack. Boomerang did not see a use for
the operand, and because it was expecting an operand on
the stack, stack references after this call were incorrect.

The workaround was to recognise the function as another
“helper” function. Similar functions have already been en-
countered in SPARC code; helper functions are recognised
by name and translated to custom RTL implementing their
semantics.

4. Testing

Two kinds of testing are used in forward engineering:
unit testing and functional testing. Unit testing tests a unit
of code in isolation; functional testing tests the program as
a whole. Pure unit testing is impractical in a decompilation
situation, because there will in general not be enough un-
derstanding of each unit (a newly decompiled procedure)
to write a test. However, each procedure can be tested with
known working code (either original code, or a combina-
tion of original code and new but tested code), as explained
in Section 4.1. Functional testing of a decompiled program
amounts to comparing two programs. One is the original
program; the other is the result of recompiling the decom-
piled program (the recompiled program). Comparing pro-
grams is not always straightforward, as discussed in Sec-
tion 4.2.

4.1. Using DLLs

Once all the procedures of interest were decompiled
from the mathematically oriented DLL, testing of those
procedures was simple. A new DLL was compiled, and the
original main executable was made to call the new DLL.
This was accomplished by putting the new code in a suit-
able directory, and renaming the old DLL. The new code
was compiled with debugging information.

In fact, the DLL mechanism is very handy for testing
even a single procedure. The beginning of any decompiled
procedure can be patched to make a call to a procedure
in a DLL. It was found that this operation was so tedious
and error prone that a tool was developed to automate the
process.

Ultimately, however, it was found that once a related
group of procedures was decompiled, it was compiled into
a small stand-alone test program. Parts of this program
started out with source code from the prototype code, suit-
ably modified if necessary. Gradually, the prototype code
was replaced until no prototype code (of interest) remained.

4.2. Comparing Programs

As mentioned above, final testing involved the com-
parison of the outputs from running two executable pro-
grams (the original and the recompiled programs). How-
ever, when this was done, some results were not identical to
the fifth decimal place. It was important to decide whether
this was an error in the decompilation, or merely a detail
of the final recompilation. Initially, it seemed that the latter
was true; different compilers in general do produce slightly
different results for the same floating point source code.
Howeyver, it became difficult to make that decision. For ex-
ample, the recompiled program ended up producing close
results for 19 out of 20 outputs, but the last one was very
different. This seemed to indicate a decompilation error.

It was finally decided that the only way to be sure was
to make modifications to the decompiled program, attempt-
ing to force the compiler to generate code more similar to
the original executable file, so that the results would lit-
erally compare to the last decimal place. Figure 5 shows
a fragment of original C source code which illustrates the
process.

static float KI[30];

static float* R;

double alpha;

K[0] = -R[1]/RI[O];

alpha = alpha - K[0]*K[0]*alpha;

Figure 5: Original C code fragment.

Part of the disassembly for this code fragment is shown
in Figure 6. Note that the top of the floating point stack
is stored with 80 bits of precision, while the variable K is
stored with 32 bits of precision. The multiplication is of the
80-bit version of K[0] with a 32-bit truncation of itself.
To force the compilation to generate identical results, the
decompiled output had to be modified as shown in Figure
7.

When several such changes had been made to the code,
the two programs matched completely, using several dif-
ferent input files. Therefore, the unusual behaviour of the



26BF D9 EO fchs
26C1 D9 15+ fst K
26C7 D8 0D+ fmul K

: ST = -R[1]/R[0]
: K[0] = -R[1/R[0]
; K[0] * K[0]

Figure 6: Original machine code for the same
fragment.

double templ = -R[1]/R[0];
K[0] = (float)templ;
alpha = alpha - templ * K[0] * alpha;

// For repeatability

Figure 7: Modified output for the same fragment.

twentieth output, i.e. sensitively depending on the preci-
sion of intermediate results, was in fact a facet of the orig-
inal program. It could be said that the decompiler’s job
is to reproduce the original program’s behaviour, including
unusual behaviour and bugs.

Locating the handful of program sections that needed
modification as shown above was a laborious exercise. Ul-
timately, two debuggers were run simultaneously, placing
binary breakpoints in one, and regular source code break-
points in the other. The values of key arrays were dumped
using memory windows in the debugger, comparing them
by eye. Even choosing the arrays to compare was a trial
and error process. Perhaps some day a tool could assist
with this process, keeping a map of original program vari-
ables, and their recompiled equivalents.

5. Results

The deliverable result of this project was the source
code recovered through decompilation, and the clients were
quite satisfied. Their main concern was to acquire source
code for the core algorithms in the mathematically oriented
DLL. They received maintainable code that produced the
same results, to the last decimal place.

5.1. Recovered Code

It was found that most of the differences between the
prototype program (which worked unreliably) and the pro-
gram to be decompiled (which worked reliably) were quite
minor in nature. In several places, C style malloc calls
were replaced with C++ style new calls. Several globals
were removed, necessitating a few extra parameters in sev-
eral procedures.

However, a few significant differences were found, but
not where the clients had expected them to be. The clients
were quite surprised when an outline was produced of the
algorithm that showed the essential difference in a score
calculating routine.

Portions of the GUI code were also recovered for the
clients, limited mainly by a lack of time that could pro-
vided by the authors of this paper. Recall that this was a

secondary goal, to be fulfilled only in the unexpected event
of being able to fulfil the main goal.

Approximately 1500 lines of code (some 40 procedures)
were decompiled in 415 person-hours, not including the
first week of exploration. This time included significant
software development of Boomerang itself.

In the 135KB math intensive DLL, only about 7KB (5%)
was decompilable code; the rest was library code, data, etc.
About 50% of this 7KB was decompiled, representing all
the code of interest to the clients.

Of the 670KB main executable, 316KB was decompi-
lable code, although this figure includes some code auto-
matically generated by a C++ compiler (e.g. default con-
structors). Of this, only about 24KB (8%) was decompiled.

Using techniques mentioned in Section 6.1, 78 classes
were found in the main executable, compared with 11 in
the prototype. 18 of these were dialog boxes, which are
possibly easier to rewrite than to decompile. The original
authors had obviously performed a major refactoring of the
code, and seem to have planned more changes to the look
and feel of the program.

The code that was not decompiled through lack of time
displayed the results in various graphs and tables, recorded
and played back speech, handled toolbars and timer mes-
sages, and so on. This code, while tedious and expensive
to rewrite, contained none of the undocumented core algo-
rithm.

5.2. Sample Output

Figure 8 shows some output from Boomerang before any
editing was applied. This example illustrates a variety of
things that went wrong.

The parameters are all named and typed; the names and
types came directly from the symbol file. Nearly correct
source code helped here, but was probably not essential,
since a program fragment can usually be understood given
sufficient time. For example: if a procedure draws a series
of short lines at regular intervals, it might be plotting axes.
Line 4 shows where 8 bytes of memory are allocated on
the stack, to be passed as the second parameter to MoveTo
(lines 7 and 9). The definition and use of 1ocal2 was
removed by hand.

Lines 10 and 11 show vestiges of the semantics of
push and call instructions. A refinement of Boomerang’s
dataflow should remove these automatically.

The assignment in lines 14-17 requires some explana-
tion. These lines result from a variation of the idiomatic
code shown in Figure 4. local23 * -2004318071
>> 32 can be replaced by 1ocal23/30. The sec-
ond half can be ignored (it is the correction for trun-
cation towards zero; the whole second half is divided
by 231). Making these changes and removing the com-



1 void PlotAxes (CDC* pDC, int ptOrigin_x, int ptOrigin_y, int sizePixelsPerTick_cx,
2 int sizePixelsPerTick_cy, int horizTicks, int vertTicks, int nDrawTicks,
3 int maxTickSizeX, int arg_24, int maxTickSizeY) {

4 int local2; /* m[r28{0} - 8] */ int localll; // r28{67}

5 int locall2; // vertTicks{312}

6 int local26; // r25

7 CDC_MoveTo (pDC, &local2, ptOrigin_x, ptOrigin_y);

8 CDC_LineTo(pDC, ptOrigin_x, ptOrigin_y - sizePixelsPerTick_cy * vertTicks);
9 CDC_MoveTo (pDC, &local2, ptOrigin_x, ptOrigin_y);

10 localll = locall8 - 36;

11 %pc += 6688008;

12 CDC_LineTo(pDC, sizePixelsPerTick_cx * horizTicks + ptOrigin_x, ptOrigin_y);
13 if ((*(char*) (localll + 68) & 1) != 0)

14 local26 = (/* opTruncs/u */ (int) (sizePixelsPerTick_cx *

15 -2004318071 >> 32) + sizePixelsPerTick_cx >> 4) + (/* opTruncs/u */
16 (int) (sizePixelsPerTick_cx * -2004318071 >> 32) +

17 sizePixelsPerTick_cx >> 4) / -2147483648;

18 if ((/* opTruncs/u */ (int) (sizePixelsPerTick_cx *

19 -2004318071 >> 32) + sizePixelsPerTick_cx >> 4) + (/* opTruncs/u */
20 (int) (sizePixelsPerTick_cx * -2004318071 >> 32) +

21 sizePixelsPerTick_cx >> 4) / -2147483648 < 2) {

22 local26 = 2;

23 }

24 if (local26 >= maxTickSizeX - (maxTickSizeX < 0 2?2 -1 : 0) >> 1) {

25 local26 = (maxTickSizeX - (maxTickSizeX < 0 2?2 -1 : 0) >> 1) - 1;
26 }

27 local27 = ptOrigin_y;

28 if (vertTicks >= 0) {

29 vertTicks++;

30 do {

31 locall2 = vertTicks;

32

33 vertTicks = locall2 - 1;

34 } while (locall2 != 1);

35 }

Figure 8: Sample output from Boomerang; unedited, except to fit the page.

ments and casts produces local24 = local23 / 30
+ local23 >> 4, whichis correct, and fairly readable.
(The comment emitted by the back end (/* Truncs/u
* /) is because size modification semantics should not be
present by the time code reaches the back end.)

The right hand side of this large assignment is repeated
in the if statement of lines 18-21. This is because
Booomerang applies as many forward substitutions as pos-
sible. Usually, this is a good thing; it tends to build com-
plex expressions from the semantics of individual instruc-
tions. In this case, however, it is clearly unhelpful. This
problem could be summarised as “when not to propagate”.
Some form of common subexpression elimination could
solve this problem.

Lines 24 and 25 illustrate another idiom, where a signed
integer is divided by a power of 2. A right shift instruction
can be used, but if the dividend is negative, it is first in-
cremented. This implements the C requirement that divide

operations truncate towards zero. Boomerang recognises
and corrects this idiom automatically now.

Defined constants are one feature that decompilers will
likely never be able to recover automatically. Line 13 il-
lustrates the problem. There is a logical and operation (&
operator) with the constant 1 in the if statement, which
was originally the defined constant TICKS_VERT.

The MSVC compiler implements for loops as pre and
post tested loops, as is evident in the decompilation at lines
28-35. The creation of 1locall2 as “vertTicks before
decrementing” is another side effect of the “when not to
propagate” problem. It is hoped that some high level pat-
tern matching will be able to transform the i f /do combi-
nation into the equivalent £ or loop, despite the appearance
of extra statements such as the increment at line 29.

Once these changes, plus a few changes for readability
were made, the final code of Figure 9 was obtained. The
reader may come to the conclusion that the decompiler is



1 void PlotAxes (CDC* pDC,

2 POINT ptOrigin, SIZE sizePixelsPerTick,
3 int horizTicks, int vertTicks,

4 int nDrawTicks, int maxTickSizeX,

5 int arg_24, int maxTickSizeY) {

6 int nHeight =

7 sizePixelsPerTick.cy * nVertTicks;
8 int nWidth =

9 sizePixelsPerTick.cx * nHorzTicks;
10 pDC->MoveTo (ptOrigin) ;

11 pDC->LineTo (ptOrigin.x,

12 ptOrigin.y - nHeight);

13 pDC->MoveTo (ptOrigin) ;

14 pDC->LineTo (ptOrigin.x + nWidth,

15 ptOrigin.y);

16 if (nDrawTicks & TICKS_VERT) {

17 // Draw Vertical Ticks

18 int nTickSize =

19 sizePixelsPerTick.cx / 30 +

20 sizePixelsPerTick.cx / 16;

21 if (nTickSize < 2)

22 nTickSize = 2;

23 if (nTickSize >= maxTickSizeX/2)
24 nTickSize = maxTickSizeX/2-1;
25 ...

26 for (int i = 0; 1 <= nVertTicks;
27 i++) {

28

29 }

Figure 9: Final output for the same code as Figure
8. The code has been edited slightly to fit in one
column.

not contributing much to the overall process; most of the
readability is coming from hand editing. While this is true
to a degree, it should be remembered that most required
source code changes are of the search and replace kind; the
original program’s semantics are preserved. Put another
way, while readability is (currently) mostly from hand edit-
ing, the correctness comes from the decompiler. This was
confirmed later in the project, when a few procedures were
hand decompiled, and many small errors were introduced.

5.3. Comparison with REC

Figure 10 shows output from the Reverse Engineering
Compiler (REC), for the same code fragment as Figure 8.
A command and a symbol file were created, in accordance
with the manual on the REC web page [2]. It was not
found possible to specify the library function calls (such
as MoveTo) as having the thiscall calling convention.
As aresult, the this parameter (passed in register ecx) is
assigned separately to the call.

While obviously C-like, the output from REC
is not directly usable. Push instructions become

(save)machine-register. A few instructions
such as imul and cdq are emitted in asm () form, but
not in such a way that they could be compiled and run
correctly.

The semantics of individual instructions is quite obvious.
There is little forward propagation to create more complex
expressions.

REC appears to understand that a SIZE object (e.g.
sizePixelsPerTick) occupies two words, but it does
not append “. cx” where needed (e.g. the start of line 15).
Worse, it does not seem to understand that one word af-
ter the address of sizePixelsPerTick is the second
half of the same object (hence A34, “argument at offset
0x34”, in line 20). It seems to assume that the stack pointer
never changes in a procedure (so the word at offset 0x34
from the current stack pointer is named A3 4, and the same
word after a single push instruction would be named A3 8).
Hence, the variable names all through the output are wrong.
Because of this assumption, the inability to specify library
calls as callee-pop (“Pascal” calling convention) is not an
issue.

There are more subtle problems as well. For example,
in the for loop of lines 54-63, the variable A34 should be
decremented by one each time through the loop. However,
the value is overwritten by the return value from the call to
MoveTo (which was declared as returning void).

To be fair, it should be noted that Boomerang did not do a
very good job of decompiling Windows-based code before
this project either, and was considerably modified based
on the results of decompiling code such as this example.
REC has not had that opportunity. The web page indicates
that “there are limitations on the output produced” from
Windows-based code, and “in practice, only C executable
files produce meaningful decompiled output”.

To be usable on Windows-based C++ programs, REC
would have to be enhanced considerably. Unfortunately,
the source code is not publicly available, and development
seems to have stopped with version 1.6 in September 2000.

5.4. Partial Source Code

The existence of partial source code for this project cer-
tainly sped up the process of recovering usable source code.
It provided suitable identifier names and types, as well
as occasional comments. It could be asked how much
progress would have been possible without this benefit.
With the partial source code, it was not necessary to spend a
lot of time comprehending the software. If a variable seems
to be called nTickSize, and its use is not obviously con-
tradicting this name, it can be accepted without further ef-
fort that this is a suitable name. Without the partial source
code, it is necessary to understand the relationship of the
ticks to the other lines, realise the proximity of text labels



1 PlotAxes (POINT ptOrigin,

2 SIZE sizePixelsPerTick,

3 int horizTicks, int vertTicks,

4 int nDrawTicks, int maxTickSizeX,
5 int arg_24, int maxTickSizeY)
6 {
7 POINT ptOrigin;
8 SIZE sizePixelsPerTick;

9 esp = esp - 8;

10 eax = esp;

11 (save) ebx;

12 ebx = horizTicks;

13 (save)ebp;

14 (save)sizePixelsPerTick;

15 sizePixelsPerTick = horizTicks;
16 (save)Ac;

17 Ac = nDrawTicks;

18 ecx = sizePixelsPerTick;

19 CDC_MoveTo (eax, Ac, ebx);

20 maxTickSizeY = maxTickSizeY * A34;
21 Al4d = ebx - A34;

22 ecx = sizePixelsPerTick;

23 eax = CDC_LineTo (Ac, Al4);

24 ecx = sizePixelsPerTick;

25 eax = CDC_MoveTo( & Al4, Ac, ebx);
26 ecx = A30;

27 ebp = arg_24 * ecx;

28 ecx = sizePixelsPerTick;

29 eax = CDC_LineTo(ecx + Ac, ebx);
30 if (' (A38 & 1)) |

31 eax = —-2004318071;

32 asm("imul ebp");

33 Al4 = Al4 + ebp >> 4;

34 eax = Al4d >> 31;

35 Ald = Ald + eax;

36 ecx = Al4;

37 if (ecx < 2) |

38 ecx = 2;

39 }

40 eax = A3c;

41 asm("cdg") ;

42 eax = eax — Al4d >> 1;

43 if (ecx >= eax) {

44 ecx = eax — 1;

45 }

46 Al4 = nDrawTicks;

47 Ac = Ac - ecx;

48 ebp = ebx;

49 eax = ecx + Ald4 + 1;

50 vertTicks = eax;

51 eax = A34;

52 if (eax >= 0) {

53 A34 = eax + 1;

54 do {

55 ecx = sizePixelsPerTick;
56 CDC_MoveTo( & A40, Ac, ebp);
57 Al4 = vertTicks;

58 ecx = sizePixelsPerTick;
59 eax = CDC_LineTo(Al4, ebp);
60 ecx = maxTickSizeY;

61 ebp = ebp - ecx;

62 A34 = eax;

63 } while(eax = A34 - 1);

64 }

Figure 10: Sample output from REC, unedited.

to some of them, that there are regularly spaced vertical
and horizontal lines, and so on, before it is comprehended
that these lines are in fact ticks, and that the value of this
variable sets the size of those ticks. In this context, partial
source code speeds up the process very considerably, but is
not strictly essential.

Almost everyone is familiar with graphs and ticks. How-
ever, not everyone is familiar with every facet of mathemat-
ics. Suppose a decompiler user is not familiar with the Fast
Fourier Transform (FFT). To this user, there is a lot of mys-
terious multiplication and adding going on; to a mathemati-
cian familiar with the FFT, there is a transformation from
the time domain to the frequency domain. All is not lost,
however. Either the decompiler users needs to be skilled in
the domain of operation of the program they are working
on, or they produce source code with names like “myste-
riousMultiplyAdd” which a domain expert can change to
“FFT”. Once there is source code for a program, it can be
transformed by other people or programs, and these people
do not have to be skilled at decompilation.

6. Lessons Learned

The main lesson learned is that decompilation, at least
under favourable circumstances, can successfully be used
to recover source code in a commercial setting. Some
lessons have already been mentioned, such as the impor-
tance of types in Windows-based programs (Section 3.4).

6.1. RTTI and Message Maps

One of the most pleasant surprises from this research
was the wealth of information supplied by the Run-Time
Type Identification (RTTI) system. Briefly, it is at times de-
sirable to be able to identify the type of a class at runtime,
and it may be convenient to construct a class of a given
named type at runtime. The C++ language supports the
former notion directly, e.g. typeid (p) is defined to rep-
resent the string “MyClass” if p points (at runtime) to an
object of class MyClass. The mechanism underlying run-
time support has been standardised into some Application
Binary Interfaces (ABIs) [6]. Compilers are able to imple-
ment RTTI however they like, and older compilers (such as



the one used to compile the executable to be decompiled)
do not seem to follow any standard. The implementations
seem to be quite similar, however.

Every class with virtual functions and/or RTTI has a hid-
den member which is a pointer to the Virtual Table (VT).
While most elements of that table are pointers to virtual
functions, one element points to a special object with run
time information, or to a function returning such an ob-
ject. One of the elements of that object’s class will be a
pointer to a C string with the name of the class. It hap-
pens that the three main groups of classes in the Microsoft
Foundation Classes (MFC) (documents, views, and frame
windows) are all generated at runtime using RTTI informa-
tion. This allows some of these classes to be “serialised”,
i.e. written to disk in a sensible manner. As a result, the
original names of these important classes are stored in the
executable file. Given a pointer to such a class, it is often
not very difficult to find its original class name. This is very
valuable information for a decompiler.

The Windows operating system is “message driven”. Ev-
erything from the movement of the mouse to the destroying
of a window is accomplished by sending messages. In or-
der to route messages sensibly to the various objects that
can receive them, the MSVC compiler generates structures
called message maps. In the object oriented vein, a mes-
sage is offered to a derived class first, and if it does not pro-
cess the message, the message is offered to the parent class
(in the class hierarchy) next. As a result, the message maps
contain pointers from the message map for one class to the
message map for that class’ parent. Each CObject de-
rived class has a virtual function to get the message map for
the object. The VT therefore connects the original source
code name for a class with that of its parent. As a result,
almost the entire class hierarchy is available from any pro-
gram compiled with the MSVC compiler. It is likely that a
similar situation exists for other Windows-based C++ com-
pilers as well.

It seems to be a general principle that the more dynamic
features supported by an executable file format, the more
high level information there needs to be contained in that
executable file format, and as a result, the easier it is to de-
compile the program to a form close to the original source
code. Consider Java bytecode files and .NET assemblies;
there have long been decompilers for these formats that
can usually decompile such programs to source code that
is startlingly similar to the original source code.

6.2. MoveTo and LineTo

Two common library functions for drawing lines are de-
clared as follows:

CPoint MoveTo( int x, int y );

BOOL LineTo( int x, int y );

Each takes an x and y logical coordinate; the return val-
ues are normally ignored. It came as a surprise therefore
when it was found that calls to LineTo were preceded by
the expected two push instructions (the implicit this pa-
rameter is passed in a register), but MoveTo was always
preceded by three push instructions. Further, the extra pa-
rameter was what would normally be the first one (the last
one pushed, with therefore the lowest address).

The mystery is resolved by considering the return value
of MoveTo. CPoint is a structure, returned by value. The
way that compilers return structures is part of the calling
convention. The MSVC compiler passes the address of the
returned structure as a (second) hidden parameter. Even
though almost every call to MoveTo will ignore the return
address, the compiler has to allocate 8 bytes for the return
value, and push the address of this memory every time the
function is called. The return value for LineTo is in a
register; there is no cost for ignoring its value. Figure 8 has
an example of such memory in variable local?2.

When MoveTo was designed (presumably back in ver-
sion 1.0 of Windows), the designers probably did not con-
sider the cost of returning a value (not by reference) that is
so rarely used; it contains the position last moved or drawn
to. Backwards compatibility requires that this cost has to
be borne forever more. From Boomerang’s perspective,
MoveTo is declared as follows (with two implicit parame-
ters):
void CDC_MoveTo (CDC* this, void* ret,

int x, int y);

7. Future work

Certainly, this project highlighted several aspects of
Boomerang that needed improving. The less mathemati-
cal parts of the code were very dependent on types. While
Boomerang’s handling of types is much improved as a re-
sult of this project, type inferencing is planned for the near
future. Type inferencing is the determination of the types
of variables from the semantics of instructions, combined
with sources of type information such as calls to library
functions. This will likely have a huge impact on the qual-
ity of decompiled programs.

Several problems were due to a lack of maturity in
Boomerang. Examples include the remnants of push and
call instructions. These require no new theory, merely time
and attention to detail.

The surprising ability to recover class names and the
class hierarchy makes it important that some kind of com-
piler agnostic way be found for taking advantage of Run
Time Type Identification, message maps, and the like. Such
information will likely lead to more entry points, which
could allow greater automation of the decompilation pro-
cess.



Section 3.2 highlighted the need for the ability to iden-
tify statically linked library functions. This will remove the
present need for much manual typing of symbolic informa-
tion.

The C++ language is now well enough established that
legacy applications typically are written in that language.
There is a consequent need to be able to represent class
information properly. Other features of C++ that require
some consideration include exception handling, and the
ability to remove code automatically inserted by the com-
piler (e.g. constructing and deleting certain temporary ob-
jects, destructing local objects that go out of scope, etc.)

A small number of “thunks” were found during this
project. Thunks are very short pieces of code, often only
one instruction plus a jump instruction, that are needed
for certain housekeeping functions. For example, an off-
set commonly has to be added to the this pointer, to cast
it from a pointer to one kind of object, into a pointer to an-
other type of object. It seems likely be that dealing with
such thunks correctly will become important.

8. Uniqueness

This project had a number of factors in its favour:

e There was partial source code.
e The clients were in no great rush for results.
e The clients were well resourced.

e The clients were used to dealing with programmers.

It could be questioned whether this confluence of factors is
likely to happen again, or whether this was a one of a kind
project. Only time will tell, but it is believed that these
factors are not all that uncommon. It is believed that be-
tween 3% and 5% of all source code is missing. Consid-
ering the large volume of source code that this represents,
and that until recently there has been no viable alternative
to rewriting from scratch, it seems likely that many other
commercial opportunities exist.

9. Conclusions

Critical source code for the client’s Windows-based ap-
plication was recovered. In addition, source code for sev-
eral noncritical but desirable procedures was also recov-
ered. The recovery used a combination of the commer-
cial disassembler IDA Pro, the Boomerang decompiler, and
considerable hand editing. The recovered source code was
readable, maintainable, and directly suitable for use by the
client in their rewriting of their application. The recovery
would have been much more difficult without the availabil-
ity of partial source code.

Boomerang, while found to be in need of many improve-
ments, provided the foundation for the decompilation pro-
cess. Valuable support for the names and types of structure
members was added during the project, paving the way for
full type inferencing in the near future. By the end of the
project, the authors could decompile most code by hand,
with the possible exception of the trickier branch state-
ments. Despite the considerable editing that was needed
to the decompiled output, using Boomerang was still much
safer than hand decompilation, because of the high proba-
bility of errors with a completely manual approach.

Itis believed that this project demonstrates that decompi-
lation is capable of solving future business problems. Dur-
ing the Y2K maintenance process, it was estimated that up
to 5% of all source code is missing. In most cases, the only
alternative (rewriting from scratch) is very expensive, so
that even moderately labour intensive solutions would be
economical.

Boomerang should soon have full type inferencing, and
analyses for transforming virtual function calls into class
member function calls. Perhaps this project, together with
such advances, will show that decompilation is not like
“making pigs from sausages” [19].
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