
Static Analysis of Executables to Detect Malicious Patterns∗

Mihai Christodorescu Somesh Jha
mihai@cs.wisc.edu jha@cs.wisc.edu

Computer Sciences Department
University of Wisconsin, Madison

Abstract
Malicious code detection is a crucial component of any defense mechanism. In this paper, we present a unique view-
point on malicious code detection. We regard malicious code detection as an obfuscation-deobfuscation game between
malicious code writers and researchers working on malicious code detection. Malicious code writers attempt to obfus-
cate the malicious code to subvert the malicious code detectors, such as anti-virus software. We tested the resilience of
three commercial virus scanners against code-obfuscation attacks. The results were surprising: the three commercial
virus scanners could be subverted by very simple obfuscation transformations! We present an architecture for detect-
ing malicious patterns in executables that is resilient to common obfuscation transformations. Experimental results
demonstrate the efficacy of our prototype tool, SAFE (a static analyzer for executables).

1 Introduction

In the interconnected world of computers, malicious
code has become an omnipresent and dangerous threat.
Malicious code can infiltrate hosts using a variety of
methods such as attacks against known software flaws,
hidden functionality in regular programs, and social en-
gineering. Given the devastating effect malicious code
has on our cyber infrastructure, identifying malicious
programs is an important goal. Detecting the presence
of malicious code on a given host is a crucial component
of any defense mechanism.

Malicious code is usually classified [30] according to
its propagation method and goal into the following cate-
gories:
• virusesare programs that self-replicate within a host
by attaching themselves to programs and/or documents
that become carriers of the malicious code;
• wormsself-replicate across a network;
• trojan horsesmasquerade as useful programs, but con-
tain malicious code to attack the system or leak data;
• back doorsopen the system to external entities by sub-

∗This work was supported in part by the Office of Naval Research
under contracts N00014-01-1-0796 and N00014-01-1-0708. The U.S.
Government is authorized to reproduce and distribute reprints for Gov-
ernmental purposes, notwithstanding any copyright notices affixed
thereon.

The views and conclusions contained herein are those of the authors,
and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the above
government agencies or the U.S. Government.

verting the local security policies to allow remote access
and control over a network;
• spywareis a useful software package that also trans-
mits private user data to an external entity.

Combining two or more of these malicious code cate-
gories can lead to powerful attack tools. For example, a
worm can contain a payload that installs a back door to
allow remote access. When the worm replicates to a new
system (via email or other means), the back door is in-
stalled on that system, thus providing an attacker with a
quick and easy way to gain access to a large set of hosts.
Stanifordet al. have demonstrated that worms can prop-
agate extremely quickly through a network, and thus
potentially cripple the entire cyber infrastructure [43].
In a recent outbreak, the Sapphire/SQL Slammer worm
reached the peak infection rate in about 10 minutes since
launch, doubling every 8.5 seconds [31]. Once the back-
door tool gains a large installed base, the attacker can
use the compromised hosts to launch a coordinated at-
tack, such as a distributed denial-of-service (DDoS) at-
tack [5].

In this paper, we develop a methodology for detecting
malicious patterns in executables. Although our method
is general, we have initially focused our attention on
viruses. A computer virus replicates itself by inserting
a copy of its code (theviral code) into a host program.
When a user executes the infected program, the virus
copy runs, infects more programs, and then the original
program continues to execute. To the casual user, there
is no perceived difference between the clean and the in-

fected copies of a program until the virus activates its
malicious payload.

The classic virus-detection techniques look for the
presence of a virus-specific sequence of instructions
(called avirus signature) inside the program: if the sig-
nature is found, it is highly probable that the program is
infected. For example, the Chernobyl/CIH virus is de-
tected by checking for the hexadecimal sequence [47]:

E800 0000 005B 8D4B 4251 5050
0F01 4C24 FE5B 83C3 1CFA 8B2B

This corresponds to the following IA-32 instruction se-
quence, which constitutes part of the virus body:

E8 00000000 call 0h
5B pop ebx
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax
50 push eax
0F01 4C 24 FE sidt [esp - 02h]
5B pop ebx
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

This classic detection approach is effective when the
virus code does not change significantly over time. De-
tection is also easier when viruses originate from the
same source code, with only minor modifications and
updates. Thus, a virus signature can be common to sev-
eral virus variants. For example, Chernobyl/CIH ver-
sions 1.2, 1.3, and 1.4 differ mainly in the trigger date
on which the malicious code becomes active and can be
effectively detected by scanning for a single signature,
namely the one shown above.

The virus writers and the antivirus software develop-
ers are engaged in anobfuscation-deobfuscationgame.
Virus writers try to obfuscate the “vanilla” virus so that
signatures used by the antivirus software cannot detect
these “morphed” viruses. Therefore, to detect an obfus-
cated virus, the virus scanners first must undo the ob-
fuscation transformations used by the virus writers. In
this game, virus writers are obfuscators and researchers
working on malicious code detection are deobfuscators.
A method to detect malicious code should be resistant
to common obfuscation transformations. This paper in-
troduces such a method. The main contributions of this
paper include:
• The obfuscation-deobfuscation game and attacks
on commercial virus scanners
We view malicious code detection as an obfuscation-
deobfuscation game between the virus writers and the
researchers working to detect malicious code. Back-

ground on some common obfuscation techniques used
by virus writers is given in Section 3. We also have de-
veloped an obfuscator for executables. Surprisingly, the
three commercial virus scanners we considered could be
easily thwarted by simple obfuscation transformations
(Section 4). For example, in some cases the Norton an-
tivirus scanner could not even detect insertions ofnop
instructions.
• A general architecture for detecting malicious pat-
terns in executables
We introduce a general architecture for detecting mali-
cious patterns in executables. An overview of the archi-
tecture and its novel features is given in Section 5. Ex-
ternal predicates and uninterpreted symbols are two im-
portant elements in our architecture. External predicates
are used to summarize results of various static analyses,
such as points-to and live-range analysis. We allow these
external predicates to be referred in the abstraction pat-
terns that describe the malicious code. Moreover, we
allow uninterpreted symbols in patterns, which makes
the method resistant to renaming, a common obfusca-
tion transformation. Two key components of our archi-
tecture,the program annotatorand the malicious code
detector, are described in Sections 6 and 7 respectively.
• Prototype for x86 executables
We have implemented a prototype for detecting mali-
cious patterns in x86 executables. The tool is called a
static analyzer for executablesor SAFE. We have suc-
cessfully tried SAFE on multiple viruses; for brevity we
report on our experience with four specific viruses. Ex-
perimental results (Section 8) demonstrate the efficacy
of SAFE. There are several interesting directions we in-
tend to pursue as future work, which are summarized in
Section 9.
• Extensibility of analysis
SAFE depends heavily on static analysis techniques. As
a result, the precision of the tool directly depends on the
static analysis techniques that are integrated into it. In
other words,SAFE is as good as the static analysis tech-
niques it is built upon. For example, if SAFE uses the
result of points-to analysis, it will be able to track values
across memory references. In the absence of a points-
to analyzer, SAFE makes the conservative assumption
that a memory reference can access any memory loca-
tion (i.e., everything points to everything). We have de-
signed SAFE so that various static analysis techniques
can be readily integrated into it. Several simple static
analysis techniques are already implemented in SAFE.

2 Related Work
2.1 Theoretical Discussion

The theoretical limits of malicious code detection
(specifically of virus detection) have been the focus of
many researchers. Cohen [10] and Chess-White [9]

showed that in general the problem of virus detec-
tion is undecidable. Similarly, several important static
analysis problems are undecidable or computationally
hard [28, 35].

However, the problem considered in this paper is
slightly different than the one considered by Cohen [10]
and Chess-White [9]. Assume that we are given a vanilla
virusV which contains a malicious sequence of instruc-
tionsσ. Next we are given an obfuscated versionO(V)
of the virus. The problem is to find whether there ex-
ists a sequence of instructionsσ′ in O(V) which is “se-
mantically equivalent” toσ. A recent result by Vadhan
et al. [3] proves that in general program obfuscation is
impossible. This leads us to believe that a computation-
ally bounded adversary will not be able to obfuscate a
virus to completely hide its malicious behavior. We will
further explore these theoretical issues in the future.

2.2 Other Detection Techniques

Our work is closely related to previous results on
static analysis techniques for verifying security proper-
ties of software [1, 4, 8, 7, 25, 29]. In a larger con-
text, our work is similar to existing research on soft-
ware verification [2, 13]. However, there are several im-
portant differences. First, viewing malicious code de-
tection as an obfuscation-deobfuscation game is unique.
The obfuscation-deobfuscation viewpoint lead us to ex-
plore obfuscation attacks upon commercial virus scan-
ners. Second, to our knowledge, all existing work on
static analysis techniques for verifying security proper-
ties analyze source code. On the other hand, our analy-
sis technique works on executables. In certain contexts,
such as virus detection, source code is not available. Fi-
nally, we believe that using uninterpreted variables in the
specification of the malicious code is unique (Section
6.2).

Currie et al. looked at the problem of automatically
checking the equivalence of DSP routines in the context
of verifying the correctness of optimizing transforma-
tions [15]. Their approach is similar to ours, but they
impose a set of simplifying assumptions for their simula-
tion tool to execute with reasonable performance. Feng
and Hu took this approach one step further by using a
theorem prover to determine when to unroll loops [19].
In both cases the scope of the problem is limited to
VLIW or DSP code and there is limited support for user-
specified analyses. Our work is applied to x86 (IA-32)
assembly and can take full advantage of static analyses
available to the user of our SAFE tool. Necula adopts
a similar approach based on comparing a transformed
code sequence against the original code sequence in the
setting of verifying the correctness of the GNU C com-
piler [38]. Using knowledge of the transformations per-
formed by the compiler, equivalence between the com-

piler input and the compiler output is proven using a
simulation relation. In our work, we require noa pri-
ori knowledge of the obfuscation transformations per-
formed, as it would be unrealistic to expect such infor-
mation in the presence of malicious code.

We plan to enhance our framework by using the ideas
from existing work on type systems for assembly code.
We are currently investigating Morrisettet al.’s Typed
Assembly Language[32, 33]. We apply a simple type
system (Section 6) to the binaries we analyze by manu-
ally inserting the type annotations. We are unaware of
a compiler that can produce Typed Assembly Language,
and thus we plan to support external type annotations to
enhance the power of our static analysis.

Dynamic monitoring can also be used for malicious
code detection. Cohen [10] and Chess-White [9] pro-
pose a virus detection model that executes code in a
sandbox. Another approach rewrites the binary to in-
troduce checks driven by an enforceable security pol-
icy [17] (known as theinline reference monitoror the
IRM approach). We believe static analysis can be used to
improve the efficiency of dynamic analysis techniques,
e.g., static analysis can remove redundant checks in the
IRM framework. We construct our models for exe-
cutables similar to the work done in specification-based
monitoring [21, 46], and apply our detection algorithm
in a context-insensitive fashion. Other research used
context-sensitive analysis by employing push-down sys-
tems (PDSs). Analyses described in [7, 25] use the
model checking algorithms for pushdown systems [18]
to verify security properties of programs. The data struc-
tures used in interprocedural slicing [23], interprocedu-
ral DFA [40], and Boolean programs [2] are hierarchi-
cally structured graphs and can be translated to push-
down systems.

2.3 Other Obfuscators

While deciding on the initial obfuscation techniques
to focus on, we were influenced by several existing tools.
Mistfall (by z0mbie) is a library for binary obfuscation,
specifically written to blend malicious code into a host
program [49]. It can encrypt, morph, and blend the virus
code into the host program. Our binary obfuscator is
very similar to Mistfall. Unfortunately, we could not
successfully morph binaries using Mistfall, so we could
not perform a direct comparison between our obfusca-
tor and Mistfall. Burneye(by TESO) is a Linux binary
encapsulation tool. Burneye encrypts a binary (possibly
multiple times), and packages it into a new binary with
an extraction tool [45]. In this paper, we have not con-
sidered encryption based obfuscation techniques. In the
future, we will incorporate encryption based obfuscation
techniques into our tool, by incorporating or extending
existing libraries.

3 Background on Obfuscating Viruses
To detect obfuscated viruses, antivirus software have

become more complex. This section discusses some
common obfuscation transformations used by virus writ-
ers and how antivirus software have historically dealt
with obfuscated viruses.

A polymorphic virususes multiple techniques to pre-
vent signature matching. First, the virus code is en-
crypted, and only a small in-clear routine is designed
to decrypt the code before running the virus. When
the polymorphic virus replicates itself by infecting an-
other program, it encrypts the virus body with a newly-
generated key, and it changes the decryption routine by
generating new code for it. To obfuscate the decryption
routine, several transformations are applied to it. These
include: nop -insertion, code transposition (changing
the order of instructions and placing jump instructions to
maintain the original semantics), and register reassign-
ment (permuting the register allocation). These trans-
formations effectively change the virus signature (Fig-
ure 1), inhibiting effective signature scanning by an an-
tivirus tool.

The obfuscated code in Figure 1 will behave in the
same manner as before since thenop instruction has
no effect other than incrementing the program counter1.
However the signature has changed. Analysis can de-
tect simple obfuscations, likenop -insertion, by using
regular expressions instead of fixed signatures. To catch
nop insertions, the signature should allow for any num-
ber ofnops at instruction boundaries (Figure 2). In fact,
most modern antivirus software use regular expressions
as virus signatures.

Antivirus software deals with polymorphic viruses
by performing heuristic analyses of the code (such as
checking only certain program locations for virus code,
as most polymorphic viruses attach themselves only at
the beginning or end of the executable binary [37]), and
even emulating the program in a sandbox to catch the
virus in action [36]. The emulation technique is effec-
tive because at some point during the execution of the
infected program, the virus body appears decrypted in
main memory, ready for execution; the detection comes
down to frequently scanning the in-memory image of
the program for virus signatures while the program exe-
cutes.

Metamorphic virusesattempt to evade heuristic de-
tection techniques by using more complex obfuscations.
When they replicate, these viruses change their code in
a variety of ways, such as code transposition, substi-
tution of equivalent instruction sequences, and register
reassignment [44, 51]. Furthermore, they can “weave”
the virus code into the host program, making detec-
tion by traditional heuristics almost impossible since the
virus code is mixed with program code and the virus en-

try point is no longer at the beginning of the program
(these are designated asentry point obscuring (EPO)
viruses [26]).

As virus writers employ more complex obfusca-
tion techniques, heuristic virus-detection techniques are
bound to fail. Therefore,there is need to perform a
deeper analysis of malicious code based upon more so-
phisticated static-analysis techniques. In other words,
inspection of the code to detect malicious patterns
should use structures that are closer to the semantics of
the code, as purely syntactic techniques, such as regular
expression matching, are no longer adequate.

3.1 The Suite of Viruses

We have analyzed multiple viruses using our tool, and
discuss four of them in this paper. Descriptions of these
viruses are given below.

3.1.1 Detailed Description of the Viruses

Chernobyl (CIH)
According to the Symantec Antivirus Reseach Cen-
ter (SARC),Chernobyl/CIH is a virus that infects 32-
bit Windows 95/98/NT executable files [41]. When
a user executes an infected program under Windows
95/98/ME, the virus becomes resident in memory. Once
the virus is resident, CIH infects other files when they
are accessed. Infected files may have the same size as
the original files because of CIH’s unique mode of in-
fection: the virus searches for empty, unused spaces in
the file2. Next it breaks itself up into smaller pieces and
inserts its code into these unused spaces. Chernobyl has
two different payloads: the first one overwrites the hard
disk with random data, starting at the beginning of the
disk (sector 0) using an infinite loop. The second pay-
load tries to cause permanent damage to the computer
by corrupting the Flash BIOS.
zombie-6.b
The z0mbie-6.bvirus includes an interesting feature –
the polymorphic engine hides every piece of the virus,
and the virus code is added to the infected file as a chain
of differently-sized routines, making standard signature
detection techniques almost useless.
f0sf0r0
The f0sf0r0virus uses a polymorphic engine combined
with an EPO technique to hide its entry point. According
to Kaspersky Labs [27], when an infected file is run and
the virus code gains control, it searches for portable ex-
ecutable files in the system directories and infects them.
While infecting, the virus encrypts itself with a polymor-
phic loop and writes a result to the end of the file. To gain
control when the infected file is run, the virus does not
modify the program’s start address, but instead writes a
“ jmp 〈virus entry 〉” instruction into the middle of
the file.

Original code Obfuscated code
E8 00000000 call 0h E8 00000000 call 0h
5B pop ebx 5B pop ebx
8D 4B 42 lea ecx, [ebx + 42h] 8D 4B 42 lea ecx, [ebx + 45h]
51 push ecx 90 nop
50 push eax 51 push ecx
50 push eax 50 push eax
0F01 4C 24 FE sidt [esp - 02h] 50 push eax
5B pop ebx 90 nop
83 C3 1C add ebx, 1Ch 0F01 4C 24 FE sidt [esp - 02h]
FA cli 5B pop ebx
8B 2B mov ebp, [ebx] 83 C3 1C add ebx, 1Ch

90 nop
FA cli
8B 2B mov ebp, [ebx]

Signature New signature
E800 0000 005B 8D4B 4251 5050 E800 0000 005B 8D4B 42 90 5150
0F01 4C24 FE5B 83C3 1CFA 8B2B 5090 0F01 4C24 FE5B 83C3 1C90

FA8B 2B

Figure 1: Original code and obfuscated code from Chernobyl/CIH, and their corresponding signatures. Newly added
instructions are highlighted.

E800 0000 00(90)* 5B(90)*
8D4B 42(90)* 51(90)* 50(90)*
50(90)* 0F01 4C24 FE(90)*
5B(90)* 83C3 1C(90)* FA(90)*
8B2B

Figure 2: Extended signature to catchnop -insertion.

Hare
Finally, the Hare virus infects the bootloader sectors
of floppy disks and hard drives, as well as executable
programs. When the payload is triggered, the virus
overwrites random sectors on the hard disk, making the
data inaccessible. The virus spreads by polymorphically
changing its decryption routine and encrypting its main
body.

The Hare and Chernobyl/CIH viruses are well known
in the antivirus community, with their presence in the
wild peaking in 1996 and 1998, respectively. In spite
of this, we discovered thatcurrent commercial virus
scanners could not detect slightly obfuscated versions
of these viruses.

4 Obfuscation Attacks on Commercial
Virus Scanners

We tested three commercial virus scanners against
several common obfuscation transformations. To test the
resilience of commercial virus scanners to common ob-
fuscation transformations, we have developed an obfus-
cator for binaries. Our obfuscator supports four com-
mon obfuscation transformations: dead-code insertion,
code transposition, register reassignment, and instruc-
tion substitution. While there are other generic obfus-

cation techniques [11, 12], those described here seem
to be preferred by malicious code writers, possibly be-
cause implementing them is easy and they add little to
the memory footprint.

4.1 Common Obfuscation Transformations

4.1.1 Dead-Code Insertion

Also known astrash insertion, dead-code insertion
adds code to a program without modifying its behav-
ior. Inserting a sequence ofnop instructions is the sim-
plest example. More interesting obfuscations involve
constructing challenging code sequences that modify the
program state, only to restore it immediately.

Some code sequences are designed to fool antivirus
software that solely rely on signature matching as their
detection mechanism. Other code sequences are com-
plicated enough to make automatic analysis very time-
consuming, if not impossible. For example, passing val-
ues through memory rather than registers or the stack
requires accurate pointer analysis to recover values. The
example shown in Figure 3 should clarify this. The code
marked by (*) can be easily eliminated by automated
analysis. On the other hand, the second and third inser-
tions, marked by (**), do cancel out but the analysis is
more complex. Our obfuscator supports dead-code in-
sertion.

Not all dead-code sequence can be detected and elim-
inated, as this problem reduces to program equivalence
(i.e., is this code sequence equivalent to an empty pro-
gram?), which is undecidable. We believe that many
common dead-code sequences can be detected and elim-
inated with acceptable performance. To quote the docu-

mentation of the RPME virus permutation engine [50],

[T]rash [does not make the] program more
complex [...]. If [the] detecting algorithm will
be written such as I think, then there is no
difference between NOP and more complex
trash.

Our detection tool, SAFE, identifies several kinds of
such dead-code segments.

4.1.2 Code Transposition
Code transposition shuffles the instructions so that the

order in the binary image is different from the execu-
tion order, or from the order of instructions assumed in
the signature used by the antivirus software. To achieve
the first variation, we randomly reorder the instructions
and insert unconditional branches orjumpsto restore the
original control-flow. The second variation swaps in-
structions if they are not interdependent, similar to com-
piler code generation, but with the different goal of ran-
domizing the instruction stream.

The two versions of this obfuscation technique differ
in their complexity. The code transposition technique
based upon unconditional branches is relatively easy to
implement. The second technique that interchanges in-
dependent instructions is more complicated because the
independence of instructions must be ascertained. On
the analysis side, code transposition can complicate mat-
ters only for a human. Most automatic analysis tools (in-
cluding ours) use an intermediate representation, such
as the control flow graph (CFG) or the program depen-
dence graph (PDG) [23], that is not sensitive to super-
fluous changes in control flow. Note that an optimizer
acts as a deobfuscator in this case by finding the unnec-
essary unconditional branches and removing them from
the program code. Currently, our obfuscator supports
only code transposition based upon inserting uncondi-
tional branches.

4.1.3 Register Reassignment
The register reassignment transformation replaces us-

age of one register with another in a specific live range.
This technique exchanges register names and has no
other effect on program behavior. For example, if reg-
ister ebx is dead throughout a given live range of the
registereax , it can replaceeax in that live range. In
certain cases, register reassignment requires insertion of
prologue and epilogue code around the live range to re-
store the state of various registers. Our binary obfuscator
supports this code transformation.

The purpose of this transformation is to subvert the
antivirus software analyses that rely upon signature-
matching. There is no real obfuscatory value gained in
this process. Conceptually, the deobfuscation challenge

is equally complex before or after the register reassign-
ment.

4.1.4 Instruction Substitution
This obfuscation technique uses a dictionary of equiv-

alent instruction sequences to replace one instruction
sequence with another. Since this transformation re-
lies upon human knowledge of equivalent instructions, it
poses the toughest challenge for automatic detection of
malicious code. The IA-32 instruction set is especially
rich, and provides several ways of performing the same
operation. Coupled with several architecturally ambiva-
lent features (e.g., a memory-based stack that can be ac-
cessed both as a stack using dedicated instructions and
as a memory area using standard memory operations),
the IA-32 assembly language provides ample opportu-
nity for instruction substitution.

To handle obfuscation based upon instruction substi-
tution, an analysis tool must maintain a dictionary of
equivalent instruction sequences, similar to the dictio-
nary used to generate them. This is not a comprehen-
sive solution, but it can cope with the common cases. In
the case of IA-32, the problem can be slightly simplified
by using a simple intermediate language that “unwinds”
the complex operations corresponding to each IA-32 in-
struction. In some cases, a theorem prover such as Sim-
plify [16] or PVS [39] can also be used to prove that two
sequences of instructions are equivalent.

4.2 Testing Commercial Antivirus Tools
We tested three commercial virus scanners using ob-

fuscated versions of the four viruses described earlier.
The results were quite surprising:a combination of
nop -insertion and code transposition was enough to
create obfuscated versions of the viruses that the com-
mercial virus scanners could not detect. Moreover, the
Norton antivirus software could not detect an obfus-
cated version of the Chernobyl virus using justnop -
insertions. SAFE was resistant to the two obfuscation
transformations. The results are summarized in Table 1.
A ✓ indicates that the antivirus software detected the
virus. A ✕ means that the software did not detect the
virus. Note that unobfuscated versions of all four viruses
were detected by all the tools.

5 Architecture
This section gives an overview of the architecture of

SAFE(Figure 4). Subsequent sections provide detailed
descriptions of the major components of SAFE.

To detect malicious patterns in executables, we build
an abstract representation of the malicious code (here
a virus). The abstract representation is the “general-
ization” of the malicious code, e.g., it incorporates ob-
fuscation transformations, such as superfluous changes

Code obfuscated through Code obfuscated through Code obfuscated through
Original code dead-code insertion code transposition instruction substitution
call 0h call 0h call 0h call 0h
pop ebx pop ebx pop ebx pop ebx
lea ecx, [ebx+42h] lea ecx, [ebx+42h] jmp S2 lea ecx, [ebx+42h]
push ecx nop (*) S3: push eax sub esp, 03h
push eax nop (*) push eax sidt [esp - 02h]
push eax push ecx sidt [esp - 02h] add [esp], 1Ch
sidt [esp - 02h] push eax jmp S4 mov ebx, [esp]
pop ebx inc eax (**) add ebx, 1Ch inc esp
add ebx, 1Ch push eax jmp S6 cli
cli dec [esp - 0h] (**) S2: lea ecx, [ebx+42h] mov ebp, [ebx]
mov ebp, [ebx] dec eax (**) push ecx

sidt [esp - 02h] jmp S3
pop ebx S4: pop ebx
add ebx, 1Ch cli
cli jmp S5
mov ebp, [ebx] S5: mov ebp, [ebx]

Figure 3: Examples of obfuscation through dead-code insertion, code transposition, and instruction substitution. Newly added
instructions are highlighted.

Norton® McAfee® Command®
SAFEAntivirus VirusScan Antivirus

7.0 6.01 4.61.2

Chernobyl
original ✓ ✓ ✓ ✓

obfuscated ✕[1] ✕[1,2] ✕[1,2] ✓

z0mbie-6.b
original ✓ ✓ ✓ ✓

obfuscated ✕[1,2] ✕[1,2] ✕[1,2] ✓

f0sf0r0
original ✓ ✓ ✓ ✓

obfuscated ✕[1,2] ✕[1,2] ✕[1,2] ✓

Hare
original ✓ ✓ ✓ ✓

obfuscated ✕[1,2] ✕[1,2] ✕[1,2] ✓

Obfuscations considered: [1] = nop-insertion (a form of dead-code insertion)
[2] = code transposition

Table 1: Results of testing various virus scanners on obfuscated viruses.

in control flow and register reassignments. Similarly,
one must construct an abstract representation of the ex-
ecutable in which we are trying to find a malicious pat-
tern. Once the generalization of the malicious code and
the abstract representation of the executable are created,
we can then detect the malicious code in the executable.
We now describe each component of SAFE.
Generalizing the malicious code: Building the mali-
cious code automaton
The malicious code is generalized into an automaton
with uninterpreted symbols. Uninterpreted symbols
(Section 6.2) provide a generic way of representing data
dependencies between variables without specifically re-
ferring to the storage location of each variable.
Pattern-definition loader
This component takes a library ofabstraction patterns
and creates an internal representation. These abstraction
patterns are used as alphabet symbols by the malicious
code automaton.
The executable loader
This component transforms the executable into an in-
ternal representation, here the collection of control
flow graphs (CFGs), one for each program procedure.

The executable loader (Figure 5) uses two off-the-shelf
components,IDA Pro and CodeSurfer. IDA Pro (by
DataRescue [42]) is a commercial interactive disassem-
bler. CodeSurfer(by GrammaTech, Inc. [24]) is a
program-understanding tool that performs a variety of
static analyses. CodeSurfer provides an API for ac-
cess to various structures, such as the CFGs and the call
graph, and to results of a variety of static analyses, such
as points-to analysis. In collaboration with GrammaT-
ech, we have developed a connector that transforms IDA
Pro internal structures into an intermediate form that
CodeSurfer can parse.
The annotator
This component inputs a CFG from the executable and
the set of abstraction patterns and produces an anno-
tated CFG, the abstract representation of a program pro-
cedure. The annotated CFG includes information that
indicates where a specific abstraction pattern was found
in the executable. The annotator runs for each proce-
dure in the program, transforming each CFG. Section 6
describes the annotator in detail.

Binary
Executable

Annotated

CFG

Definitions
Pattern

Static Analyzer for Executables (SAFE)

Malicious

Automaton
Code

for the Patterns
Intermediate Form

Executable
CFG for the

trace found in program)
Yes (with malicious code

No

Loader
Executable

Pattern

Loader
Definition

Annotator

Detector

Figure 4: Architecture of the static analyzer for executables (SAFE).

IDA Pro

Connector

CodeSurfer

Executable Loader:

Figure 5: Implementation of executable loader
module.

The detector
This component computes whether the malicious code
(represented by the malicious code automaton) appears
in the abstract representation of the executable (created
by the annotator). This component uses an algorithm
based upon language containment and unification. De-
tails can be found in Section 7.

Throughout the rest of the paper, the malicious code
fragment shown in Figure 6 is used as a running exam-
ple. This code fragment was extracted from the Cher-
nobyl virus version 1.4.

To obtain the obfuscated code fragment depicted (Fig-
ure 7), we applied the following obfuscation transforma-
tions: dead-code insertion, code transposition, and reg-
ister reassignment. Incidentally, the three commercial
antivirus software (Norton, McAfee, and Command) de-
tected the original code fragment shown. However, the
obfuscated version was not detected by any of the three
commercial antivirus software.

6 Program Annotator

This section describes the program annotator in detail
and the data structures and static analysis concepts used
in the detection algorithm. The program annotator in-
puts the CFG of the executable and a set of abstraction
patterns and outputs an annotated CFG. The annotated
CFG associates with each noden in the CFG a set of
patterns that match the program at the point correspond-
ing to the noden. The precise syntax for an abstraction

Original code
WVCTF:

mov eax, dr1
mov ebx, [eax+10h]
mov edi, [eax]

LOWVCTF:
pop ecx
jecxz SFMM
mov esi, ecx
mov eax, 0d601h
pop edx
pop ecx
call edi
jmp LOWVCTF

SFMM:
pop ebx
pop eax
stc
pushf

Figure 6: Original code fragment from Chernobyl virus
version 1.4.

pattern and the semantics of matching are provided later
in the section.

Figure 8 shows the CFG and a simple annotated CFG
corresponding to the obfuscated code from Figure 7.
Note that one node in the annotated CFG can corre-
spond to several nodes in the original CFG. For example,
the nodes annotated with “IrrelevantInstr” corresponds
to one or morenop instructions.

The annotations that appear in Figure 8 seem intuitive,
but formulating them within a static-analysis frame-
work requires formal definitions. We enhance the SAFE
framework with a type system for x86 based on the type-
state system described in [48]. However, other type sys-
tems designed for assembly languages, such asTyped
Assembly Language[32, 33], could be used in the SAFE
framework. Definitions, patterns, and the matching pro-
cedure are described in Sections 6.1, 6.2 and 6.3 respec-
tively.

Obfuscated code
WVCTF:

mov eax, dr1
jmp Loc1

Loc2:
mov edi, [eax]

LOWVCTF:
pop ecx
jecxz SFMM
nop
mov esi, ecx
nop
nop
mov eax, 0d601h
jmp Loc3

Loc1:
mov ebx, [eax+10h]
jmp Loc2

Loc3:
pop edx
pop ecx
nop
call edi
jmp LOWVCTF

SFMM:
pop ebx
pop eax
push eax
pop eax
stc
pushf

Figure 7: Obfuscated version based upon code in Fig-
ure 6.

6.1 Basic Definitions

This section provides the formal definitions used in
the rest of the paper.
Program Points
An instruction I is a function application,I : τ1 ×
· · · × τk → τ . While the type system does not preclude
higher-order functions or function composition, it is im-
portant to note that most assembly languages (including
x86) do not support these concepts. AprogramP is a
sequence of instructions〈I1, . . . , IN 〉. During program
execution, the instructions are processed in the sequen-
tial order they appear in the program, with the exception
of control-flow instructions that can change the sequen-
tial execution order. The index of the instruction in the
program sequence is called aprogram point(or program
counter), denoted by the functionpc : {I1, . . . , IN} →
[1, . . . , N], and defined aspc(Ij)

def
= j, ∀ 1 ≤ j ≤

N . The set of all program points for programP is

ProgramPoints(P)
def
= {1, . . . , N}. Thepc function

provides a total ordering over the set of program instruc-
tions.

Control Flow Graph
A basic blockB is a maximal sequence of instructions
〈Il, . . . , Im〉 that contains at most one control-flow in-
struction, which must appear at the end. Thus, the ex-
ecution within a basic block is by definition sequential.
Let V be the set of basic blocks for a programP , and
E ⊆ V × V × {T, F} be the set of control flow tran-
sitions between basic blocks. Each edge is marked with
eitherT or F corresponding to the condition (true or
false) on which that edge is followed. Unconditional
jumps have outgoing edges always marked withT . The
directed graphCFG(P) = 〈V,E〉 is called thecontrol
flow graph.
Predicates
Predicates are the mechanism by which we incorporate
results of various static analyses such as live range and
points-to analysis. These predicates can be used in the
definition of abstraction patterns. Table 2 lists predicates
that are currently available in our system. For example,
code between two program pointsp1 andp2 can be veri-
fied as dead-code (Section 4.1.1) by checking that for ev-
ery variablem that is live in the program range[p1, p2],
its value at pointp2 is the same as its value at pointp1.
The change inm’s value between two program points
p1 and p2 is denoted byDelta(m, p1, p2) and can be
implemented using polyhedral analysis [14].

Explanations of the static analysis predicates shown
in Table 2 are standard and can be found in a compiler
textbook (such as [34]).
Instructions and Data Types
The type constructors build upon simple integer types
(listed below as theground class of types), and allow
for array types (with two variations: the pointer-to-start-
of-array type and the pointer-to-middle-of-array type),
structures and unions, pointers, and functions. Two spe-
cial types⊥(n) and>(n) complete the type system lat-
tice.⊥(n) and>(n) represent types that are stored onn
bits, with⊥(n) being the least specific (“any”) type and
>(n) being the most specific type. Table 3 describes the
constructors allowed in our type system.

The typeµ(l, τ , i) represents the type of a field mem-
ber of a structure. The field has a typeτ (independent of
the types of all other fields in the same structure), an off-
set i that uniquely determines the location of the field
within the structure, and a labell that identifies the field
within the structure (in some cases this label might be
undefined).

Physical subtyping takes into account the layout of
values in memory [6, 48]. If a typeτ is aphysical sub-
typeof τ ′ (denoted it byτ ≤ τ ′), then the memory lay-
out of a value of typeτ ′ is a prefix of the memory layout
of a value of typeτ . We will not describe the rules of
physical subtyping here as we refer the reader to Xu’s
thesis [48] for a detailed account of the typestate system

mov eax, dr1

jmp n_11

mov ebx, [eax+10h]

mov edi, [eax]

Loop: pop ecx

jecxz n_18

nop

(F)

pop ebx

(T)

mov esi, ecx

nop

nop

mov eax, 0d601h

jmp n_13

pop edx

jmp n_02

pop ecx

nop

call edi

jmp Loop

pop eax

push eax

pop eax

stc

pushf

mov eax, dr1

jmp n_11

Assign(eax,dr1)

mov ebx, [eax+10h]

IrrelevantJump

jmp n_02

Assign(ebx,[eax+10h])

IrrelevantJump

mov edi, [eax]Assign(edi,[eax])

Loop: pop ecxLoop: Pop(ecx)

jecxz n_18If(ecx==0)

nop

(F)

pop ebx

(T)

IrrelevantInstr

mov esi, ecxAssign(esi,ecx)

nopIrrelevantInstr

nop

mov eax, 0d601hAssign(eax,0d601h)

jmp n_13IrrelevantJump

pop edxPop(edx)

pop ecxPop(ecx)

nopIrrelevantInstr

call ediIndirectCall(edi)

jmp LoopGoTo(Loop)

Pop(ebx)

pop eaxPop(eax)

push eaxIrrelevantInstr

pop eax

stcAssign(Carry,1)

pushfPush(flags)

Figure 8: Control flow graph of obfuscated code fragment, and annotations.

Dominators(B) the set of basic blocks that dominate the basic blockB
PostDominators(B) the set of basic blocks that are dominated by the basic blockB
Pred(B) the set of basic blocks that immediately precedeB
Succ(B) the set of basic blocks that immediately followB
First(B) the first instruction of the basic blockB
Last(B) the last instruction of the basic blockB

Previous(I)

{ ⋃
B′∈Pred(BI) Last(B

′) if I = First(BI)

I ′ if BI = 〈. . . , I ′, I, . . . 〉

Next(I)

{ ⋃
B′∈Succ(BI) First(B

′) if I = Last(BI)

I ′ if BI = 〈. . . , I, I ′, . . . 〉
Kills(p, a) true if the instruction at program pointp kills variablea
Uses(p, a) true if the instruction at program pointp uses variablea
Alias(p, x, y) true if variablex is an alias fory at program pointp
LiveRangeStart(p, a) the set of program points that start thea’s live range that includesp
LiveRangeEnd(p, a) the set of program points that end thea’s live range that includesp
Delta(p,m, n) the difference between integer variablesm andn at program pointp
Delta(m, p1, p2) the change inm’s value between program pointsp1 andp2

PointsTo(p, x, a) true if variablex points to location ofa at program pointp

Table 2: Examples of static analysis predicates.

τ :: ground Ground types
| τ [n] Pointer to the base of an array of typeτ and of sizen
| τ (n] Pointer into the middle of an array of typeτ and of sizen
| τ ptr Pointer toτ
| s{µ1, . . . , µk} Structure (product of types ofµi)
| u{µ1, . . . , µk} Union
| τ1 × · · · × τk → τ Function
| >(n) Top type ofn bits
| ⊥(n) Bottom type ofn bits (type “any” of n bits)

µ :: (l, τ , i) Member labeledl of typeτ at offseti

ground :: int(g: s: v) | uint(g: s: v) | . . .
Table 3: A simple type system.

(including subtyping rules).
The typeint(g: s: v) represents a signed integer,

and it covers a wide variety of values within storage lo-
cations. It is parametrized using three parameters as fol-
lows: g represents the number of highest bits that are
ignored,s is the number of middle bits that represent the
sign, andv is the number of lowest bits that represent
the value. Thus the typeint(g: s: v) uses a total of
g + s+ v bits.

dg+s+v . . . ds+v+1︸ ︷︷ ︸
ignored

ds+v . . . dv+1︸ ︷︷ ︸
sign

dv . . . d1︸ ︷︷ ︸
value

The typeuint(g: s: v) represents an unsigned integer,
and it is just a variation ofint(g: s: v) , with the mid-
dles sign bits always set to zero.

The notationint(g: s: v) allows for the separation
of the data and storage location type. In most assem-
bly languages, it is possible to use a storage location
larger than that required by the data type stored in it. For
example, if a byte is stored right-aligned in a (32-bit)
word, its associated type isint(24: 1: 7) . This means

that an instruction such asxor on least significant byte
within 32-bit wordwill preserve the leftmost24 bits of
the 32-bit word, even though the instruction addresses
the memory on 32-bit word boundary.

This separation between data and storage location
raises the issue of alignment information, i.e., most com-
puter systems require or prefer data to be at a memory
address aligned to the data size. For example, 32-bit
integers should be aligned on 4-byte boundaries, with
the drawback that accessing an unaligned 32-bit integer
leads to either a slowdown (due to several aligned mem-
ory accesses) or an exception that requires handling in
software. Presently, we do not use alignment informa-
tion as it does not seem to provide a significant covert
way of changing the program flow.

Figure 9 shows the types for operands in a section of
code from the Chernobyl/CIH virus. Table 4 illustrates
the type system for Intel IA-32 architecture. There are
other IA-32 data types that are not covered in Table 4, in-
cluding bit strings, byte strings, 64- and 128-bit packed
SIMD types, and BCD and packed BCD formats. The

Code Type
call 0h
pop ebx ebx : ⊥(32)
lea ecx, [ebx + 42h] ecx : ⊥(32) ,

ebx : ptr ⊥(32)
push ecx ecx : ⊥(32)
push eax eax : ⊥(32)
push eax eax : ⊥(32)
sidt [esp - 02h]
pop ebx eax : ⊥(32)
add ebx, 1Ch ebx : int(0:1:31)
cli
mov ebp, [ebx] ebp : ⊥(32) ,

ebx : ptr ⊥(32)

Figure 9: Inferred types from Chernobyl/CIH virus code.

IA-32 logical address is a combination of a 16-bit seg-
ment selector and a 32-bit segment offset, thus its type
is the cross product of a 16-bit unsigned integer and a
32-bit pointer.

6.2 Abstraction Patterns

An abstraction patternΓ is a3-tuple(V,O,C), where
V is a list of typed variables,O is a sequence of instruc-
tions, andC is a boolean expression combining one or
more static analysis predicates over program points. For-
mally, a patternΓ = (V,O,C) is a 3-tuple defined as
follows:

V = { x1 : τ1, . . . , xk : τk }
O = 〈 I(v1, . . . , vm) | I : τ1 × · · · × τm → τ 〉
C = boolean expression involving static

analysis predicates and logical operators

An instruction from the sequenceO has a number
of arguments(vi)i≥0, where each argument is either a
literal value or a free variablexj . We write Γ(x1 :
τ1, . . . , xk : τk) to denote the patternΓ = (V,O,C)
with free variablesx1, . . . , xk. An example of a pattern
is shown below.

Γ(X : int(0 : 1 : 31)) =
({X : int(0 : 1 : 31) },
〈 p1 : “pop X” ,
p2 : “add X, 03AFh” 〉,

p1 ∈ LiveRangeStart(p2, X))

This pattern represents two instructions that pop a reg-
isterX off the stack and then add a constant value to
it (0x03AF). Note the use of uninterpreted symbolX
in the pattern. Use of the uninterpreted symbols in a
pattern allows it to match multiple sequences of instruc-
tions, e.g., the patterns shown above matches any instan-
tiation of the pattern whereX is assigned a specific reg-
ister. The typeint(0 : 1 : 31) of X represents an integer
with 31 bits of storage and one sign bit.

We define a binding B as a set of pairs
[variable v, value x]. Formally, a bindingB is de-
fined as{ [x, v] | x ∈ V, x : τ, v : τ ′, τ ≤ τ ′ }. If a pair
[x, v] occurs in a bindingB, then we writeB(x) = v.
Two bindingsB1 andB2 are said to becompatibleif
they do not bind the same variable to different values:

Compatible(B1,B2)
def
=

∀ x ∈ V.([x, y1] ∈ B1 ∧ [x, y2] ∈ B2)
⇒ (y1 = y2)

The union of two compatible bindingsB1 andB2 in-
cludes all the pairs from both bindings. For incompatible
bindings, the union operation returns an empty binding.

B1 ∪ B2
def
=


{ [x, vx] : [x, vx] ∈ B1 ∨ [x, vx] ∈ B2 }

if Compatible(B1,B2)

∅ if ¬ Compatible(B1,B2)

When matching an abstraction pattern against a se-
quence of instructions, we use unification to bind the
free variables ofΓ to actual values. The function

Unify (〈. . . , opi(xi,1, . . . , xi,ni), . . . 〉1≤i≤m, Γ)

returns a “most general” bindingB if the instruction se-
quence〈. . . , opi(xi,1, . . . , xi,ni), . . . 〉1≤i≤m can be uni-
fied with the sequence of instructionsO specified in
the patternΓ. If the two instruction sequences can-
not be unified,Unify returnsfalse. Definitions and al-
gorithms related to unification are standard and can be
found in [20].3

6.3 Annotator Operation

The annotator associates a set of matching patterns
with each node in the CFG. The annotated CFG of a
program procedureP with respect to a set of patterns
Σ is denoted byPΣ. Assume that a noden in the
CFG corresponds to the program pointp and the in-
struction atp is Ip. The annotator attempts to match the
(possibly interprocedural) instruction sequenceS(n) =
〈. . . , P revious2(Ip), P revious(Ip), Ip〉 with the pat-
terns in the setΣ = {Γ1, . . . ,Γm}. The CFG noden
is then labeled with the list of pairs of patterns and bind-
ings that satisfy the following condition:

Annotation(n) = { [Γ,B] : Γ ∈ {Γ1, . . . ,Γm} ∧
B = Unify(S(n),Γ) }

If Unify(S(n),Γ) returnsfalse (because unification
is not possible), then the noden is not annotated with
[Γ,B]. Note that a patternΓ might appear several
times (albeit with different bindings) inAnnotation(n).
However, the pair[Γ,B] is unique in the annotation set
of a given node.

IA-32 Datatype Type Expression

byte unsigned int uint(0:0:8)
word unsigned int uint(0:0:16)
doubleword unsigned int uint(0:0:32)
quadword unsigned int uint(0:0:64)
double quadword unsigned int uint(0:0:128)
byte signed int int(0:1:7)
word signed int int(0:1:15)
doubleword signed int int(0:1:31)
quadword signed int int(0:1:63)
double quadword signed int int(0:1:127)
single precision float float(0:1:31)
double precision float float(0:1:63)
double extended precision float float(0:1:79)
near pointer ⊥(32)
far pointer (logical address) uint(0:0:16) × uint(0:0:32) →⊥(48)
eax, ebx, ecx, edx ⊥(32)
esi, edi, ebp, esp ⊥(32)
eip int(0:1:31)
cs, ds, ss, es, fs, gs ⊥(16)
ax, bx, cx, dx ⊥(16)
al, bl, cl, dl ⊥(8)
ah, bh, ch, dh ⊥(8)

Table 4: IA-32 datatypes and their corresponding expression in the type system from Table 3.

7 Detector
The detector takes as its inputs an annotated CFG for

an executable program procedure and a malicious code
automaton. If the malicious pattern described by the ma-
licious code automaton is also found in the annotated
CFG, the detector returns the sequence of instructions
exhibiting the pattern. The detector returnsno if the ma-
licious pattern cannot be found in the annotated CFG.

7.1 The Malicious-Code Automaton

Intuitively, the malicious code automaton is a gener-
alization of the vanilla virus, i.e., the malicious code au-
tomaton also represents obfuscated strains of the virus.
Formally, amalicious code automaton(or MCA) A is a
6-tuple(V,Σ, S, δ, S0, F), where
• V = {v1 : τ1, . . . , vk : τk} is aset of typed variables,
• Σ = {Γ1, . . . ,Γn} is a finite alphabetof patterns
parametrized by variables fromV , for 1 ≤ i ≤ n,
Pi = (Vi, Oi, Ci) whereVi ⊆ V ,
• S is a finite set ofstates,
• δ : S × Σ→ 2S is atransition function,
• S0 ⊆ S is a non-empty set ofinitial states,
• F ⊆ S is a non-empty set offinal states.

An MCA is a generalization of an ordinary finite-state
automaton in which the alphabets are a finite set of pat-
terns defined over a set of typed variables. Given a bind-
ingB for the variablesV = {v1, . . . , vk}, the finite-state
automaton obtained by substitutingB(vi) for vi for all
1 ≤ i ≤ k in A is denoted byB(A). Note thatB(A) is
a “vanilla” finite-state automaton. We explain this using

an example. Consider the MCAA shown in Figure 10
with V = {A,B,C,D}. The automata obtained from
A corresponding to the bindingsB1 andB2 are shown in
Figure 10. The uninterpreted variables in the MCA were
introduced to handle obfuscation transformations based
on register reassignment. The malicious code automaton
corresponding to the code fragment shown in Figure 6
(from the Chernobyl virus) is depicted in Figure 11.

S0

S1

 Move(A,B)

S2

 Move(C,0d601h)

S3

 Pop(D)

S4

 Pop(B)

mov esi, ecx
mov eax, 0d601h
pop edx
pop ecx
B1 = { [A, esi],

[B, ecx],
[C, eax],
[D, edx] }

mov esi, eax
mov ebx, 0d601h
pop ecx
pop eax
B2 = { [A, esi],

[B, eax],
[C, ebx],
[D, ecx] }

Figure 10: Malicious code automaton for a Chernobyl virus
code fragment, and instantiations with different register as-
signments, shown with their respective bindings.

S0 IrrelevantJump()

S1

 Move(A,dr1)

 IrrelevantJump()

S2

 Move(B,[A+10h])

 IrrelevantJump()

S3

 Move(E,[A])

 IrrelevantJump()

S4

 Pop(C)

 IrrelevantJump()

S5

 JumpIfECXIsZero()

S11

 JumpIfECXIsZero()

 IrrelevantJump()

S6

 Move(F,C)

 IrrelevantJump()

S7

 Move(A,0d601h)

 IrrelevantJump()

S8

 Pop(D)

 IrrelevantJump()

S9

 Pop(C)

 IrrelevantJump()

S10

 IndirectCall(E)

 Jump()

 IrrelevantJump()

 IrrelevantJump()

S12

 Pop(B)

 IrrelevantJump()

S13

 Pop(A)

 IrrelevantJump()

S14

 SetCarryFlag()

 IrrelevantJump()

S15

 PushEFLAGS()

 IrrelevantJump()

Figure 11: Malicious code automaton corresponding to code frag-
ment from Figure 6.

7.2 Detector Operation
The detector takes as its inputs the annotated CFGPΣ

of a program procedureP and a malicious code automa-
ton MCA A = (V,Σ, S, δ, S0, F). Note that the set of
patternsΣ is used both to construct the annotated CFG
and as the alphabet of the malicious code automaton. In-
tuitively, the detector determines whether there exists a
malicious pattern that occurs inA andPΣ. We formal-
ize this intuitive notion. The annotated CFGPΣ is a
finite-state automaton where nodes are states, edges rep-
resent transitions, the node corresponding to the entry
point is the initial state, and every node is a final state.
Our detector determines whether the following language
is empty:

L(PΣ) ∩

(⋃
B∈BAll

L(B(A))

)

In the expression given above,L(PΣ) is the language
corresponding to the annotated CFG andBAll is the set

of all bindings to the variables in the setV . In other
words, the detector determines whether there exists a
bindingB such that the intersection of the languagesPΣ

andB(A) is non-empty.
Our detection algorithm is very similar to the clas-

sic algorithm for determining whether the intersection
of two regular languages is non-empty [22]. However,
due to the presence of variables, we must perform unifi-
cation during the algorithm. Our algorithm (Figure 12)
combines the classic algorithm for computing the inter-
section of two regular languages with unification. We
have implemented the algorithm as a data-flow analysis.
• For each noden of the annotated CFGPA we associate
pre and post listsLpren andLpostn respectively. Each ele-
ment of a list is a pair[s,B], wheres is the state of the
MCA A andB is the binding of variables. Intuitively, if
[s,B] ∈ Lpren , then it is possible forA with the binding
B (i.e. forB(A)) to be in states just before noden.
• Initial condition: Initially, both lists associated with
all nodes except the start noden0 are empty. The pre list

associated with the start node is the list of all pairs[s, ∅],
wheres is an initial state of the MCAA, and the post
list associated with the start node is empty.
• The do-until loop: The do-until loop updates the pre
and post lists of all the nodes. At the end of the loop, the
worklist WS contains the set of nodes whose pre or post
information has changed. The loop executes until the pre
and post information associated with the nodes does not
change, and a fixed point is reached. The join operation
that computesLprei takes the list of state-binding pairs
from all of theLpostj sets for program points preceding
i and copies them toLprei only if there are no repeated
states. In case of repeated states, the conflicting pairs
are merged into a single pair only if the bindings are
compatible. If the bindings are incompatible, both pairs
are thrown out.
• Diagnostic feedback:Suppose our algorithm returns
a non-empty set, meaning a malicious pattern is com-
mon to the annotated CFGPΣ and MCA A. In this
case, we return the sequence of instructions in the ex-
ecutable corresponding to the malicious pattern. This is
achieved by keeping an additional structure with the al-
gorithm. Every time the post list for a noden is updated
by taking a transition inA (see the statement14 in Fig-
ure 12), we store the predecessor of the added state, i.e.,
if [δ(s,Γ),Bs∪B] is added toLpostn , then we add an edge
from s to δ(s,Γ) (along with the bindingBs ∪ B) in the
associated structure. Suppose we detect thatLpostn con-
tains a state[s,Bs], wheres is a final state of the MCA
A. Then we traceback the associated structure froms
until we reach an initial state ofA (storing the instruc-
tions occurring along the way).

8 Experimental Data

The three major goals of our experiments were to
measure the execution time of our tool and find the
false positive and negative rates. We constructed ten
obfuscated versions of the four viruses. LetVi,k (for
1 ≤ i ≤ 4 and1 ≤ k ≤ 10) denote thek-th version of
the i-th virus. The obfuscated versions were created by
varying the obfuscation parameters, e.g., number of nops
and inserted jumps. For thei-th virus,Vi,1 denoted the
“vanilla” or the unobfuscated version of the virus. Let
M1,M2,M3 andM4 be the malicious code automata
corresponding to the four viruses.

8.1 Testing Environment

The testing environment consisted of a Microsoft
Windows 2000 machine. The hardware configuration
included an AMD Athlon 1 GHz processor and 1 GB
of RAM. We used CodeSurfer version 1.5 patchlevel 0
and IDA Pro version 4.1.7.600.

8.2 Testing on Malicious Code
We will describe the testing with respect to the first

virus. The testing for the other viruses is analogous.
First, we ran SAFE on the10 versions of the first
virus V1,1, . . . , V1,10 with malicious code automaton
M1. This experiment gave us the false negative rate, i.e.,
the pattern corresponding toM1 should be detected in
all versions of the virus.

Annotator Detector
avg. (std. dev.) avg. (std. dev.)

Chernobyl 1.444 s (0.497 s) 0.535 s (0.043 s)
z0mbie-6.b 4.600 s (2.059 s) 1.149 s (0.041 s)
f0sf0r0 4.900 s (2.844 s) 0.923 s (0.192 s)
Hare 9.142 s (1.551 s) 1.604 s (0.104 s)

Table 5: SAFE performance when checking obfuscated viru-
ses for false negatives.

Next, we executed SAFE on the versions of the
viruses Vi,k with the malicious code automatonMj

(wherei 6= j). This helped us find the false positive
rate of SAFE.

In our experiments, we found that SAFE’s false pos-
itive and negative rate were0. We also measured
the execution times for each run. Since IDA Pro and
CodeSurfer were not implemented by us, we did not
measure the execution times for these components. We
report the average and standard deviation of the execu-
tion times in Tables 5 and 6.

Annotator Detector
avg. (std. dev.) avg. (std. dev.)

z0mbie-6.b 3.400 s (1.428 s) 1.400 s (0.420 s)
f0sf0r0 4.900 s (1.136 s) 0.840 s (0.082 s)
Hare 1.000 s (0.000 s) 0.220 s (0.019 s)

Table 6: SAFE performance when checking obfuscated viru-
ses for false positives against the Chernobyl/CIH virus.

8.3 Testing on Benign Code
We considered a suite of benign programs (see Sec-

tion 8.3.1 for descriptions). For each benign program,
we executed SAFE on the malicious code automaton
corresponding to the four viruses. Our detector reported
“negative” in each case, i.e., the false positive rate is0.
The average and variance of the execution times are re-
ported in Table 7. As can be seen from the results, for
certain cases the execution times are unacceptably large.
We will address performance enhancements to SAFE in
the future.

8.3.1 Descriptions of the Benign Executables
• tiffdither.exe is a command line utility in thecygwin
toolkit version 1.3.70, a UNIX environment for Win-
dows developed by Red Hat.

Input: A list of patterns Σ = {P1, . . . , Pr}, a malicious code automatonA =
(V,Σ, S, δ, S0, F), and an annotated CFGPΣ =< N,E >.
Output: true if the program is likely infected,false otherwise.
MALICIOUSCODECHECKING(Σ,A, PΣ)
(1) Lpren0

← { [s, ∅] | s ∈ S0 }, wheren0 ∈ N is the entry node ofPΣ

(2) foreachn ∈ N \ {n0} doLpren ← ∅
(3) foreachn ∈ N doLpostn ← ∅
(4) WS ← ∅
(5) do
(6) WS old ←WS
(7) WS ← ∅
(8) foreachn ∈ N // update pre information
(9) if Lpren 6=

⋃
m∈Previous(n) L

post
m

(10) Lpren ←
⋃
m∈Previous(n) L

post
m

(11) WS ←WS ∪ {n}
(12) foreachn ∈ N // update post information
(13) NewLpostn ← ∅
(14) foreach [s,Bs] ∈ Lpren

(15) foreach [Γ,B] ∈ Annotation(n) // follow a transition
(16) ∧ Compatible(Bs,B)
(17) add [δ(s,Γ), Bs ∪ B] to NewLpostn

(18) if Lpostn 6= NewLpostn

(19) Lpostn ← NewLpostn

(20) WS ←WS ∪ {n}
(21) until WS = ∅
(22) return ∃ n ∈ N . ∃ [s,Bs] ∈ Lpostn . s ∈ F

Figure 12: Algorithm to check a program model against a malicious code specification.

• winmine.exe is the Microsoft Windows 2000 Mine-
sweeper game, version 5.0.2135.1.
• spyxx.exe is a Microsoft Visual Studio 6.0 Spy++ util-
ity, that allows the querying of properties and monitoring
of messages of Windows applications. The executable
we tested was marked as version 6.0.8168.0.
• QuickTimePlayer.exe is part of the Apple QuickTime
media player, version 5.0.2.15.

9 Conclusion and Future Work
We presented a unique view of malicious code detec-

tion as a obfuscation-deobfuscation game. We used this
viewpoint to explore obfuscation attacks on commercial
virus scanners, and found that three popular virus scan-
ners were susceptible to these attacks. We presented a
static analysis framework for detecting malicious code
patterns in executables. Based upon our framework, we
have implemented SAFE, a static analyzer for executa-
bles that detects malicious patterns in executables and is
resilient to common obfuscation transformations.

For future work, we will investigate the use of the-
orem provers during the construction of the annotated
CFG. For instance, SLAM [2] uses the theorem prover
Simplify [16] for predicate abstraction of C programs.
Our detection algorithm is context insensitive and does

not track the calling context of the executable. We will
investigate the use of the push-down systems, which
would make our algorithm context sensitive. However,
the existing PDS formalism does not allow uninterpreted
variables, so it will have to be extended to be used in our
context.

Availability
The SAFE prototype remains in development and we
are not distributing it at this time. Please contact Mi-
hai Christodorescu,mihai@cs.wisc.edu , for further
updates.

Acknowledgments
We would like to thank Thomas Reps and Jonathon Gif-
fin for providing us with invaluable comments on ear-
lier drafts of the paper. We would also like to thank the
members and collaborators of the Wisconsin Safety An-
alyzer (WiSA,http://www.cs.wisc.edu/wisa) re-
search group for their insightful feedback and support
throughout the development of this work.

References
[1] K. Ashcraft and D. Engler. Using programmer-written

compiler extensions to catch security holes. In2002

mailto:mihai@cs.wisc.edu
http://www.cs.wisc.edu/wisa

Executable .text Procedure Annotator Detector
size size count avg. (std. dev.) avg. (std. dev.)

tiffdither.exe 9,216 B 6,656 B 29 6.333 s (0.471 s) 1.030 s (0.043 s)
winmine.exe 96,528 B 12,120 B 85 15.667 s (1.700 s) 2.283 s (0.131 s)
spyxx.exe 499,768 B 307,200 B 1,765 193.667 s (11.557 s) 30.917 s (6.625 s)
QuickTimePlayer.exe 1,043,968 B 499,712 B 4,767 799.333 s (5.437 s) 160.580 s (4.455 s)

Table 7: SAFE performance in seconds when checking clean programs against the Chernobyl/CIH virus.

IEEE Symposium on Security and Privacy (Oakland’02),
pages 143–159, May 2002.

[2] T. Ball and S.K. Rajamani. Automatically validating tem-
poral safety properties of interfaces. InProceedings of
the 8th International SPIN Workshop on Model Checking
of Software (SPIN’01), volume 2057 ofLecture Notes in
Computer Science. Springer-Verlag, 2001.

[3] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich,
A. Sahai, S. Vadhan, and K. Yang. On the (im)possibility
of obfuscating programs. InAdvances in Cryptology
(CRYPTO’01), volume 2139 ofLecture Notes in Com-
puter Science, pages 1 – 18. Springer-Verlag, August
2001.

[4] M. Bishop and M. Dilger. Checking for race conditions
in file accesses.Computing Systems, 9(2), 1996.

[5] CERT Coordination Center. Denial of service attacks,
2001. http://www.cert.org/tech_tips/denial_

of_service.html (Last accessed: 3 February 2003).

[6] S. Chandra and T.W. Reps. Physical type checking
for C. In ACM SIGPLAN - SIGSOFT Workshop on
Program Analysis For Software Tools and Engineering
(PASTE’99), pages 66 – 75. ACM Press, September
1999.

[7] H. Chen and D. Wagner. MOPS: an infrastructure for
examining security properties of software. In9th ACM
Conference on Computer and Communications Security
(CCS’02). ACM Press, November 2002.

[8] B.V. Chess. Improving computer security using extend-
ing static checking. In2002 IEEE Symposium on Security
and Privacy (Oakland’02), pages 160–173, May 2002.

[9] D.M. Chess and S.R. White. An undetectable computer
virus. InProceedings of Virus Bulletin Conference, 2000.

[10] F. Cohen. Computer viruses: Theory and experiments.
Computers and Security, 6:22 – 35, 1987.

[11] C. Collberg, C. Thomborson, and D. Low. A taxonomy of
obfuscating transformations. Technical Report 148, De-
partment of Computer Sciences, The University of Auck-
land, July 1997.

[12] C. Collberg, C. Thomborson, and D. Low. Manufac-
turing cheap, resilient, and stealthy opaque constructs.
In Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL’98). ACM Press, January 1998.

[13] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,
S. Laubach, and H. Zheng. Bandera: Extracting finite-
state models from Java source code. InProceedings
of the 22nd International Conference on Software Engi-
neering (ICSE’00), pages 439–448. ACM Press, 2000.

[14] P. Cousot and N. Halbwachs. Automatic discovery of lin-
ear restraints among variables of a program. InProceed-
ings of the 5th ACM Symposium on Principles of Pro-
gramming Languages (POPL’78), pages 84 – 96. ACM
Press, January 1978.

[15] D. W. Currie, A. J. Hu, and S. Rajan. Automatic formal
verification of dsp software. InProceedings of the 37th
ACM IEEE Conference on Design Automation (DAC’00),
pages 130–135. ACM Press, 2000.

[16] D. Detlefs, G. Nelson, and J. Saxe. The simplify the-
orem prover. http://research.compaq.com/SRC/

esc/simplify.html .

[17] U. Erlingsson and F. B. Schneider. IRM enforcement of
Java stack inspection. In2000 IEEE Symposium on Se-
curity and Privacy (Oakland’00), pages 246–255, May
2000.

[18] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon.
Efficient algorithms for model checking pushdown sys-
tems. InProceedings of the 12th International Confer-
ence on Computer-Aided Verification (CAV’00), volume
1855 ofLecture Notes in Computer Science, pages 232–
247. Springer-Verlag, July 2000.

[19] X. Feng and Alan J. Hu. Automatic formal verification
for scheduled VLIW code. InProceedings of the Joint
Conference on Languages, Compilers and Tools for Em-
bedded Systems - Software and Compilers for Embed-
ded Systems (LCTES/SCOPES’02), pages 85–92. ACM
Press, 2002.

[20] M. Fitting. First-Order Logic and Automated Theorem
Proving. Springer-Verlag, 1996.

[21] J. T. Giffin, S. Jha, and B. P. Miller. Detecting manip-
ulated remote call streams. InProceedings of the 11th
USENIX Security Symposium (Security’02). USENIX
Association, August 2002.

[22] J.E. Hopcroft, R. Motwani, and J.D. Ullman.Introduc-
tion to Automata Theory, Languages, and Computation.
Addison Wesley, 2001.

[23] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slic-
ing using dependence graphs.ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 12(1):26–
60, January 1990.

[24] GrammaTech Inc. Codesurfer – code analysis and
understanding tool. http://www.grammatech.com/

products/codesurfer/index.html (Last accessed: 3
February 2003).

[25] T. Jensen, D.L. Metayer, and T. Thorn. Verification of
control flow based security properties. In1999 IEEE

http://www.cert.org/tech_tips/denial_of_service.html
http://www.cert.org/tech_tips/denial_of_service.html
http://research.compaq.com/SRC/esc/simplify.html
http://research.compaq.com/SRC/esc/simplify.html
http://www.grammatech.com/products/codesurfer/index.html
http://www.grammatech.com/products/codesurfer/index.html

Symposium on Security and Privacy (Oakland’99), May
1999.

[26] E. Kaspersky. Virus List Encyclopaedia, chap-
ter Ways of Infection: Viruses without an En-
try Point. Kaspersky Labs, 2002. http:

//www.viruslist.com/eng/viruslistbooks.

asp?id=32&key=0000100007000020000100003

(Last accessed: 3 February 2003).

[27] Kaspersky Labs. http://www.kasperskylabs.com

(Last accessed: 3 February 2003).

[28] W. Landi. Undecidability of static analysis.ACM
Letters on Programming Languages and Systems (LO-
PLAS), 1(4):323 – 337, December 1992.

[29] R.W. Lo, K.N. Levitt, and R.A. Olsson. MCF: A mali-
cious code filter.Computers & Society, 14(6):541–566,
1995.

[30] G. McGraw and G. Morrisett. Attacking malicious code:
Report to the Infosec research council.IEEE Software,
17(5):33 – 41, September/October 2000.

[31] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Stan-
iford, and N. Weaver. The spread of the Sapphire/S-
lammer worm. http://www.caida.org/outreach/

papers/2003/sapphire/sapphire.html (Last
accessed: 3 February 2003).

[32] G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-
based Typed Assembly Language. In Xavier Leroy and
Atsushi Ohori, editors,1998 Workshop on Types in Com-
pilation, volume 1473 ofLecture Notes in Computer Sci-
ence, pages 28 – 52. Springer-Verlag, March 1998.

[33] G. Morrisett, D. Walker, K. Crary, and N. Glew. From
System F to Typed Assembly Language. InProceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL’98), pages 85
– 97. ACM Press, January 1998.

[34] S.S. Muchnick.Advanced Compiler Design and Imple-
mentation. Morgan Kaufmann, 1997.

[35] E.M. Myers. A precise interprocedural data flow algo-
rithm. In Conference Record of the 8th Annual ACM
Symposium on Principles of Programming Languages
(POPL’81), pages 219 – 230. ACM Press, January 1981.

[36] C. Nachenberg. Polymorphic virus detection module.
United States Patent # 5,696,822, December 9, 1997.

[37] C. Nachenberg. Polymorphic virus detection module.
United States Patent # 5,826,013, October 20, 1998.

[38] G. C. Necula. Translation validation for an optimizing
compiler. InProceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implemen-
tation (PLDI’00), pages 83–94. ACM Press, June 2000.

[39] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Sri-
vas. PVS: Combining specification, proof checking, and
model checking. InProceedings of the 8th International
Conference on Computer-Aided Verification (CAV’96),
volume 1102 ofLecture Notes in Computer Science,
pages 411–414. Springer-Verlag, August 1996.

[40] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedu-
ral dataflow analysis via graph reachability. InProceed-
ings of the 22th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’95),
pages 49–61. ACM Press, January 1995.

[41] M. Samamura. Expanded Threat List and Virus En-
cyclopaedia, chapter W95.CIH. Symantec Antivirus
Research Center, 1998.http://securityresponse.

symantec.com/avcenter/venc/data/cih.html

(Last accessed: 3 February 2003).

[42] DataRescue sa/nv. IDA Pro – interactive disassem-
bler. http://www.datarescue.com/idabase/ (Last
accessed: 3 February 2003).

[43] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the
internet in your spare time. InProceedings of the 11th
USENIX Security Symposium (Security’02), pages 149 –
167. USENIX, USENIX Association, August 2002.

[44] P. Sz̈or and P. Ferrie. Hunting for metamorphic. InPro-
ceedings of Virus Bulletin Conference, pages 123 – 144,
September 2001.

[45] TESO. burneye elf encryption program.https://

teso.scene.at (Last accessed: 3 February 2003).

[46] D. Wagner and D. Dean. Intrusion detection via static
analysis. In2001 IEEE Symposium on Security and Pri-
vacy (Oakland’01), May 2001.

[47] R. Wang. Flash in the pan?Virus Bulletin, July 1998.
Virus Analysis Library.

[48] Z. Xu. Safety-Checking of Machine Code. PhD thesis,
University of Wisconsin, Madison, 2000.

[49] z0mbie. Automated reverse engineering: Mistfall en-
gine. http://z0mbie.host.sk/autorev.txt (Last
accessed: 3 February 2003).

[50] z0mbie. RPME mutation engine.http://z0mbie.

host.sk/rpme.zip (Last accessed: 3 February 2003).

[51] z0mbie. z0mbie’s homepage.http://z0mbie.host.

sk (Last accessed: 3 February 2003).

Notes
1Note that the subroutine address computation had to be updated to

take into account the newnops. This is a trivial computation and can
be implemented by adding the number of insertednops to the initial
offset hard-coded in the virus-morphing code.

2Most executable formats require that the various sections of the
executable file start at certain aligned addresses, to respect the target
platform’s idiosyncrasies. The extra space between the end of one
section and the beginning of the next is usually padded with nulls.

3We use one-way matching which is simpler than full unification.
Note that the instruction sequence does not contain any variables. We
instantiate variables in the pattern so that they match the corresponding
terms in the instruction sequence.

http://www.viruslist.com/eng/viruslistbooks.asp?id=32&key=0000100007000020000100003
http://www.viruslist.com/eng/viruslistbooks.asp?id=32&key=0000100007000020000100003
http://www.viruslist.com/eng/viruslistbooks.asp?id=32&key=0000100007000020000100003
http://www.kasperskylabs.com
http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html
http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html
http://securityresponse.symantec.com/avcenter/venc/data/cih.html
http://securityresponse.symantec.com/avcenter/venc/data/cih.html
http://www.datarescue.com/idabase/
https://teso.scene.at
https://teso.scene.at
http://z0mbie.host.sk/autorev.txt
http://z0mbie.host.sk/rpme.zip
http://z0mbie.host.sk/rpme.zip
http://z0mbie.host.sk
http://z0mbie.host.sk

	1 Introduction
	2 Related Work
	2.1 Theoretical Discussion
	2.2 Other Detection Techniques
	2.3 Other Obfuscators

	3 Background on Obfuscating Viruses
	3.1 The Suite of Viruses
	3.1.1 Detailed Description of the Viruses

	4 Obfuscation Attacks on Commercial Virus Scanners
	4.1 Common Obfuscation Transformations
	4.1.1 Dead-Code Insertion
	4.1.2 Code Transposition
	4.1.3 Register Reassignment
	4.1.4 Instruction Substitution

	4.2 Testing Commercial Antivirus Tools

	5 Architecture
	6 Program Annotator
	6.1 Basic Definitions
	6.2 Abstraction Patterns
	6.3 Annotator Operation

	7 Detector
	7.1 The Malicious-Code Automaton
	7.2 Detector Operation

	8 Experimental Data
	8.1 Testing Environment
	8.2 Testing on Malicious Code
	8.3 Testing on Benign Code
	8.3.1 Descriptions of the Benign Executables

	9 Conclusion and Future Work

