Setuid Demystified

Hao Chen David Wagner Drew Dean
University of California at Berkeley SRI International
{hchen,daw }@cs.berkeley.edu ddean@csl.sri.com
Abstract system resources. In particular, user ID zero, reserved for
the superusenoot, allows a process to access all system
resources.

Access control in Unix systems is mainly based on user
IDs, yet the system calls that modify user IDéd-setting In some applications, a user process needs extra privi-
system calls such assetuid are poorly designed, in- leges, such as permission to read the password file. By
sufficiently documented, and widely misunderstood anadhe principle of least privilege, the process should drop
misused. This has caused many security vulnerabilitieits privileges as soon as possible to minimize risk to the
in application programs. We propose to make progressystem should it be compromised and execute malicious
on the setuid mystery through two approaches. Firstcode. Unix systems offer a set of system calls, called the
we study kernel sources and compare the semantics afid-setting system call$or a process to raise and drop
the uid-setting system calls in three major Unix systemsprivileges. Such a process is callededuid processun-
Linux, Solaris, and FreeBSD. Second, we develop a forfortunately, for historical reasons, the uid-setting system
mal model of user IDs as a Finite State Automaton (FSA)calls are poorly designed, insufficiently documented, and
and develop new techniques for automatic constructiomwidely misunderstood. “Many years after the inception
of such models. We use the resulting FSA to uncoveiof setuid programs, how to write them is still not well un-
pitfalls in the Unix API of the uid-setting system calls, to derstood by the majority of people who write them!’ [1].
identify differences in the semantics of these calls amongdn short, the Unix setuid model is mysterious, and the
various Unix systems, to detect inconsistency in the hanresulting confusion has caused many security vulnerabil-
dling of user IDs within an OS kernel, and to check theities.
proper usage of these calls in programs automatically.
Finally, we provide general guidelines on the proper us\We approach the setuid mystery as follows. First, we
age of the uid-setting system calls, and we propose atudy the semantics of the uid-setting system calls by
high-level API that is more comprehensible, usable, andeading kernel sources. We compare and contrast the se-
portable than the usual Unix API. mantics among different Unix systems, which is useful
for authors of setuid programs. In doing so, we found
that manual inspection is tedious and error-prone. This
motivates our second contribution: we construct a for-
1 Introduction mal model to capture the behavior of the operating sys-
tem and use it to guide our analysis. We will describe a
new technique for building this formal model in an au-
Access control in Unix systems is mainly based on thetomated way. We have used the resulting formal model
user IDs associated with a process. In this model, eactp more accurately understand the semantics of the uid-
process has a set of user IDs and group IDs which detesetting system calls, to uncover pitfalls in the Unix API
mine which system resources, such as files and networRf these calls, to identify differences in the semantics of
ports, the process can ac@s@ertain privileged user these calls among various Unix systems, to detect incon-
IDs and groups IDs allow a process to access restrictegistency in the handling of user IDs within an OS kernel,
and to check for the proper usage of user IDs in programs
automatically.

*This research was supported in part by DARPA Contract ECUO1-
401U subcontract 27-000765 and NSF CAREER 0093337.

1in many Unix systems, a process has also a setipplementary
group IDs which are not closely related to the topic of this paper and Formal methods have gained a reputation as being im-
which will not be discussed.

practical to apply to large software systems, so it mayaccess. In particular, user ID zero is reserved for the su-
be surprising that we found formal methods so useful inperuseroot who can access all resources.
our effort. We will show how our formal model enables
many tasks that would otherwise be too error-prone ofEach process has three user IDs: &l user ID(real
laborious to undertake. Our success comes from usingid, or ruid), theeffective user IQeffective uigdor euid),
lightweight techniques to answer a well-defined questiorand thesaved user I{saved uid or suid). The real uid
about the system; we ar®t attempting to prove that a identifies the owner of the process, the effective uid is
kernel is correct! Abstraction plays a major role in sim- used in most access control decisions, and the saved uid
plifying the system so that simple analysis techniques arstores a previous user ID so that it can be restored later.
sufficient. Similarly, a process has three group IDs: thel group

ID, the effective group ID and thesaved group IDIn
This paper is organized as the follows. Secfipn 2 disimost cases, the properties of the group IDs parallel the
cusses related work. Sectiph 3 provides background oproperties of their user ID counterparts. For simplicity,
the user ID model. Sectidd 4 reviews the evolution ofwe will focus on the user IDs and will mention the group
the uid-setting system calls. Sectiph 5 compares anéDs only when there is the potential for confusion or pit-
contrasts the semantics of the uid-setting system calls ifalls. In Linux, each process has also fanid and an
three major Unix systems. Section 6 describes the formafsgid which are used for access control to the filesystem.
user ID model and its applications. Sect[dn 7 analyzedThe fsuid usually follows the value in the effective uid
two security vulnerabilities caused by misuse of the uid-unless explicitly set by theetfsuidsystem call. Simi-
setting system calls. Sectiph 8 provides guidelines on théarly, thefsgid usually follows the value in the effective
proper usage of the uid-setting system calls and proposegid unless explicitly set by theetfsgidsystem call. Since
a high-level API to the user ID model. thefsuidandfsgidare Linux specific, we will not discuss

them except when we point out an inconsistency in the

handling of them in the Linux kernel.

2 Related Work When a process is created fyk, it inherits the three
user IDs from its parent process. When a process exe-
cutes a new file byexec.., it keeps its three user IDs

Manual pages in Unix systems are the primary Sourcélnless the set-user-1D bit of the new file is set, in which

of information on the user ID model for most program- case the effective uid and saved uid are assigned the user

mers. See, for examplsetuid(2)and setgid(2) But D of the owner of the new file.

unfortunately, they are often incomplete or even wrong

(Sectiof 6.4]1). Many books on Unix programming alsoSince access control is based on the effective user ID, a

describe the user ID model, such as Stevers’ [2], but ofProcess gains privilege by assigning a privileged user ID

ten they are specific to one Unix system or release, art0 its effective uid, and drops privilege by removing the
outdated, or lack important details. privileged user ID from its effective uid. Privilege may

be dropped either temporarily or permanently.

Bishop discussed security vulnerabilities in setuid pro-

grams [3]. His focus is on potential vulnerabilities that

a process may be susceptible to once it gains privilege,

while our focus is on how to gain and drop privilege con-

fidently and securely. Unix systems have evolved and ® To drop privilege temporarily, a process removes
diversified a great deal since Bishop’s work in 1987, and the privileged user ID from its effective uid but
a big problem today is how to port setuid programs se- ~ Stores it in its saved uid. Later, the process may

curely to various Unix systems. restore privilege by restoring the privileged user 1D
in its effective uid.

3 User ID Model

This section provides background on the user ID model. ® To drop privilege permanently, a process removes
Each user in a Unix system has a unique user ID. The the privileged user ID from all three user IDs.
user ID determines which system resources the user can Thereafter, the process can never restore privilege.

4 History o If the effective uid was zero, then the real uid and
effective uid could be set to any user ID.

e Otherwise, either the real uid or the effective uid

Bell Laboratories filed a patent application on Den-
b PP could be set to value of the other one.

nis Ritchie’s invention of a bit to specify that a pro-
gram should execute with the permissions of its owner,
rather than invoker, in 1973. The patent was granted inTherefore, thesetreuidsystem call enabled a process to
1979 [4]. Thus, setuid programs and related system callswap the real uid and effective uid.

have existed through most of Unix history.

The POSIX standard [5] codified a new specification for
the setuidcall. In an attempt to be POSIX compliant,

4.1 Early Unix 4.4 BSD replaced 4.2 BSD's oldetreuid model with
the POSIX/System V style saved uid model. It modified
setuidso thatsetuidset all three user IDs regardless of

In early Unix systems, a process had two user IDs: thavhether the effective uid of a process was zero, therefore

real uid and the effective uid. Only one system cadl; allowing any process to permanently drop privileges.

tuid, modified them according to the following rule: if

the effective uid was zercsetuid set both the real uid

and effective uid; otherwisesetuid could only set the 4.4 Modern Unix

effective uid to the real uid [1]. This model had the prob-

lem that a process could not temporarily drop the root

privilege in its effective uid and restore it later. As Unix As System V and BSD influenced each other, both sys-

diverged into System V and BSD, each system solved théems implementedetuid seteuid andsetreuid although

problem in a different way. with different semantics. None of these system calls,
however, allowed the direct manipulation of the saved
uid (although it could be modified indirectly througk-

4.2 SystemV tuid and setreuid. Therefore, some modern Unix sys-
tems introduced a new cafletresuidto allow the modi-
fication of each of the three user IDs directly.

System V added a new user ID called the saved uid to

each process. Also added was a new systemsez#pid

whose rules were:
5 Complexity of Uid-setting System Calls

o If the effective uid was zercseteuidcould set the

effective uid to any user ID. A process modifies its user IDs by the uid-setting sys-
tem calls:setuid seteuid setreuid and in some systems,
setresuid Each of the system calls involves two steps.
First, it checks if the process has permission to invoke
the system call. If so, it then modifies the user IDs of the
seteuiddid not change the real uid or saved uid. Further-process according to certain rules.

more, System V modifiedetuidso that if the effective

uid was not zerosetuidfunctioned aseteuid(changing In this section, we compare and contrast the semantics

only the effective uid); otherwissgtuidset all three user of the uid-setting system calls among Linux 2.4.1B [8],
IDs. Solaris 8[[6], and FreeBSD 4.41[7]. The behavior of the

uid-setting system calls was discovered by a combina-
tion of manual inspection of kernel source code and for-

4.3 BSD mal methods. We will defer discussion of the latter until
Sectior6.

e Otherwiseseteuidcould set the effective uid to only
the real uid or saved uid.

4.2 BSD kept the real uid and effective uid but changed

the system call fronsetuidto setreuid Processes could The POSIX Specification To understand the seman-
then directly control both their user IDs, under the fol- tics of the uid-setting system calls, we begin with the
lowing rules: POSIX standard, which has influenced the design of the

system calls in many systems. In particular, the behavior If { POSIX_SAVEDIDS } is defined:
of setuid(newuid)s defined by the POSIX specification.

See Figurg]l for the relevant text. 1. If the process haappropriate privilegesthe se-
tuid() function sets the real user ID, effective user
The POSIX standard refers repeatedly to the tepn ID, and the [saved user ID] teewuid

propriate privileges which is defined in Section 2.3 of 2

POSIX 1003 1-1988 as: . If the process does not haegpropriate privi-

leges but newuidis equal to the real user ID ar
the [saved user ID], theetuid) function sets the

An implementation-defined means of associ- effective user ID tacnewuid the real user ID and

ating privileges with a process with regard to [saved user ID] remain unchanged by this fumc-

the function calls and function call options de- tion call.

fined in this standard that need special privi- _

leges. There may be zero or more such means. Otherwise:

1. If the process haappropriate privilegesthe se-

Essentially, the ternappropriate privilegeserves as a tuid() function sets the real user ID and effective
wildcard that allows compliant operating systems to user ID tonewuid

use any policy whatsoever for deeming when a call) o
to setuid should be allowed. The conditional flag | 2 !f the process does not hawgpropriate privi-

{_POSIX_SAVEDIDS } parametrizes the specification, leges but newuidis equal to the real user IO,
allowing POSIX-compatible operating systems to use ei thesetuid) function sets the effective user ID to
ther of two schemes (as described in Figgre 1). We will newuid the real user ID remains unchanged by
see how different interpretations of the teappropriate this function call.

privilege have led to considerable differences in the be- (POSIX 1003.1-1988, Section 4.2.2.2)
havior of the uid-setting system calls between operating

systems. Figure 1: An excerpt from the POSIX specification [5]

covering the behavior of theetuidsystem call.

5.1 Operating System-Specific Differences

newuid=geteuid() in addition to when its effective uid is
zero. Also in contrast to Solaris, FreeBSD does not de-
fine {_POSIX_SAVEDIDS }, although every FreeBSD
process does have a saved uid. Therefore, by cading
tuid(newuid) a process sets both its real uid and effective
uid to newuidif the system call is permitted, in agree-

Solaris In Solaris 8, a System V based system, amentwith POSIX. FreeBSD also sets the saved uid in all
process is considered to haeppropriate privileges permittedsetuidcalls.

if its effective uid is zero (root). Also, Solaris de-

fines{_POSIX_SAVEDIDS }. Consequently, callinge-

tuid(newuid)sets all three user IDs teewuidif the ef-

fective uid is zero, but otherwise sets only the effectivelinux Linux introduces a capabilmodel for finer-

uid to newuid(if the setuidcall is permitted). grained control of privileges. Instead of a single level
of privilege determined by the effective uid (i.e., root or

non-root), there are a number of capability bits each of
which is used to determine access control to certain re-
sourced One of them, theSETUID capability, carries
the POSIXappropriate privileges To make the new ca-

Much of the confusion is caused by different interpreta-
tions ofappropriate privilege@among Unix systems.

FreeBSD FreeBSD 4.4 interpretappropriate privi-
legeddifferently, as noted in Appendix B4.2.2 of POSIX:

The behavior of 4.2BSD and 4.3BSD that al- 2Beware: the word “capability” is a bit of a misnomer. In this con-
lows setting the real ID to the effective ID is text, it refers to special privileges that a process can possess, and not
: . to the usual meaning in the security literature of an unforgeable refer-
viewed 'as a _/a_lue-dependent speC|aI case of ence. Regrettably, the former usage comes from the POSIX standard
appropriate privilege and seems to be in common use, and so we follow their convention in
this paper.
. . SMore accurately, a Linux process has three sets of capabilities, but
This means that a process is deemed to hape ,ny the set oeffective capabilitiesletermine access control. All ref-
propriate privilegeswhen it calls setuid(newuid)with erences teapabilitiesin this paper refer to the effective capabilities.

pability model compatible with the traditional user ID uid unchanged. However, when the current effective uid

model whereappropriate privilegesire carried by a zero is not zero, there is a slight difference in the permis-

effective uid, the LinuXSETUIDcapability tracks the ef- sion required byseteuidamong Unix systems. While

fective uid during all uid-setting system calls: WheneverSolaris and Linux allow the parametaeweuidto be

the effective uid becomes zero, tB&ETUID capability equal to any of the three user IDs, FreeBSD only allows

is set; whenever the effective uid becomes non-zero, theaeweuidto be equal to either the real uid or saved uid;

SETUIDcapability is cleared. in FreeBSD, the effective uid is not used in the decision.
As a surprising resultseteuid(geteuid())which a pro-

However, theSETUID capability can be modified out- grammer might intuitively expect to be always permitted,

side the uid-setting system calls. A process can cleacan fail in FreeBSD, e.g., whenid=100,euid=200, and

its SETUID capability, and a process with tH&ETP- suid=100.

CAP capability can remove th8ETUID capability of

other processes (but note that in Linux 2.4.18, no process

thhilst \(I)V; gamna?qultvgril ;ZiE;sP;ﬁeritC;Ei?!‘IZé 2 gzs . jﬁetre_gid() The semantics ossetre_uidis.confusir?g. It

for details). Therefore, explicitly setting,or clearing the. odifies the real u.ld and effective UI.d’ and in some

SETUIDcababiIity chahges the properties of uid—setting?ases’ .t.he gaved UId.' The rule by which the saved .U|d
is modified is complicated. Furthermore, the permis-

systems calls. sion required forsetreuid differs among the three op-
erating systems. In Solaris and Linux, a process can
always swap the real uid and effective uid by calling
setreuid(geteuid(), getuid())in FreeBSD, howevese-
treuid(geteuid(), getuid()sometimes fails, e.g., when
ruid=100,euid=200, andsuid=100.

5.2 Comparison among Uid-setting System
Calls

Next we compare and contrast the uid-setting system

calls and point out several unexpected properties and an

inconsistency in the handling éuid in the Linux ker- setuid() Although setuidis the only uid-setting sys-

nel. tem call standardized in POSIX 1003.1-1988, it is also
the most confusing one. First, the required permission
differs among Unix systems. Both Linux and Solaris

setresuid() setresuichas the clearest semantics amongreduire the parameterewuidto be equal to either the
the four uid-setting system calls. The permission check€@l uid or saved uid if the effective uid is not zero. As
for setresuid(Js intuitive and common to all OSs: for the & Surprising resultsetuid(geteuid())which a program-
setresuid()system call to be allowed, either the euid of Mer might reasonably expect to be always permitted, can
the process must be root, or each of the three parametefdi! in some cases, e.g., wheaid=100, euid=200, and
must be equal to one of the three user IDs of the proces$Uid=100. On the other hanaetuid(geteuid()always

As each of the real uid, effective uid, and saved uid isSUcceeds in FreeBSD. Second, the actiosedfiiddif-

set directly bysetresuiglthe programmer knows clearly fers not only among different operating systems but also
what to expect after the call. Moreover, teetresuid Petween privileged and unprivileged processes. In So-
call is guaranteed to have an all-or-nothing effect: if it laris and Linux, if the effective uid is zero, a successful
succeeds, all user IDs are changed, and if it fails, non&€tuid(newuidgall sets all three user IDs teewuid oth-

are; it will not fail after having changed some but not all €wise, it sets only the effective user ID ewuid On
of the user IDs. the other hand, in FreeBSD a successkituid(newuid)

call sets all three user IDs toewuidregardless of the

Note that while FreeBSD and Linux offeetresuig So- effective uid.
laris does not. However, Solaris does offer equivalent
functionality via theproc filesystem. Any process can

examine its three user IDs, and a superuser process captfsuid() In Linux, each process has also fsuid in

set any of them, in line with the traditional System V addition to its real uid, effective uid, and saved uid. The

notion ofappropriate privilege fsuidis used for access control to the filesystem. It nor-
mally follows the effective uid unless when explicitly set
by the setfsuidsystem call. The Linux kernel tries to

seteuid() seteuidhas also a clear semantics. It setsmaintain the invariant that tHeuidis zero only if at least

the effective uid while leaving the real uid and savedone of the real uid, effective uid, or saved uid is zero, as

ruid=euid=suid=0 by the egid in the setgid-like calls, but this is not how
fsuid=0 it actually works. This misconception caused a mistake
setresuid(x, x, -1) in the manual page afetgidin Redhat Linux 7.2 (Sec-
ruid=euid=fsuid=x tion[6.4.1).
suid=0
set fsui d(0) In many Unix systems, a process has also a sstipple-
e dmctidox mentary group IDsvhich are modified by theetgroups
suid=fsuid=0 andinitgroupscalls. They are not closely related to the
topic of this paper and will not be discussed.

setresuid(-1,-1,x)

ruid=euid=suid=x

fsuid=0

Figure 2: The call sequence shows that the invariant tha? Formal Models

the fsuid is zero only if at least one of the ruid, euid, or
suid is zerais violated in Linux. In the figureg repre-

sents a non-zero user ID. We initially began developing the summary in the previ-

ous section by manually reading operating system source

code. Although reading kernel sources is a natural
manifested in the comment in a source files. The ratiomethod to study the semantics of the uid-setting sys-
nale is that once a process has dropped root privilege item calls, it has many serious limitations. First, it is
each of its real uid, effective uid, and saved uid, the pro-a laborious task, especially when various Unix systems
cess cannot have any leftover root privilege infhiid ~ implement the system calls differently. Second, since
Since thefsuid is Linux specific, this invariant allows a our findings are based on current kernel sources, they
cross-platform application that is not aware of feeid may become invalid should the implementation change
to securely drop all privileges. in the future. Third, we cannot prove that our findings

are correct and that we have not misunderstood kernel
Unfortunately, we discovered that this invariant may besources. Finally, informal specifications are not well-
violated due to a bug in the kernel up to the latest versiorsuited to programmatic use, such as automated verifi-
of Linux (2.4.18, as of this writing). The bug is that while cation of properties of the operating system or use in
every successfidetuidandsetreuidcall sets thdsuidto static analysis of application programs to check proper
the effective uid, a successfsétresuidcall will fail to usage of the uid-setting system calls. These problems
do the same if the effective uid does not change duringvith manual source code analysis motivate the need for
the callf} This causes the call sequence in Fidure 2 tomore principled methods for building a formal model of
violate the invariant. The bug has been confirmed by thehe uid-setting system calls.
Linux community. Sectiof 6.4.3 will describe how we
discovered this bug using a formal model.

6.1 Building a Formal Model

setgid() and relatives There are also a set of calls

for manipulating group IDs, namelggetgid setegigd se- Our model of the uid-setting system calls is based on fi-
tregid, andsetresgid They behave much like their se- nite state automata. The operating system maintains per-
tuid counterpart, with only one minor exception (the per-process state (e.g., the real, effective, and saved uids) to
mission check irsetregiddiffers slightly fromsetreuid track privilege levels, and thus it is natural to view the
in Solaris). However, theppropriate privilegesare al- operating system as implementing a finite state automa-
ways carried by theuid in both setuid-like and setgid- ton (FSA). A state of the FSA contains all relevant in-
like calls. Thus, an effective group ID of zero does notformation about the process, e.g., the three uids. Each
accord any special privileges to change groups. This iglid-setting system call leads to a number of possible tran-
a potential source of confusion: it is tempting to assumesitions; we label each transition with the system call that
incorrectly that sinceppropriate privilegesare carried it comes from.

by theeuid in the setuid-like calls, they will be carried

" — S _ We construct the FSA in two steps: (1) determine its
_“The seteuid(euid)call in Linux is implemented asetreuid(-1, — gtatag by reading kernel sources; (2) determine its tran-
euid) or setresuid(-1, euid, -1)depending on the version of the C li- ~,
brary. Hence, theeteuidsystem call might or might not set ttiguid SItIOI’lS_by 5|mU|at|0n-_ In th_e _f|r5t step, we Qetermlne the
reliably, depending on the C library version. states in the FSA by identifying kernel variables that af-

fect the behavior of the uid-setting system calls. For ex-GETSTATE():
ample, if only the real uid, effective uid, and saved uid 1. Callgetresuid(& r,&e,&s) .
can affect the uid-setting system calls, then each state ¢ Return(r, e, s).
the FSA is of the form(r, e, s), representing the values
of the real, effective, and saved user IDs, respectively. SETSTATE(r, e, s):
1. Callsetresuid(r,e,s) .
This is a natural approach. However, the problem one2. Check for error.
immediately faces is that the resulting FSA is much too
large: in Linux, uids are 32-bit values, and so there ar€GETALL STATES():

(232)3 = 29 possible states. Obviously, manipulating 1. Pickn arbitrary uidsus, . . ., uy.

an FSA of such size is infeasible. Therefore, we nee®. LetU := {ui, ..., u,}.

to somehow abstract away inessential details and reducd LetS := {(r,e,s) : r,e,s € U}.

the size of the FSA dramatically. 4. LetC := {setuid(x),setreuid(z,y),
setresuid(z,y,2),- -

Fortunately, we can note that there is a lot of symme- rx,y,2 € UU{~1}}.

try present. If we have a non-root user ID, the behav-5. Return(S, C').

ior of the operating system is essentially independent

of the actual value of this user ID, and depends onlyBUILD MODEL():

on the fact that it is non-zero. For example, the stated. Let(S,C) := GETALL STATES().

(ruid, euid suid) = (100, 100, 100) and (200, 200,200) 2. Create an empty FSA with statespate
are isomorphic up to a substitution of the vall@® by 3. For eachs € S, do:

the value200, since the OS will behave similarly in both 4. For eacte € C, do:

cases (e.gsetuid(O)will fail in both cases). In general, 5. Fork a child process, and within the child, do:
we consider two states equivalent when each can be mi§- Call SETSTATE(s), and then invoke.

tated into the other by a consistent substitution on non7. Finally, lets’ := GETSTATE(),

root user IDs. By identifying equivalent states, we can passs’ to the parent process, and exit.
shrink the size of the FSA dramatically. 8. Add the transitios = s’ to the FSA.

9. Return the newly-constructed FSA as the model.
Now that we know that there must exist some reason-
able FSA model, the next problem is how to compute
it. Here we usesimulation if we simulate the presence
of a pseudo-application that tries every possible system
call and we observe t_he state transitions performed b3()ractice, we extend this basic algorithm with several op-
the operating system in response to these system Ca”ﬁmizations and extensions.
we can infer how the operating system will behave when

invoked by real applications. Once we identify equiva- 5 gimple optimization is to use a depth-first search to

lent states, the statespace will be small enough that Wg, hqre only the reachable states. In our case, the state-
can exhaustively explore the entire statespace of the OoR;

: A , o pace is small enough that the improvement is probably
erating system. This idea is made concrete in Figlire 3,

h) laorith Iunimportant, and we did not implement this optimiza-
where we give an algorithm to construct an FSA modelj, “ A more dangerous optimization would be to em-
using these techniques.

ulate the behavior of the operating system from user-

. . _ level by cutting-and-pasting the source code of the setuid
Note that by using simulation to create a mode| of thesystem calls from the kernel into our simulation engine.

uid-setting system calls, we assume that while a procesgy,;q \ould speed up model construction, but the perfor-
is executing such a call, the user IDs of the process carg, 5 ce improvement comes at a severe price: it is hard
not be modified outside the call. In other words, there is,y pa sure that our emulation of the OS is completely
no race on the user IDs between a uid-setting system caflwg, | any case, our unoptimized implementation

and other parts of the kernel. This requirement might noblready takes only a few seconds to generate the model.
hold in multi-threaded programs if multiple threads shareFor these reasons, we dot apply this optimization in
the same user IDs. We leave this topic for future work. our implementatior;

Figure 3: The model-extraction algorithm.

To ensure maximum confidence in the correctness of our
Implementation Our implementation follows Figufg 3 results, we check in two different ways that the call to
closely. (Note that the simulator must run as root.) Insetresuidin line 1 of SETSTATE() succeeds. First, we

check the return value from the operating system. Secinstance, a state likg 00, 200, 100) will never appear in
ond, we callgetresuidand check that all three user IDs such an application. Each state in this simple FSA has
have been set as desired (see Se¢tion|8.1.3). three bits, each representing whether the real uid, effec-
tive uid, or saved uid is root or not. All together there are
On Solaris, there are ngetresuidand setresuidsystem eight states in the FSA. In Figuré 4 we show graphically
calls. However, we can simulate them using Aec the models one obtains in this way for thetuidcall on
filesystem. We read the three user IDs of a process froniinux, Solaris, and FreeBSD. Note that the models on
its cred file, and we modify the user IDs by writing to Solaris and Linux are equivalent, but they differ from the
itsctl file (seeproc(4)for details). model on FreeBSD. Figufg 5 shows the models for the
seteuid setreuid andsetresuidcalls on Linux.
On Linux, we also model th8ETUID capability bit by
adding a fourth dimension to the state tuple. Thus, stateé variation of the previous models is shown in Fig[ife 6
are of the form(r, e, s, b) where the bith is true when- where the set of user ID values{s, y} wherez andy
ever theSETUIDcapability is enabled. This allows us to are distinct non-root user ID values. This model is ap-
accurately model the case where an application explicpropriate for applications that switch between two non-
itly clears or sets itSETUID capability bit; though we root user IDs (rather than between the root and a non-
are not aware of any real application that does this, if weroot user ID). This model is appropriate for analyzing
ever do encounter such an application our model will stillBSD games[[9] run under the dungeon master. Foley’s
remain valid. work [10] offers a more serious use of this model.

On all operating systems, we extend our model further tdlMe can easily extend the simple models to include more
deal with system calls that fail (i.e., when invoking call user ID values, which are appropriate for applications
cin line 6 of BUILDMODEL()). It is sometimes useful that use more than two user ID values. Fidure 7 shows a
to be able to reason about whether a system call has sumodel where the set of user ID valuegis =, y} where
ceeded or failed, and one way is to add a bit to the state andy are distinct non-root user ID values. This is the
denoting whether the previous system call returned sucfully general model of Unix user IDs.

cessfully or not.

Also, on all operating systems we extend our model to,

include group IDs. This adds three additional dimension56'3 Correctness

to the state: real gid, effective gid, and savecE]gidh

this way, we can model the semantics of the gid-setting

system calls. On Linux, we also add a bit to indicate Our model-extraction algorithm (Figuré¢ 3) is an instance

whether theSETGIDcapability is enabled or not. of a more general schema for inferring finite-state mod-
els, specialized by including application-dependent im-
plementations of the &rSTATE(), SETSTATE(), and

6.2 Examples of Formal Models GETALL STATES() subroutines. We argue that our al-
gorithm is correct by arguing that the general version is

.) . correct. This section may be safely skipped on first read-
In this section, we show a series of formal models ofjng,

the uid-setting system calls created using the algorithm

in Figure[3. These models differ in their set of user ID \we frame our theoretical discussion in terms of equiva-

values. In other words, they differ in the user ID val- |ence relations. LeS denote the set of concrete states

ues picked in step 1 of &TALL STATES() subroutine in (e g., triples of 32-hit uids) and the set of concrete sys-

Figure[3. tem calls. Writes ~ ¢ if the operating system will al-
ways transition from state to ¢ upon invocation ofc.

We start with a simple model where the set of user IDye will need equivalence relatiosss onS and=pson

values is{0, 2} wherex is a non-root user ID. Although 5 x ¢ that are respected by the operating system: in other

simple, this model is accurate for many applications thatyords, if s <% ¢ ands =s &, then there is some state
manipulate at most one non-root user ID at a time. FOand some call’ so that(s, ¢) =os (', '), t =s t, and

5We don't currently model supplemental groups, though this would g/ 5; t'. The intuition is that calling: from s is some-

be straightforward to correct. Note that this omission does not affecthow isomorphic to caIIing:’ from s’. Also, we require
the correctness of our model, as supplemental groups are only used In

access control checks and never affect the behavior ofdtwiclike that whenevel(s,c) =os (s',¢) holds, thens =s s’
calls. does, too.

setuid(1)

(c) An FSA describingetuidin FreeBSD 4.4

Figure 4: Three finite state automata describingseidsystem call in Linux, Solaris, and FreeBSD, respectively.
Ellipses represent states of the FSA, where a notation like “R=1,E=0,S=1" indicatesithat 0 andruid = suid # 0.

Each transition is labelled with the system call it corresponds to. To avoid cluttering the diagram, we omit the error
states and (in Linux) the capability bits that otherwise would appear in our deduced model.

C
setreuid(1, 0)

setreuid(0, 1)

setreuid(1, 1)

setreuid(1, 1)

setreuid(1, 1)

setresuid(1, 1, 0)

setresuid(1, 0, 1)

setresuid(1, 0, 0) “\setresuid(1, 1, 0)

setresuid(0, 0, 0)

setresuid(1, 0, 1)

Jsetresuid(1, 1, 0)

setresuid(0, 1, 1)

setresuid(L, 0, 0) setresuid(0, 0, 0) @
setresuid(0, 1, 1) \ setresuid(0, 0, 0 /‘./ __\gewresuid(t, 0.1) Seﬂes
/
setresuid(0, 1, 0) setresuid(1, 0, 1) (setresuid(0, 1, 1) Elresuid(L, 0, 0) ~
setresuid(0, 1N / jsetresuid(0, 1, 1) .
x"{il(M setresuid(0, 0,

setresuid(1, 1, 1) setresuid(0, 1, 0) setresuid(1, 0, 0) @
- Setresuid(0, 1, 0) Setresuid(0, 1, 1) Setresuid(0, 0, 1)
S S——(Re0,E-1,5-0y Jsetesuid(, 1,0) setresuid(0, 0, 1) |setresuid(0, 1, 1)
~ssvssuld(0‘ 1,0 sevresuid(0, 0, 1)
—
setresuid(1, 1, 1) D

Setresuid(1, 1, 1)

Setresuid(1, 1, 0)

setresuid(0, 1, 0)

setresuid(0, 0, 1) | setresuid(1, 1, 0)

setresuid(0, 0, 0)

setresuid(0, 0, 0)

setresuid(1, 1, 1)
setresuid(1, 0, 1)

setresuid(1, 0, 0)

7 S———
R=0,£=0,5-1 Fsewest(o o;

(c) An FSA describingetresuidn Linux

Figure 5: Three finite state automata describingdeteuid setreuid setresuidsystem calls in Linux respectively.
Ellipses represent states of the FSA, where a notation like “R=1,E=0,S=1" indicatesithat 0 andruid = suid+# 0.

Each transition is labelled with the system call it corresponds to.

@ setuid(y)

setuid(y)
@ setuid(x)

Figure 6: A finite state automaton describing #etuidsystem call in Linux. This FSA considers only two distinct
non-root user ID values andy. Ellipses represent states of the FSA, where a notation like “R=x,E=y,S=x" indicates
thateuid = y andruid = suid = x. Each transition is labelled with the system call it corresponds to.

Figure 7: A finite state automaton describing flietuidsystem call in Linux. This FSA considers three user ID values:
the root user ID and two distinct non-root user ID valuesdy. Ellipses represent states of the FSA, where a notation
like “R=0,E=x,S=y" indicates thatuid = 0, euid = x andsuid = y. Each transition is labelled with the system call it
corresponds to.

A critical requirement is that the operating system musts (the implementation may freely choose one). Finally,
behavedeterministicallygiven the equivalence class of the GETALL STATES() function must return a paitS, C')

the current state. More precisely,sif-<% ¢ and s’ < . SothatS contains at least one representative from each
where(s, ¢) =os (', ¢'), then we requiré =s u. The equivalence class aEs and so that every equivalence
intuition is that the behavior of the operating system will €1aSS 0f=os contains some elemef, ¢) with ¢ € C.

depend only on which equivalence class we are in, and) o
not on any other information about the state. For in-/Vhen these general requirements are satisfied, the

stance, the behavior of the operating system cannot deBY!LD MODEL() algorithm from Figur¢ 3 will correctly
pend on any global variables that don’t appear in the statf'fer @ valid finite-state model for the underlying oper-
s; if it does, these global variables must be included into@ting system. The proof is easy. We will write] for
the statespacs. As another example, a system call im- the €quivalence class containing e.g., [s] = {t €
plementation that attempts to allocate memory and reS : s =s t}. If s = t appears in the final FSA out-
turned an error code if this allocation fails will violate Put by BUILDMODEL(), then there must have been a
our requirement, because the success or failure of th&tep at which, for some’ € [s], ¢’ € [t], andc’ with
memory allocation introduces non-determinism, which(s:¢) =os (s',¢’), we executed’ in states’ at line 6

is prohibited. We can see that this requirement is nonand transitioned to staté. (This follows from the cor-
trivial, and it must be verified by manual inspection of rectness of 8TSTATE() and GETSTATE().) The latter
the source code before our algorithm in FigFe 3 can beneans that’ < #, from which it follows thats <% " for
safely applied; we will return to this issue later. somet” e [t], since the OS respectsps. Conversely,

s’ < ¢’ for somes’, ¢, t’, then by the correctness of
ETALL STATES(), there will be somes and ¢ satisfy-

ing (s,c) =os (s',¢') so that we enter line 6 with, c,
ne%nd thanks to the deterministic nature of the operating

Next, there are three requirements on the instantiation o'é
the GETSTATE(), SETSTATE(), and GETALL STATES()
subroutines. First, the &r'STATE() routine must return

(a representative for) the equivalence class of the curre % stem we will discover the transition - # for some

state of the operating system. Note that it is natural t i — #'. Thus, the FSA output by BLDMODEL() is

reprgsent equwalencg classes mternqlly by singling ou actly what it should be. Consequently, all that remains
a unique representative for each equivalence class an

using this value. Second, theeSSTATE() procedure IS to check that these requirements are satisfied by our

.) instantiation of the schema.
with parametes must somehow cause the operating sys-

tem to enter a state’ in the same equivalence class as

We argue this next for the implementation shown inThis completes our justification for the correctness of our
Figure[3. Letl/ denote the set of concrete uids (e.g., method for extracting a formal model to capture the be-
all 32-bit values), so thaS = U x U x U. Say havior of the operating system.

that a mapoc : U — U is avalid substitutionif it

is bijective and fixes 0, i.e.g(0) = 0. Each such

substitution can be extended to one 8rby working 6.4 Applications

component-wise, i.e.g(r,e,s) = (o(r),o(e),o(s)),

and we can extend it to work on system calls by apply-

ing the substitution to the arguments of the system callThe resulting formal model has many applications. We
e.g., o(setreuid (r,e)) = setreuid (o(r),o(e)). have already discussed in Sectign 5 the semantics of the
We define our equivalence relatioas on S as fol- setuid system calls and pointed out pitfalls; this relied
lows: two statess,s’ € S are equivalent if there is heavily on the FSA formal model. Next, we will dis-
a valid substitutiono such thato(s) = s'. Similarly, cuss several additional applications: verifying documen-
(s,c) =os (s',) holds if there is some valid substitu- tation and checking conformance with informal specifi-

tion o so thato(s) = s’ ando(c) = ¢'. cations; identifying cross-platform semantic differences

that might indicate potential portability issues; detecting
The correctness of E'STATE() and SETSTATE() isim- inconsistency in the handling of user IDs within an OS
mediate. Also, so long a8 > 6, GETALLSTATES() kernel; and checking the proper usage of the uid-setting
is correct since the choice of Uidﬁ, e, Uy is imma- System callsin programs automatica"y_

terial: every pair(s,c) € S x C is equivalent to some
pair (s’, ') € S x C, since we can simply map the first
six non-zero uids iffs, ¢) touq, . . ., ug respectively, and
there can be at most six non-zero uids(inc). Actu-
ally, we can see that the algorithm in Figlife 3 comes
from a finer partition than that given byos: for exam- Manual pages are the primary source of information for
ple, (ur,u1,u1) and (uz, uz,uz) are unnecessarily dis- Unix programmers, but unfortunately they are often in-
tinguished. This causes no harm to the correctness of theomplete or wrong. FSAs are useful in verifying the ac-
result, and only unnecessarily increases the size of theuracy of manual pages of uid-setting system calls. For
resulting FSA. We gave the variant shown in Figlfe 3each call, if its FSA is small and its description in man-
because it is simpler to present, but in practice our imyal pages is simple, we check if each transition in the
plementation does use the coarser relatign FSA agrees with the description by hand. Otherwise, we
build another FSA based on the description and compare
All that remains to check is that the operating system rethis FSA to the original FSA built by simulation. Differ-
spects and behaves deterministically with respect to thignces between the two FSAs indicate discrepancies be-

equivalence class. We verify this by manual inspection ofween the behavior of the system call and its description
the kernel sources, which shows that in Linux, FreeBSDjn manual pages.

and Solaris the only operations that the uid-setting sys-
tem calls perform on user IDs are equality testing of twoThe following are a few examples of problematic docu-

user IDs, comparison to zero, copying one user ID to anmentation that we have found using our formal model:
other, and setting a user ID to zero. Moreover, the oper-

ating system behavior does not depend on anything else,
with one exception: Linux depends on whether 8t&- e The man page dfetuidin Redhat Linux 7.2 fails to
TUID capability is enabled for the process, so on Linux ~ mention theSETUID capability, which affects the
we add an extra bit to each state indicating whether this ~ behavior ofsetuid

capability is enabled. Thus, our verification task amounts o

to checking that user IDs are treated as an abstract data® The man page ddetreuidin FreeBSD 4.4 says:
type with only four operations (equality testing, compar-
ison to zero, and so on) and that the side effects and re-
sults of the system call do not depend on anything outside
the stateS. In our experience, verifying that the operat-
ing system satisfies these conditions is much easier than
fully understanding its behavior, as the former is an al-
most purely mechanical process.

6.4.1 Verifying Accuracy of Manual Pages

Unprivileged users may change the real
user ID to the effective user ID and vice-

versa; only the super-user may make
other changes.

However, this is incorrect. Swapping the real uid
and effective uid does not always succeed, such as
when ruid=100, euid=200, suid=100, contrary to

what the man page suggests. The correct descripdid, or saved uid is zero. To verify this invariant, we ex-

tion is “Unprivileged users may change the real usertend the formal model of user IDs with tif&uid and au-

ID to the real uid or saved uid, and change the effectomatically create an FSA of the model on Linux. From

tive uid to the real uid, effective uid, or saved uid.” the FSA, we discovered that the invariant does not always

hold, because the state whdseiid = 0 andruid # 0,

e The man page dfetgidin Redhat Linux 7.2 says euid = 0, suid # 0 is reachable. For example, the call
sequence in Figufg 2 will violate the invariant. The prob-
lem results from an inconsistency in the handling of the
fsuid in the uid-setting system calls. While every suc-
cessfulsetuidand setreuidcall sets thefsuid to the ef-
fective uid, a successfsletresuidcall will fail to do the
same if the effective uid does not change during the call.
The problem has been confirmed by the Linux commu-
nity.

The setgid function checks the effective
gid of the caller and if it is the superuser,
all process related group ID’s are set to
gid.

In reality, the effectivauid is checked instead of the
effectivegid.

6.4.2 ldentifying Implementation Differences
6.4.4 Checking Proper Usage of Uid-setting System

Calls
Since various Unix systems implement the uid-setting

system calls differently, it is difficult to identify their se-
mantic differences via reading kernel sources. We carf he formal model is also useful in checking proper us-
solve this problem by creating an FSA of the user IDage of uid-setting system calls in programs. We model
model in each Unix system and contrasting the FSAsa program as an FSA, called tipeogram FSA which
For example, FigurE]4 shows clearly that the semanticéepresents each program point as a state and each state-
of setuidin Solaris is different from that in FreeBSD and ment as a transition. We call the FSA describing the user
Linux. ID model amodel FSABY composing the program FSA
with the model FSA, we geteomposite FSAEach state
The approach can be further formalized by taking thein the composite FSA is a pa(s, s') of one states from
symmetric difference of FSAs. In particular, M, 7’ the model FSA (representing a unique combination of
are two FSAs for two Unix platforms with the same state-the values in the real uid, effective uid, and saved uid)
space, we can find portability issues as follows. Computé@nd one stata’ from the program FSA (representing a
the parallel compositiod/ x M’, whose states are pairs Program point). Thus, a reachable states’) in the
(s,s') with s a state from)M ands’ a state fromi/’. composite FSA indicates that the statén the model
Then, mark as an accepting stateMdf x M’ any pair FSA is reachable at the program poisit Figure[8(b)
(s,s') wheres # s'. Now any execution trace that starts Shows the program FSA of the program in Figure|8(a).
ata non-accepting state and eventually reaches an acceftigure[8(c) shows the composite FSA obtained by com-
ing state indicates a sequence of system calls whose sosing the model FSA in 4(a) with the program FSA in
mantics is not the same on both operating systems. Thisigure[8(b).
indicates a potential portability issue, and all such differ-
ences can be computed via a simple reachability compulhis method is useful for checking proper usage of uid-
tation (e.g., depth-first search). setting system calls in programs, such as:

e Can a uid-setting system call fail? If any error state
in the model FSA is reachable at some program
point, it shows that a uid-setting system call may

An OS kernel maintains many invariants which both the fail there.

kernel itself and many application programs depend on.

Violation of the invariants may cause vulnerabilities in e Can a program fail to drop privilege? If any state

both the OS and applications. Therefore, it is important that contains a privileged user ID in the model FSA

to detect any violation of the invariants. is reachable at a program point where the program
should be unprivileged, it shows that the program

The Linux kernel tries to maintain the invariant that the may have failed to drop privilege at an earlier pro-

fsuidis zero only if at least one of the real uid, effective gram point.

6.4.3 Detecting Inconsistency within an OS Kernel

Fourth, the formal model is useful in detecting inconsis-
tency in an OS kernel. Finally, the formal model is use-
ful in checking proper usage of uid-setting system calls
in programs automatically.

/I ruid=1, euid=0, suid=0
1. printf(*drop priv”);
. setuid(1);
3. execl(“/bin/sh”, “sh”,NULL);

(&) A program segment 7 Case Studies of Security Vulnerability

: printf() — setuid(1) —
Misuses of uid-setting system calls have caused many se-

curity vulnerabilities, which are good lessons in learning
the proper usage of the system calls. We will analyze two
such incidents in older versions of sendmail.

setuid(1) " Line3 Sendmail [11] is a commonly used Mail Transmission
Agent(MTA). It runs in two modes: (1) as a daemon that
listens on port 25 (SMTP), and (2) via a Mail User Agent
(c) Composite FSA of the model FSA in Fig(a) and to submit mail to the mail queue. In the first_ case, all
the program FSA in Figuie 8(a) three user IDs of the sendmail process are typically zero,
as it is run by the superusegot in the boot process. In
))) the second case, however, sendmail is run by an ordinary
Figure 8: Composing a model FSA with a program FSA ey As the mail queue is not world writable, sendmail
requires privilege to access the mail queue.

e Which part of the program may run with privilege?
To answer this question, we first identify all states
that contain a privileged user ID in the model FSA. 7.1 Misuse of Setuid
Then, we identify all program points where any of
those states are reachable. The program may run
with privilege at these program points.

(b) Program FSA of the program in Figure §(a)

printf()

Next we describe a vulnerability that was caused by a
misuse of setuid[[12]. Sendmail 8.10.1 installed the
A full discussion is out of the scope of this paper, andsendmaibinary as a setuid-root executable. When it was
we refer the interested reader to a companion paper fogxecuted by a non-root user, the real uid of the process
details [14]. was the non-root user while both the effective uid and
saved uid were zero. This gagendmailpermission to
write to the mail queue since its effective uid was zero.
6.5 Advantages To minimize risks in the event that an attacker takes over
sendmailand executes malicious code with root privi-
lege, sendmailpermanently dropped root privilege be-
The formal model holds several advantages over tryingore doing potentially dangerous operations requested by
to understand the behavior of the kernel through manan user. This was done by callisgtuid(getuid())which
ual code inspection. First, our formal model makes itsets all three user IDs to the non-root user.
easier to describe the properties of the uid-setting sys-
tem calls. While we still need to read kernel code toPOSIX specifies that if a process haspropriate priv-
determine the kernel variables that affect the uid-settingleges setuid(newuidsets all three user IDs teewuid
system calls, the majority of the workload, determining otherwise,setuid(hewuidpnly sets the effective uid to
their actions, is done automatically by simulation. Sec-newuid(if newuidis equal to the real uid or saved uid).
ond, the formal model is reliable because it is createdn Linux, appropriate privilegesare carried by th&SE-
from the same environment where application programd UID capability. Furthermore, after any uid-setting sys-
run. The formal model has corrected several mistakesem call, the Linux kernel sets or clears tB&TUID
in the user ID model that we created manually. Third,capability bit, if necessary, to establish a simple post-
the formal model is useful in identifying semantic differ- condition: theSETUID capability should be set if and
ences of uid-setting system calls among Unix systemsonly if the effective uid is zero.

7.2 Interaction between User IDs and Group

A normal non-root user A malicious non-root IDs
executes sendmail user executes sendmail
ruid!=0, euid=suid=0 ruid!=0, euid=suid=0
SETUID'Capa?i“tyzl SETUID'Capab_iIth:IO Another vulnerability in Sendmail was caused by an in-
Setﬁ"g("?e't ﬁ?'["?)) Setsfi”g(”;';t ﬁ?'df)) teraction between the user IDs and the group [D$ [13].

To further reduce the risk from a malicious user taking

ruid=evid=suid!=0 ruid=euid!=0, suid=0 oversendmail as of version 8.12.0 Sendmail no longer
SETUID-capability=0 SETU'D'Capab”"t_y‘o installed sendmailas a setuid-root program. To give
sendmail executes The malicious user sendmailpermission to write to the mail queue, the mail
the rest of code takes over queue was configured to be writable by graampmsp
sendmail and executes . ? .
setreuid(-1,0) andsendmailwvas installed as setgislmmsp Therefore,
' — whensendmailwas executed by a non-root user, the real
ruid!=0, euig=suid=0 gid of the process was the primary group of the user, but

The malicious user the effective gid and saved gid weseamsp

executes code)
with root privilege For the same reason that it permanently dropped root

privilege in previous versions, nowendmail perma-
() A normal execution (b) An execution of send- nently_dropped_smmspg_roup privilege before ex«_acyting
of sendmail by a non-root mail by an attacker potentially malicious directives from a user. Similar to
user the use oketuid(getuid()}o permanently drop root priv-

ilege, sendmailcalled setgid(getgid())to permanently

Figure 9: A vulnerability in sendmail due to a misuse 9roP Smmspgroup privilege. However, sinceendmail
of setuid Note the failure: the programmer assumedn® longer hadppropriate privilegedecause its effective
that setuid(getuid()vould always succeed in dropping Uid Was not zero anymoregtgid(getgid()pnly dropped
all privilege, but by disabling th6ETUIDcapability, the e Privileged group Immsgrom the effective gid but

attacker is able to violate that expectation. left it in the saved gid. Consequently, any malicious user
who found some way to take over sendmail (e.g., by a

buffer overrun) could restore tremmspgroup privilege
in the effective gid by callingetgid(-1, smmsp)This is
illustrated in Figuré T0.

The vulnerability was caused by an interaction between
However, prior to version 2.2.16 of Linux, there was athe user IDs and group IDs since changing user IDs may
bug in the kernel that made it possible for a process taffect the property obetgid To avoid the vulnerabil-
clear itsSETUID capability bit even when its effective ity, we can replaceetgid(newgidyvith setresgid(newgid,
uid was zero. In this case, callirgptuid(getuid()only newgid, newgidif available, orsetregid(newgid, newgid)
modified the effective uid, and under these conditionsptherwise. The vulnerability also shows that if both user
sendmailwould only drop root privilege from its effec- 1Ds and group IDs are to be modified, the modification
tive uid but not its saved uid. Consequently, any mali-should follow a specific order (Sectipn 8]1.2).
cious local user who could take ovendmaile.g., with
a buffer overrun attack) could restore root privilege in the
effective uid by callingsetreuid(-1, O) In other words, an
attacker could ensusendmaik attempt to drop all priv-
ileges would fail, thereby raising the risk of a root attack
on sendmail. Figurig]9 illustrates the vulnerability.

8 Guidelines

The vulnerability was caused by the overloaded semanwe provide guidelines on the proper usage of the uid-
tics of setuid Depending on whether a process has thesetting system calls. First, we discuss general guidelines
SETUID capability, setuid sets one user ID or all three that apply to all setuid programs. Then, we focus on ap-
user IDs, but it returns a success code in both cases. Thaications that use the uid-setting system calls in a spe-
vulnerability can be avoided by replacisgtuid(newuid) cific way. We propose a high-level API for these appli-
with setresuid(newuid, newuid, newuidlavailable, or cations to manage their privileges. The API is easier to
with setreuid(newuid, newuidjtherwise. understand and to use than the Unix API.

A user
executes sendmail

A user
executes sendmail

ruid=euid=suid!=0 ruid=euid=suid!=0

rgid!=smmsp rgid!=smmsp
egid=sgid=smmsp egid=sgid=smmsp
sendmail calls sendmail calls
setgid(getgid()) setgid(getgid())

ruid=euid=suid!=0 ruid=euid=suid!=0
rgid=egid=sgid!=smmsp rgid=egid!=smmsp

(wrong assumption) sgid=smmsp
sendmail executes An attacker
the rest of code takes over sendmail
and executes
setregi d(-1, smmsp)

ruid=euid=suid!=0
rgid!=smmsp

egid=sgid=smmsp

The attacker
executes code with

smmsp group privilege

(b) Real execution of send-
mail by a malicious user

(@) The programmer’s
mental model of an
expected execution trace

Figure 10: A vulnerability in sendmail due to interac-
tion between user IDs and group IDs. The failure occurs'

tonewuidregardless of the effective user ID. We envision
the following scenarios wheretuidmay be misused:

e If a setuid-root program temporarily drops root
privilege with seteuid(getuid()and later callsse-
tuid(getuid()) with the intention of permanently
dropping all root privileges, the program does not
get the intended behavior on Linux or Solaris, be-
cause the saved user ID remains root. (However,
the program does receive the intended behavior on
FreeBSD.)

e Also on Linux or Solaris, in a setuid-root pro-
gram, calling setuid(getuid())permanently drops
root privileges; however, in a setuid-non-root pro-
gram (e.g., a program that is setuid-Alice where Al-
ice is a non-root user), callingetuid(getuid()will
not permanently drop Alice’s privileges, because
the saved user ID remains Alice. This is particu-
larly confusing, because the way setuid-root pro-
grams permanently drop privileges does not work
in setuid-non-root programs on Linux or Solaris.

8.1.2 Obeying the Proper Order of System Calls

The POSIX-define@ppropriate privilegesffect the ac-

because the programmer has overlooked that she has dens of both system calls that set user IDs and that set

ready dropped root privilege and hence no longer has th

appropriate privilegego drop all group privileges in the
setgidcall.

8.1 General Guidelines

8.1.1 Selecting an Appropriate System Call

gdroup IDs. Since oftemppropriate privilegesare car-
ried by the effective uid, a program should drop group
privileges before dropping user privileges permanently.
Otherwise, after permanently dropping user privileges,
the program may be unable to permanently drop group
privileges. For example, the program in Fig{ire /1 (a) is
able to permanently drop both user and group privileges
because it callsetgidbeforesetuid In contrast, since
the program in Figurg 11(p) calietuidbeforesetgid it
fails to drop group privileges permanently.

Sincesetresuidhas a clear semantics and is able to set
each user ID individually, it should always be used if 8.1.3 Verifying Proper Execution of System Calls

available. Otherwise, to set only the effective use-

teuid(neweuid) should be used; to set all three user IDs,

setreuid(newuid, newuid) should be used.

Since the semantics of the uid-setting system calls may
change, e.g., when the kernel changes or when an appli-

setuidshould be avoided because its overloaded semarf:ation is ported to a different Unix system, it is impera-
tics and inconsistent implementation in different Unix tive to verify successful execution of these system calls.
systems may cause confusion and security vulnerabilities

for the unwary programmer. As described in Sedfioh 5.2,

in Linux or Solaris, if the effective user ID is zerse-
tuid(newuid)sets all three user IDs teewuid otherwise,
it sets only the effective user ID teewuid On the other
hand, in FreeBSBetuid(newuid}sets all three user IDs

Checking Return Codes The uid-setting system calls
return zero on success and non-zero on failure. A process
should check the return codes to verify the successful ex-
ecution of these calls. This is especially important when

// drop privilege
ruid=100, euid=suid=0 ruid=100, euid=suid=0 setuid(getuid());

rgid=200, egid=sgid=0 rgid=200, egid=sgid=0

set gi d(get gi d()) set ui d(get ui d()) /I verify the process cannot restore privilege
4 if (setreuid(-1, 0) == 0)
ruid=100, euid=suid=0 ruid=euid=suid=100 return ERROR:
rgid=egid=sgid=200 rgid=200, egid=sgid=0
setui d(getuid()) setgid(getgid())
4 A

Figure 12: An example of a program that verifies that
ruid=euid=suid=100 ruid=euid=suid=100 it has properly dropped root privileges. The verification

is achieved by checking that unpermitted uid-setting sys-
tem calls will fail. Note that a full implementation should

rgid=egid=sgid=200 rgid=egid=200, sgid=0

(@) A program correctly (b) A program fails to also check the return code frasetuidand verify that all
drops both user and group drop group privileges per- three user IDs are as expected after the cadktoid
privileges permanently by manently because it calls

calling setgid(getgid())be- setuid(getuid()oefore set-

fore setuid(getuid) gid(getgid()) examine itsfsuid via the/proc filesystem since Linux

does not offer getfsuidcall.

Figure 11: Proper order of dropping user and group priv-

ileges. Figure (a), on the left, shows proper usage; figure

(b) shows what can go wrong if one gets the order backVerifying Failures Once an attacker takes control of a

wards. process, the attacker may insert arbitrary code into the

process. Therefore, for further assurance on security,

.) the process should ensure that all unpermitted uid-setting

a process permanently drops privilege, since such an agytem calls will fail. For example, after dropping privi-

t|o.n. usually precedes o.pera'uons that, if executed W'tr\ege permanently, the process should verify that attempts

privilege, may compromise the system. to restore privilege will fail. This is shown in Figufe]12.

Be aware that the Linux-specifeetfsuidsystem call re-

turns the previoutsuidfrom before the calland does not 8 2 An Improved API for Privilege Manage-
return any error message to the caller on failure. This is ment

one motivation for our next guideline.

Although the general guidelines in Sect[on|8.1 can help
Verifying User IDs However, checking return codes Programmers to use the uid-setting system calls more se-
may be insufficient for uid-setting system calls. For ex-curely, programmers still have to grapple with the com-
amp|e, in Linux and Solaris, depending on the eﬁectiveplex semantics of the uid-setting system calls and their
uid, setuid(newuidmay either (1) set all three user IDs differences among Unix systems. The complexity is
(if the effective uid is zero), or (2) set only the effective partly due to a mismatch between the low-level seman-
uid (if it is non-zero), but the system call returns the samelics of the system calls, which describes how to modify
success code in both cases. The return code does not ifie user IDs, and the high-level goals of the programmer,
dicate to the process which case has happened, and thwdlich represent a policy for when the application should
checking return codes is not enough to guarantee sudln with privilege. We propose to resolve this tension by
cessful Comp|eti0n of the uid Operation in some Casesi_ntrOdUCing an API that is better matched to the needs of
Moreover, checking the return code is infeasible for theapplication programmers.
setfsuidcall since it does not return any error message on
failure.

8.2.1 Proposed API
Therefore, after each uid-setting system call, a program
should verify that each of its user IDs are as expected.
process may cafietresuido check all three user IDs if it
is available, as in Linux and FreeBSD, or use ffroc
filesystem on Solaris. Otherwise, the process may call
getuidandgeteuidto check the real uid and effective uid, e Drop privilege temporarily, in a way that allows the
if none of these are available. In Linux, a process must privilege to be restored later.

Afn many applications, privilege management can typi-
cally be broken down into the following tasks:

drop_priv_temp()| |restore_priv()
4

(‘unpriv_temp)

Figure 13: An FSA showing the behavior of a process
when calling the functions of the new API.

drop_priv_perm()

e Drop privilege permanently, so that it can never be
restored. }

e Restore privilege.

We propose a new API that offers the ability to perform
each of these tasks directly and easily. The API contains
three functions:

e drop_priv_temp(newuid): Drop privilege temporar- }
ily. Move the privileged user ID from the effective
uid to the saved uid. Assigmew uid to the effective
uid.

if (setresuid(-1, new_uid, geteuid()) < 0)

int drop_priv_temp(uid_t new_uid)
{
priv
return ERROR_SYSCALL;

if (geteuid() !'= new_uid)
return ERROR_SYSCALL;
return O;

int drop_priv_perm(uid_t new_uid)

uid_t ruid, euid, suid;

if (setresuid(new_uid, new_uid, new_uid) < 0)
return ERROR_SYSCALL,;

if (getresuid(&ruid, &euid, &suid) < 0)
return ERROR_SYSCALL,;

if (ruid != new_uid || euid != new_uid ||

suid !'= new_uid)

return ERROR_SYSCALL,;

return O;

int restore_priv()

int ruid, euid, suid;

if (getresuid(&ruid, &euid, &suid) < 0)
return ERROR_SYSCALL;

if (setresuid(-1, suid, -1) < 0)
return ERROR_SYSCALL;

if (geteuid() != suid)
return ERROR_SYSCALL,;

return O;

Figure 14: A possible implementation of the high-level

API for systems withsetresuid

e drop_priv_perm(newuid): Drop privilege perma-
nently. Assignnew.uid to all the real uid, effective
uid, and saved uid.

e restorepriv: Restore privilege. Copy the privileged
user ID from the saved uid to the effective uid.

By raising the level of abstraction, we free programmers
to think more about their desired security policy and less
about the mechanism of implementing this policy. Fig-
ure[I3 illustrates the action of these functions pictorially
with a simple state diagram.

8.2.2 Implementation

We implement the new API as wrapper functions to the
uid-setting system calls. The implementation usetse-
suid if available since it has the clearest semantics and
it is able to set each of the user IDs independently, as
shown in Figur¢ T4. Isetresuidor its equivalent is not
available, the implementation usssteuidandsetreuid

as shown in Figurg 15.

To use this implementation, an application must meet the
following requirements:

e When the process starts, its effective uid contains
the privileged user ID. This is true in most circum-
stances. When a process is run by a privileged user,
all three user IDs contain the privileged user ID. If
the process is run as a privileged user, i.e., its exe-
cutable is setuid’ed to the privileged user and is run
by an unprivileged user, both the effective uid and
saved uid of the process contain the privilege user
ID.

e Ifthe privileged user ID is not zero, then the unpriv-
ileged user ID must be stored in the real uid when
the process starts. This requirement enables the pro-
cess to replace the privileged user ID in the effective
uid with the unprivileged user ID idrop_priv_temp
anddrop_priv_perm This is the case when a non-
root user executes an executable that is setuid’ed
to another non-root user. On the other hand, if the
privileged user ID is zero, then there is no such re-
quirement, since the process can set its user IDs to

uid_t priv_uid;
int drop_priv_temp(uid_t new_uid)
int old_euid = geteuid();

/I copy euid to suid
if (setreuid(getuid(), old_euid) < 0)
return ERROR_SYSCALL;
/I set euid as new_uid
if (seteuid(new_uid) < 0)
return ERROR_SYSCALL,;
if (geteuid() '= new_uid)
return ERROR_SYSCALL;
priv_uid = old_euid;
return O;

}

int drop_priv_perm(uid_t new_uid)
{
uid_t suid;
if (setreuid(new_uid, new_uid) < 0)
return ERROR_SYSCALL;
/I OS specific way of reading suid

suid = read_suid_from_proc_filesystem();

if (getuid() != new_uid ||
geteuid() != new_uid ||
suid != new_uid)
return ERROR_SYSCALL;
return 0O;

}

int restore_priv()

if (seteuid(priv_uid) < 0)
return ERROR_SYSCALL;
if (geteuid() != priv_uid)
return ERROR_SYSCALL;
return 0O;

}

e Itdoes the right thing even in cases where root is not
involved, i.e., where the privileged user ID is not the
superuser.

We can extend this basic implementation to include
stronger safeguards against programming errors or OS
inconsistency. To prevent a program from restoring a
wrong privilege, we can let the functioastorepriv take

a parameter and check that the parameter matches the
privilege stored in the saved user ID (Fig[ré 14) or in the
variablepriv_uid (Figurg 1%). Another improvementis to

let the functiondrop_priv_permverify that an attempt to
regain privilege will fail, as described in Sectjon 8]1.3.

8.2.3 Evaluation

To evaluate the high-level API, we replaced every uid-
setting system call in OpenSSH 2.5.2 with functions

from the new API. OpenSSH contains fifteen uid-setting
system calls in eight tasks. Of the eight tasks, four are
to drop privilege permanently, two are to drop privilege

temporarily, and two are to restore privilege. We are able
to implement all these tasks with the new API.

One known limitation of our API is that it does not ad-
dress group privileges. We leave this for future work.

9 Future Work

Figure 15: A possible implementation of the high-level

API for systems withousetresuid

arbitrary values.

We plan to study how the uid-setting system calls affect
other properties of a process, such as the ability to receive
signals and to dump cores. We may also study how to

e The process does not make any uid-setting systergxtend the formal models for multi-threaded programs.
calls that change any of the three user IDs. Such d0pics to investigate include in-kernel races and how the
call may cause the process to enter a state not cowser IDs are inherited during the creation of new threads

ered by the FSA in Figurg 13, on which the high- in different Unix systems.

level APl and the implementation are based.

The implementation has the following beneficial proper-

ties:

It does not affect the real uid.

ceed.

uid-setting system call.

It guarantees that all transitions in Figlirg 13 suc

10 Conclusion

We have studied the proper usage of the uid-setting sys-

_tem calls by two approaches. First, we documented the
semantics of the uid-setting system calls in three major
Unix systems (Linux, Solaris, and FreeBSD) and identi-

It verifies that the user IDs are as expected after eacfied their differences. We then showed how to formalize

this problem using formal methods, and we proposed a

new algorithm for constructing a formal model of the se-

mantics of the uid-setting system calls. Using the result-
ing formal model, we identified semantic differences of

the uid-setting system calls among Unix systems and dis-
covered inconsistency within an OS kernel. Finally, we

provided guidelines for proper usage of the uid-setting

system calls and proposed a high-level API for manag-
ing user IDs that is more comprehensible, usable, and
portable than the usual Unix API.

Acknowledgment

We thank Monica Chew, Solar Designer, Peter Gutmann,
Robert Johnson, Ben Liblit, Zhendong Su, Theodore
Ts'o, Wietse Venema, Michal Zalewski, and the anony-
mous reviewers for their valuable comments.

References

[1] Chris Torek and Casper H.S. Dik. Setuid meb#tp:
/lyarchive.net/comp/setuid_mess.html

[2] Richard Stevens.Advanced Programming in the UNIX
Environment Addison-Wesley Publishing Company,
1992.

[3] Matt Bishop. How to write a setuid programylogin:,
12(1):5-11, 1987.

[4] Dennis M. Ritchie. Protection of data file contents.
United States Patent #4,135,240. Available fiiottp:
/Iwww.uspto.gov

[5] IEEE Standard 1003.1-1998: IEEE standard portable op-
erating system interface for computer environmenis
stitute of Electrical and Electronics Engineers, 1988.

[6] |http://www.sun.com/software/solaris/

[7] |http://lwww.freebsd.org

[8] |http://iwww.Kkernel.org

[9] dm(8). 4.4 BSD System Manager's Manual.

[10] Simon N. Foley. Implementing chinese walls in unix.
Computers and Security Journalb(6):551-563, Decem-
ber 1997.

[11] |http://www.sendmail.org/

[12] Sendmail Inc. Sendmail workaround for linux capabilities
bug. |http://www.sendmail.org/sendmail.
8.10.1.LINUX-SECURITY .txt

[13] Michal Zalewski. Multiple local sendmail vulnerabili-
ties. |http://razor.bindview.com/publish/
advisories/adv_sm812.html

[14] Hao Chen, David Wagner, and Drew Dean. An infras-
tructure for examining security properties of software.
manuscript in preparation.

http://yarchive.net/comp/setuid_mess.html
http://yarchive.net/comp/setuid_mess.html
http://www.uspto.gov
http://www.uspto.gov
http://www.sun.com/software/solaris/
http://www.freebsd.org
http://www.kernel.org
http://www.sendmail.org/
http://www.sendmail.org/sendmail.8.10.1.LINUX-SECURITY.txt
http://www.sendmail.org/sendmail.8.10.1.LINUX-SECURITY.txt
http://razor.bindview.com/publish/advisories/adv_sm812.html
http://razor.bindview.com/publish/advisories/adv_sm812.html

	Introduction
	Related Work
	User ID Model
	History
	Early Unix
	System V
	BSD
	Modern Unix

	Complexity of Uid-setting System Calls
	Operating System-Specific Differences
	Comparison among Uid-setting System Calls

	Formal Models
	Building a Formal Model
	Examples of Formal Models
	Correctness
	Applications
	Verifying Accuracy of Manual Pages
	Identifying Implementation Differences
	Detecting Inconsistency within an OS Kernel
	Checking Proper Usage of Uid-setting System Calls

	Advantages

	Case Studies of Security Vulnerability
	Misuse of Setuid
	Interaction between User IDs and Group IDs

	Guidelines
	General Guidelines
	Selecting an Appropriate System Call
	Obeying the Proper Order of System Calls
	Verifying Proper Execution of System Calls

	An Improved API for Privilege Management
	Proposed API
	Implementation
	Evaluation

	Future Work
	Conclusion

