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Abstract

Access control in Unix systems is mainly based on user
IDs, yet the system calls that modify user IDs (uid-setting
system calls), such assetuid, are poorly designed, in-
sufficiently documented, and widely misunderstood and
misused. This has caused many security vulnerabilities
in application programs. We propose to make progress
on the setuid mystery through two approaches. First,
we study kernel sources and compare the semantics of
the uid-setting system calls in three major Unix systems:
Linux, Solaris, and FreeBSD. Second, we develop a for-
mal model of user IDs as a Finite State Automaton (FSA)
and develop new techniques for automatic construction
of such models. We use the resulting FSA to uncover
pitfalls in the Unix API of the uid-setting system calls, to
identify differences in the semantics of these calls among
various Unix systems, to detect inconsistency in the han-
dling of user IDs within an OS kernel, and to check the
proper usage of these calls in programs automatically.
Finally, we provide general guidelines on the proper us-
age of the uid-setting system calls, and we propose a
high-level API that is more comprehensible, usable, and
portable than the usual Unix API.

1 Introduction

Access control in Unix systems is mainly based on the
user IDs associated with a process. In this model, each
process has a set of user IDs and group IDs which deter-
mine which system resources, such as files and network
ports, the process can access1. Certain privileged user
IDs and groups IDs allow a process to access restricted
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1In many Unix systems, a process has also a set ofsupplementary
group IDs, which are not closely related to the topic of this paper and
which will not be discussed.

system resources. In particular, user ID zero, reserved for
the superuserroot, allows a process to access all system
resources.

In some applications, a user process needs extra privi-
leges, such as permission to read the password file. By
the principle of least privilege, the process should drop
its privileges as soon as possible to minimize risk to the
system should it be compromised and execute malicious
code. Unix systems offer a set of system calls, called the
uid-setting system calls, for a process to raise and drop
privileges. Such a process is called asetuid process. Un-
fortunately, for historical reasons, the uid-setting system
calls are poorly designed, insufficiently documented, and
widely misunderstood. “Many years after the inception
of setuid programs, how to write them is still not well un-
derstood by the majority of people who write them” [1].
In short, the Unix setuid model is mysterious, and the
resulting confusion has caused many security vulnerabil-
ities.

We approach the setuid mystery as follows. First, we
study the semantics of the uid-setting system calls by
reading kernel sources. We compare and contrast the se-
mantics among different Unix systems, which is useful
for authors of setuid programs. In doing so, we found
that manual inspection is tedious and error-prone. This
motivates our second contribution: we construct a for-
mal model to capture the behavior of the operating sys-
tem and use it to guide our analysis. We will describe a
new technique for building this formal model in an au-
tomated way. We have used the resulting formal model
to more accurately understand the semantics of the uid-
setting system calls, to uncover pitfalls in the Unix API
of these calls, to identify differences in the semantics of
these calls among various Unix systems, to detect incon-
sistency in the handling of user IDs within an OS kernel,
and to check for the proper usage of user IDs in programs
automatically.

Formal methods have gained a reputation as being im-



practical to apply to large software systems, so it may
be surprising that we found formal methods so useful in
our effort. We will show how our formal model enables
many tasks that would otherwise be too error-prone or
laborious to undertake. Our success comes from using
lightweight techniques to answer a well-defined question
about the system; we arenot attempting to prove that a
kernel is correct! Abstraction plays a major role in sim-
plifying the system so that simple analysis techniques are
sufficient.

This paper is organized as the follows. Section 2 dis-
cusses related work. Section 3 provides background on
the user ID model. Section 4 reviews the evolution of
the uid-setting system calls. Section 5 compares and
contrasts the semantics of the uid-setting system calls in
three major Unix systems. Section 6 describes the formal
user ID model and its applications. Section 7 analyzes
two security vulnerabilities caused by misuse of the uid-
setting system calls. Section 8 provides guidelines on the
proper usage of the uid-setting system calls and proposes
a high-level API to the user ID model.

2 Related Work

Manual pages in Unix systems are the primary source
of information on the user ID model for most program-
mers. See, for example,setuid(2)and setgid(2). But
unfortunately, they are often incomplete or even wrong
(Section 6.4.1). Many books on Unix programming also
describe the user ID model, such as Stevens’ [2], but of-
ten they are specific to one Unix system or release, are
outdated, or lack important details.

Bishop discussed security vulnerabilities in setuid pro-
grams [3]. His focus is on potential vulnerabilities that
a process may be susceptible to once it gains privilege,
while our focus is on how to gain and drop privilege con-
fidently and securely. Unix systems have evolved and
diversified a great deal since Bishop’s work in 1987, and
a big problem today is how to port setuid programs se-
curely to various Unix systems.

3 User ID Model

This section provides background on the user ID model.
Each user in a Unix system has a unique user ID. The
user ID determines which system resources the user can

access. In particular, user ID zero is reserved for the su-
peruserroot who can access all resources.

Each process has three user IDs: thereal user ID (real
uid, or ruid), theeffective user ID(effective uid, or euid),
and thesaved user ID(saved uid, or suid). The real uid
identifies the owner of the process, the effective uid is
used in most access control decisions, and the saved uid
stores a previous user ID so that it can be restored later.
Similarly, a process has three group IDs: thereal group
ID, the effective group ID, and thesaved group ID. In
most cases, the properties of the group IDs parallel the
properties of their user ID counterparts. For simplicity,
we will focus on the user IDs and will mention the group
IDs only when there is the potential for confusion or pit-
falls. In Linux, each process has also anfsuid and an
fsgidwhich are used for access control to the filesystem.
The fsuid usually follows the value in the effective uid
unless explicitly set by thesetfsuidsystem call. Simi-
larly, the fsgid usually follows the value in the effective
gid unless explicitly set by thesetfsgidsystem call. Since
thefsuidandfsgidare Linux specific, we will not discuss
them except when we point out an inconsistency in the
handling of them in the Linux kernel.

When a process is created byfork, it inherits the three
user IDs from its parent process. When a process exe-
cutes a new file byexec. . ., it keeps its three user IDs
unless the set-user-ID bit of the new file is set, in which
case the effective uid and saved uid are assigned the user
ID of the owner of the new file.

Since access control is based on the effective user ID, a
process gains privilege by assigning a privileged user ID
to its effective uid, and drops privilege by removing the
privileged user ID from its effective uid. Privilege may
be dropped either temporarily or permanently.

• To drop privilege temporarily, a process removes
the privileged user ID from its effective uid but
stores it in its saved uid. Later, the process may
restore privilege by restoring the privileged user ID
in its effective uid.

• To drop privilege permanently, a process removes
the privileged user ID from all three user IDs.
Thereafter, the process can never restore privilege.



4 History

Bell Laboratories filed a patent application on Den-
nis Ritchie’s invention of a bit to specify that a pro-
gram should execute with the permissions of its owner,
rather than invoker, in 1973. The patent was granted in
1979 [4]. Thus, setuid programs and related system calls
have existed through most of Unix history.

4.1 Early Unix

In early Unix systems, a process had two user IDs: the
real uid and the effective uid. Only one system call,se-
tuid, modified them according to the following rule: if
the effective uid was zero,setuidset both the real uid
and effective uid; otherwise,setuid could only set the
effective uid to the real uid [1]. This model had the prob-
lem that a process could not temporarily drop the root
privilege in its effective uid and restore it later. As Unix
diverged into System V and BSD, each system solved the
problem in a different way.

4.2 System V

System V added a new user ID called the saved uid to
each process. Also added was a new system call,seteuid,
whose rules were:

• If the effective uid was zero,seteuidcould set the
effective uid to any user ID.

• Otherwise,seteuidcould set the effective uid to only
the real uid or saved uid.

seteuiddid not change the real uid or saved uid. Further-
more, System V modifiedsetuidso that if the effective
uid was not zero,setuidfunctioned asseteuid(changing
only the effective uid); otherwise,setuidset all three user
IDs.

4.3 BSD

4.2 BSD kept the real uid and effective uid but changed
the system call fromsetuidto setreuid. Processes could
then directly control both their user IDs, under the fol-
lowing rules:

• If the effective uid was zero, then the real uid and
effective uid could be set to any user ID.

• Otherwise, either the real uid or the effective uid
could be set to value of the other one.

Therefore, thesetreuidsystem call enabled a process to
swap the real uid and effective uid.

The POSIX standard [5] codified a new specification for
the setuidcall. In an attempt to be POSIX compliant,
4.4 BSD replaced 4.2 BSD’s oldsetreuidmodel with
the POSIX/System V style saved uid model. It modified
setuidso thatsetuidset all three user IDs regardless of
whether the effective uid of a process was zero, therefore
allowing any process to permanently drop privileges.

4.4 Modern Unix

As System V and BSD influenced each other, both sys-
tems implementedsetuid, seteuid, andsetreuid, although
with different semantics. None of these system calls,
however, allowed the direct manipulation of the saved
uid (although it could be modified indirectly throughse-
tuid andsetreuid). Therefore, some modern Unix sys-
tems introduced a new call,setresuid, to allow the modi-
fication of each of the three user IDs directly.

5 Complexity of Uid-setting System Calls

A process modifies its user IDs by the uid-setting sys-
tem calls:setuid, seteuid, setreuid, and in some systems,
setresuid. Each of the system calls involves two steps.
First, it checks if the process has permission to invoke
the system call. If so, it then modifies the user IDs of the
process according to certain rules.

In this section, we compare and contrast the semantics
of the uid-setting system calls among Linux 2.4.18 [8],
Solaris 8 [6], and FreeBSD 4.4 [7]. The behavior of the
uid-setting system calls was discovered by a combina-
tion of manual inspection of kernel source code and for-
mal methods. We will defer discussion of the latter until
Section 6.

The POSIX Specification To understand the seman-
tics of the uid-setting system calls, we begin with the
POSIX standard, which has influenced the design of the



system calls in many systems. In particular, the behavior
of setuid(newuid)is defined by the POSIX specification.
See Figure 1 for the relevant text.

The POSIX standard refers repeatedly to the termap-
propriate privileges, which is defined in Section 2.3 of
POSIX 1003.1-1988 as:

An implementation-defined means of associ-
ating privileges with a process with regard to
the function calls and function call options de-
fined in this standard that need special privi-
leges. There may be zero or more such means.

Essentially, the termappropriate privilegeserves as a
wildcard that allows compliant operating systems to
use any policy whatsoever for deeming when a call
to setuid should be allowed. The conditional flag
{ POSIX SAVEDIDS} parametrizes the specification,
allowing POSIX-compatible operating systems to use ei-
ther of two schemes (as described in Figure 1). We will
see how different interpretations of the termappropriate
privilege have led to considerable differences in the be-
havior of the uid-setting system calls between operating
systems.

5.1 Operating System-Specific Differences

Much of the confusion is caused by different interpreta-
tions ofappropriate privilegesamong Unix systems.

Solaris In Solaris 8, a System V based system, a
process is considered to haveappropriate privileges
if its effective uid is zero (root). Also, Solaris de-
fines{ POSIX SAVEDIDS}. Consequently, callingse-
tuid(newuid)sets all three user IDs tonewuid if the ef-
fective uid is zero, but otherwise sets only the effective
uid tonewuid(if the setuidcall is permitted).

FreeBSD FreeBSD 4.4 interpretsappropriate privi-
legesdifferently, as noted in Appendix B4.2.2 of POSIX:

The behavior of 4.2BSD and 4.3BSD that al-
lows setting the real ID to the effective ID is
viewed as a value-dependent special case of
appropriate privilege.

This means that a process is deemed to haveap-
propriate privilegeswhen it callssetuid(newuid)with

If { POSIX SAVEDIDS} is defined:

1. If the process hasappropriate privileges, these-
tuid() function sets the real user ID, effective user
ID, and the [saved user ID] tonewuid.

2. If the process does not haveappropriate privi-
leges, but newuidis equal to the real user ID or
the [saved user ID], thesetuid() function sets the
effective user ID tonewuid; the real user ID and
[saved user ID] remain unchanged by this func-
tion call.

Otherwise:

1. If the process hasappropriate privileges, these-
tuid() function sets the real user ID and effective
user ID tonewuid.

2. If the process does not haveappropriate privi-
leges, but newuid is equal to the real user ID,
thesetuid() function sets the effective user ID to
newuid; the real user ID remains unchanged by
this function call.

(POSIX 1003.1-1988, Section 4.2.2.2)

Figure 1: An excerpt from the POSIX specification [5]
covering the behavior of thesetuidsystem call.

newuid=geteuid(), in addition to when its effective uid is
zero. Also in contrast to Solaris, FreeBSD does not de-
fine { POSIX SAVEDIDS}, although every FreeBSD
process does have a saved uid. Therefore, by callingse-
tuid(newuid), a process sets both its real uid and effective
uid to newuid if the system call is permitted, in agree-
ment with POSIX. FreeBSD also sets the saved uid in all
permittedsetuidcalls.

Linux Linux introduces a capability2 model for finer-
grained control of privileges. Instead of a single level
of privilege determined by the effective uid (i.e., root or
non-root), there are a number of capability bits each of
which is used to determine access control to certain re-
sources3. One of them, theSETUIDcapability, carries
the POSIXappropriate privileges. To make the new ca-

2Beware: the word “capability” is a bit of a misnomer. In this con-
text, it refers to special privileges that a process can possess, and not
to the usual meaning in the security literature of an unforgeable refer-
ence. Regrettably, the former usage comes from the POSIX standard
and seems to be in common use, and so we follow their convention in
this paper.

3More accurately, a Linux process has three sets of capabilities, but
only the set ofeffective capabilitiesdetermine access control. All ref-
erences tocapabilitiesin this paper refer to the effective capabilities.



pability model compatible with the traditional user ID
model whereappropriate privilegesare carried by a zero
effective uid, the LinuxSETUIDcapability tracks the ef-
fective uid during all uid-setting system calls: Whenever
the effective uid becomes zero, theSETUID capability
is set; whenever the effective uid becomes non-zero, the
SETUIDcapability is cleared.

However, theSETUID capability can be modified out-
side the uid-setting system calls. A process can clear
its SETUID capability, and a process with theSETP-
CAP capability can remove theSETUID capability of
other processes (but note that in Linux 2.4.18, no process
has or can acquire theSETPCAPcapability, a change
that was made to close a security hole; see Section 7.1
for details). Therefore, explicitly setting or clearing the
SETUIDcapability changes the properties of uid-setting
systems calls.

5.2 Comparison among Uid-setting System
Calls

Next we compare and contrast the uid-setting system
calls and point out several unexpected properties and an
inconsistency in the handling offsuid in the Linux ker-
nel.

setresuid() setresuidhas the clearest semantics among
the four uid-setting system calls. The permission check
for setresuid()is intuitive and common to all OSs: for the
setresuid()system call to be allowed, either the euid of
the process must be root, or each of the three parameters
must be equal to one of the three user IDs of the process.
As each of the real uid, effective uid, and saved uid is
set directly bysetresuid, the programmer knows clearly
what to expect after the call. Moreover, thesetresuid
call is guaranteed to have an all-or-nothing effect: if it
succeeds, all user IDs are changed, and if it fails, none
are; it will not fail after having changed some but not all
of the user IDs.

Note that while FreeBSD and Linux offersetresuid, So-
laris does not. However, Solaris does offer equivalent
functionality via the/proc filesystem. Any process can
examine its three user IDs, and a superuser process can
set any of them, in line with the traditional System V
notion ofappropriate privilege.

seteuid() seteuidhas also a clear semantics. It sets
the effective uid while leaving the real uid and saved

uid unchanged. However, when the current effective uid
is not zero, there is a slight difference in the permis-
sion required byseteuidamong Unix systems. While
Solaris and Linux allow the parameterneweuidto be
equal to any of the three user IDs, FreeBSD only allows
neweuidto be equal to either the real uid or saved uid;
in FreeBSD, the effective uid is not used in the decision.
As a surprising result,seteuid(geteuid()), which a pro-
grammer might intuitively expect to be always permitted,
can fail in FreeBSD, e.g., whenruid=100,euid=200, and
suid=100.

setreuid() The semantics ofsetreuidis confusing. It
modifies the real uid and effective uid, and in some
cases, the saved uid. The rule by which the saved uid
is modified is complicated. Furthermore, the permis-
sion required forsetreuiddiffers among the three op-
erating systems. In Solaris and Linux, a process can
always swap the real uid and effective uid by calling
setreuid(geteuid(), getuid()). In FreeBSD, however,se-
treuid(geteuid(), getuid())sometimes fails, e.g., when
ruid=100,euid=200, andsuid=100.

setuid() Although setuid is the only uid-setting sys-
tem call standardized in POSIX 1003.1-1988, it is also
the most confusing one. First, the required permission
differs among Unix systems. Both Linux and Solaris
require the parameternewuid to be equal to either the
real uid or saved uid if the effective uid is not zero. As
a surprising result,setuid(geteuid()), which a program-
mer might reasonably expect to be always permitted, can
fail in some cases, e.g., whenruid=100,euid=200, and
suid=100. On the other hand,setuid(geteuid())always
succeeds in FreeBSD. Second, the action ofsetuiddif-
fers not only among different operating systems but also
between privileged and unprivileged processes. In So-
laris and Linux, if the effective uid is zero, a successful
setuid(newuid)call sets all three user IDs tonewuid; oth-
erwise, it sets only the effective user ID tonewuid. On
the other hand, in FreeBSD a successfulsetuid(newuid)
call sets all three user IDs tonewuid regardless of the
effective uid.

setfsuid() In Linux, each process has also anfsuid in
addition to its real uid, effective uid, and saved uid. The
fsuid is used for access control to the filesystem. It nor-
mally follows the effective uid unless when explicitly set
by the setfsuidsystem call. The Linux kernel tries to
maintain the invariant that thefsuid is zero only if at least
one of the real uid, effective uid, or saved uid is zero, as



ruid=euid=suid=0
fsuid=0

setresuid(x,x,-1)

ruid=euid=fsuid=x
suid=0

setfsuid(0)

ruid=euid=x
suid=fsuid=0

setresuid(-1,-1,x)

ruid=euid=suid=x
fsuid=0

Figure 2: The call sequence shows that the invariant that
the fsuid is zero only if at least one of the ruid, euid, or
suid is zerois violated in Linux. In the figure,x repre-
sents a non-zero user ID.

manifested in the comment in a source files. The ratio-
nale is that once a process has dropped root privilege in
each of its real uid, effective uid, and saved uid, the pro-
cess cannot have any leftover root privilege in thefsuid.
Since thefsuid is Linux specific, this invariant allows a
cross-platform application that is not aware of thefsuid
to securely drop all privileges.

Unfortunately, we discovered that this invariant may be
violated due to a bug in the kernel up to the latest version
of Linux (2.4.18, as of this writing). The bug is that while
every successfulsetuidandsetreuidcall sets thefsuid to
the effective uid, a successfulsetresuidcall will fail to
do the same if the effective uid does not change during
the call4. This causes the call sequence in Figure 2 to
violate the invariant. The bug has been confirmed by the
Linux community. Section 6.4.3 will describe how we
discovered this bug using a formal model.

setgid() and relatives There are also a set of calls
for manipulating group IDs, namely,setgid, setegid, se-
tregid, andsetresgid. They behave much like their se-
tuid counterpart, with only one minor exception (the per-
mission check insetregiddiffers slightly fromsetreuid
in Solaris). However, theappropriate privilegesare al-
ways carried by theeuid in both setuid-like and setgid-
like calls. Thus, an effective group ID of zero does not
accord any special privileges to change groups. This is
a potential source of confusion: it is tempting to assume
incorrectly that sinceappropriate privilegesare carried
by theeuid in the setuid-like calls, they will be carried

4The seteuid(euid)call in Linux is implemented assetreuid(-1,
euid) or setresuid(-1, euid, -1), depending on the version of the C li-
brary. Hence, theseteuidsystem call might or might not set thefsuid
reliably, depending on the C library version.

by theegid in the setgid-like calls, but this is not how
it actually works. This misconception caused a mistake
in the manual page ofsetgidin Redhat Linux 7.2 (Sec-
tion 6.4.1).

In many Unix systems, a process has also a set ofsupple-
mentary group IDswhich are modified by thesetgroups
and initgroupscalls. They are not closely related to the
topic of this paper and will not be discussed.

6 Formal Models

We initially began developing the summary in the previ-
ous section by manually reading operating system source
code. Although reading kernel sources is a natural
method to study the semantics of the uid-setting sys-
tem calls, it has many serious limitations. First, it is
a laborious task, especially when various Unix systems
implement the system calls differently. Second, since
our findings are based on current kernel sources, they
may become invalid should the implementation change
in the future. Third, we cannot prove that our findings
are correct and that we have not misunderstood kernel
sources. Finally, informal specifications are not well-
suited to programmatic use, such as automated verifi-
cation of properties of the operating system or use in
static analysis of application programs to check proper
usage of the uid-setting system calls. These problems
with manual source code analysis motivate the need for
more principled methods for building a formal model of
the uid-setting system calls.

6.1 Building a Formal Model

Our model of the uid-setting system calls is based on fi-
nite state automata. The operating system maintains per-
process state (e.g., the real, effective, and saved uids) to
track privilege levels, and thus it is natural to view the
operating system as implementing a finite state automa-
ton (FSA). A state of the FSA contains all relevant in-
formation about the process, e.g., the three uids. Each
uid-setting system call leads to a number of possible tran-
sitions; we label each transition with the system call that
it comes from.

We construct the FSA in two steps: (1) determine its
states by reading kernel sources; (2) determine its tran-
sitions by simulation. In the first step, we determine the
states in the FSA by identifying kernel variables that af-



fect the behavior of the uid-setting system calls. For ex-
ample, if only the real uid, effective uid, and saved uid
can affect the uid-setting system calls, then each state of
the FSA is of the form(r, e, s), representing the values
of the real, effective, and saved user IDs, respectively.

This is a natural approach. However, the problem one
immediately faces is that the resulting FSA is much too
large: in Linux, uids are 32-bit values, and so there are
(232)3 = 296 possible states. Obviously, manipulating
an FSA of such size is infeasible. Therefore, we need
to somehow abstract away inessential details and reduce
the size of the FSA dramatically.

Fortunately, we can note that there is a lot of symme-
try present. If we have a non-root user ID, the behav-
ior of the operating system is essentially independent
of the actual value of this user ID, and depends only
on the fact that it is non-zero. For example, the states
(ruid, euid, suid) = (100, 100, 100) and(200, 200, 200)
are isomorphic up to a substitution of the value100 by
the value200, since the OS will behave similarly in both
cases (e.g.,setuid(0)will fail in both cases). In general,
we consider two states equivalent when each can be mu-
tated into the other by a consistent substitution on non-
root user IDs. By identifying equivalent states, we can
shrink the size of the FSA dramatically.

Now that we know that there must exist some reason-
able FSA model, the next problem is how to compute
it. Here we usesimulation: if we simulate the presence
of a pseudo-application that tries every possible system
call and we observe the state transitions performed by
the operating system in response to these system calls,
we can infer how the operating system will behave when
invoked by real applications. Once we identify equiva-
lent states, the statespace will be small enough that we
can exhaustively explore the entire statespace of the op-
erating system. This idea is made concrete in Figure 3,
where we give an algorithm to construct an FSA model
using these techniques.

Note that by using simulation to create a model of the
uid-setting system calls, we assume that while a process
is executing such a call, the user IDs of the process can-
not be modified outside the call. In other words, there is
no race on the user IDs between a uid-setting system call
and other parts of the kernel. This requirement might not
hold in multi-threaded programs if multiple threads share
the same user IDs. We leave this topic for future work.

Implementation Our implementation follows Figure 3
closely. (Note that the simulator must run as root.) In

GETSTATE():
1. Callgetresuid(& r,& e,& s) .
2. Return(r, e, s).

SETSTATE(r, e, s):
1. Callsetresuid( r, e, s) .
2. Check for error.

GETALL STATES():
1. Pickn arbitrary uidsu1, . . . , un.
2. LetU := {u1, . . . , un}.
3. LetS := {(r, e, s) : r, e, s ∈ U}.
4. LetC := {setuid( x) , setreuid( x, y) ,

setresuid( x, y, z) , · · ·
: x, y, z ∈ U ∪ {−1}}.

5. Return(S, C).

BUILD MODEL():
1. Let(S, C) := GETALL STATES().
2. Create an empty FSA with statespaceS.
3. For eachs ∈ S, do:
4. For eachc ∈ C, do:
5. Fork a child process, and within the child, do:
6. Call SETSTATE(s), and then invokec.
7. Finally, lets′ := GETSTATE(),

passs′ to the parent process, and exit.
8. Add the transitions

c→ s′ to the FSA.
9. Return the newly-constructed FSA as the model.

Figure 3: The model-extraction algorithm.

practice, we extend this basic algorithm with several op-
timizations and extensions.

One simple optimization is to use a depth-first search to
explore only the reachable states. In our case, the state-
space is small enough that the improvement is probably
unimportant, and we did not implement this optimiza-
tion. A more dangerous optimization would be to em-
ulate the behavior of the operating system from user-
level by cutting-and-pasting the source code of the setuid
system calls from the kernel into our simulation engine.
This would speed up model construction, but the perfor-
mance improvement comes at a severe price: it is hard
to be sure that our emulation of the OS is completely
faithful. In any case, our unoptimized implementation
already takes only a few seconds to generate the model.
For these reasons, we donot apply this optimization in
our implementation.

To ensure maximum confidence in the correctness of our
results, we check in two different ways that the call to
setresuidin line 1 of SETSTATE() succeeds. First, we



check the return value from the operating system. Sec-
ond, we callgetresuidand check that all three user IDs
have been set as desired (see Section 8.1.3).

On Solaris, there are nogetresuidandsetresuidsystem
calls. However, we can simulate them using the/proc
filesystem. We read the three user IDs of a process from
its cred file, and we modify the user IDs by writing to
its ctl file (seeproc(4)for details).

On Linux, we also model theSETUIDcapability bit by
adding a fourth dimension to the state tuple. Thus, states
are of the form(r, e, s, b) where the bitb is true when-
ever theSETUIDcapability is enabled. This allows us to
accurately model the case where an application explic-
itly clears or sets itsSETUIDcapability bit; though we
are not aware of any real application that does this, if we
ever do encounter such an application our model will still
remain valid.

On all operating systems, we extend our model further to
deal with system calls that fail (i.e., when invoking call
c in line 6 of BUILD MODEL()). It is sometimes useful
to be able to reason about whether a system call has suc-
ceeded or failed, and one way is to add a bit to the state
denoting whether the previous system call returned suc-
cessfully or not.

Also, on all operating systems we extend our model to
include group IDs. This adds three additional dimensions
to the state: real gid, effective gid, and saved gid5. In
this way, we can model the semantics of the gid-setting
system calls. On Linux, we also add a bit to indicate
whether theSETGIDcapability is enabled or not.

6.2 Examples of Formal Models

In this section, we show a series of formal models of
the uid-setting system calls created using the algorithm
in Figure 3. These models differ in their set of user ID
values. In other words, they differ in the user ID val-
ues picked in step 1 of GETALL STATES() subroutine in
Figure 3.

We start with a simple model where the set of user ID
values is{0, x} wherex is a non-root user ID. Although
simple, this model is accurate for many applications that
manipulate at most one non-root user ID at a time. For

5We don’t currently model supplemental groups, though this would
be straightforward to correct. Note that this omission does not affect
the correctness of our model, as supplemental groups are only used in
access control checks and never affect the behavior of thesetgid-like
calls.

instance, a state like(100, 200, 100) will never appear in
such an application. Each state in this simple FSA has
three bits, each representing whether the real uid, effec-
tive uid, or saved uid is root or not. All together there are
eight states in the FSA. In Figure 4 we show graphically
the models one obtains in this way for thesetuidcall on
Linux, Solaris, and FreeBSD. Note that the models on
Solaris and Linux are equivalent, but they differ from the
model on FreeBSD. Figure 5 shows the models for the
seteuid, setreuid, andsetresuidcalls on Linux.

A variation of the previous models is shown in Figure 6
where the set of user ID values is{x, y} wherex andy
are distinct non-root user ID values. This model is ap-
propriate for applications that switch between two non-
root user IDs (rather than between the root and a non-
root user ID). This model is appropriate for analyzing
BSD games [9] run under the dungeon master. Foley’s
work [10] offers a more serious use of this model.

We can easily extend the simple models to include more
user ID values, which are appropriate for applications
that use more than two user ID values. Figure 7 shows a
model where the set of user ID values is{0, x, y} where
x andy are distinct non-root user ID values. This is the
fully general model of Unix user IDs.

6.3 Correctness

Our model-extraction algorithm (Figure 3) is an instance
of a more general schema for inferring finite-state mod-
els, specialized by including application-dependent im-
plementations of the GETSTATE(), SETSTATE(), and
GETALL STATES() subroutines. We argue that our al-
gorithm is correct by arguing that the general version is
correct. This section may be safely skipped on first read-
ing.

We frame our theoretical discussion in terms of equiva-
lence relations. LetS denote the set of concrete states
(e.g., triples of 32-bit uids) andC the set of concrete sys-
tem calls. Writes

c
 t if the operating system will al-

ways transition from states to t upon invocation ofc.
We will need equivalence relations≡S onS and≡OS on
S×C that are respected by the operating system: in other
words, if s

c
 t ands ≡S s′, then there is some statet′

and some callc′ so that(s, c) ≡OS (s′, c′), t ≡S t′, and

s′
c′

 t′. The intuition is that callingc from s is some-
how isomorphic to callingc′ from s′. Also, we require
that whenever(s, c) ≡OS (s′, c′) holds, thens ≡S s′

does, too.
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Figure 4: Three finite state automata describing thesetuidsystem call in Linux, Solaris, and FreeBSD, respectively.
Ellipses represent states of the FSA, where a notation like “R=1,E=0,S=1” indicates thateuid= 0 andruid = suid 6= 0.
Each transition is labelled with the system call it corresponds to. To avoid cluttering the diagram, we omit the error
states and (in Linux) the capability bits that otherwise would appear in our deduced model.
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Figure 5: Three finite state automata describing theseteuid, setreuid, setresuidsystem calls in Linux respectively.
Ellipses represent states of the FSA, where a notation like “R=1,E=0,S=1” indicates thateuid= 0 andruid = suid 6= 0.
Each transition is labelled with the system call it corresponds to.
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thateuid= y andruid = suid= x. Each transition is labelled with the system call it corresponds to.
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Figure 7: A finite state automaton describing thesetuidsystem call in Linux. This FSA considers three user ID values:
the root user ID and two distinct non-root user ID valuesx andy. Ellipses represent states of the FSA, where a notation
like “R=0,E=x,S=y” indicates thatruid = 0, euid= x andsuid= y. Each transition is labelled with the system call it
corresponds to.

A critical requirement is that the operating system must
behavedeterministicallygiven the equivalence class of

the current state. More precisely, ifs
c
 t ands′

c′

 u
where(s, c) ≡OS (s′, c′), then we requiret ≡S u. The
intuition is that the behavior of the operating system will
depend only on which equivalence class we are in, and
not on any other information about the state. For in-
stance, the behavior of the operating system cannot de-
pend on any global variables that don’t appear in the state
s; if it does, these global variables must be included into
the statespaceS. As another example, a system call im-
plementation that attempts to allocate memory and re-
turned an error code if this allocation fails will violate
our requirement, because the success or failure of the
memory allocation introduces non-determinism, which
is prohibited. We can see that this requirement is non-
trivial, and it must be verified by manual inspection of
the source code before our algorithm in Figure 3 can be
safely applied; we will return to this issue later.

Next, there are three requirements on the instantiation of
the GETSTATE(), SETSTATE(), and GETALL STATES()
subroutines. First, the GETSTATE() routine must return
(a representative for) the equivalence class of the current
state of the operating system. Note that it is natural to
represent equivalence classes internally by singling out
a unique representative for each equivalence class and
using this value. Second, the SETSTATE() procedure
with parameters must somehow cause the operating sys-
tem to enter a states′ in the same equivalence class as

s (the implementation may freely choose one). Finally,
the GETALL STATES() function must return a pair(S, C)
so thatS contains at least one representative from each
equivalence class of≡S and so that every equivalence
class of≡OS contains some element(s, c) with c ∈ C.

When these general requirements are satisfied, the
BUILD MODEL() algorithm from Figure 3 will correctly
infer a valid finite-state model for the underlying oper-
ating system. The proof is easy. We will write[x] for
the equivalence class containingx, e.g., [s] = {t ∈
S : s ≡S t}. If s

c→ t appears in the final FSA out-
put by BUILD MODEL(), then there must have been a
step at which, for somes′ ∈ [s], t′ ∈ [t], andc′ with
(s, c) ≡OS (s′, c′), we executedc′ in states′ at line 6
and transitioned to statet′. (This follows from the cor-
rectness of SETSTATE() and GETSTATE().) The latter

means thats′
c′

 t′, from which it follows thats
c
 t′′ for

somet′′ ∈ [t], since the OS respects≡OS. Conversely,

if s′
c′

 t′ for somes′, c′, t′, then by the correctness of
GETALL STATES(), there will be somes and c satisfy-
ing (s, c) ≡OS (s′, c′) so that we enter line 6 withs, c,
and thanks to the deterministic nature of the operating
system we will discover the transitions

c→ t for some
t ≡S t′. Thus, the FSA output by BUILD MODEL() is
exactly what it should be. Consequently, all that remains
is to check that these requirements are satisfied by our
instantiation of the schema.



We argue this next for the implementation shown in
Figure 3. LetU denote the set of concrete uids (e.g.,
all 32-bit values), so thatS = U × U × U . Say
that a mapσ : U → U is a valid substitutionif it
is bijective and fixes 0, i.e.,σ(0) = 0. Each such
substitution can be extended to one onS by working
component-wise, i.e.,σ(r, e, s) = (σ(r), σ(e), σ(s)),
and we can extend it to work on system calls by apply-
ing the substitution to the arguments of the system call,
e.g., σ(setreuid (r, e)) = setreuid (σ(r), σ(e)).
We define our equivalence relation≡S on S as fol-
lows: two statess, s′ ∈ S are equivalent if there is
a valid substitutionσ such thatσ(s) = s′. Similarly,
(s, c) ≡OS (s′, c′) holds if there is some valid substitu-
tion σ so thatσ(s) = s′ andσ(c) = c′.

The correctness of GETSTATE() and SETSTATE() is im-
mediate. Also, so long asn ≥ 6, GETALL STATES()
is correct since the choice of uidsu1, . . . , un is imma-
terial: every pair(s, c) ∈ S × C is equivalent to some
pair (s′, c′) ∈ S × C, since we can simply map the first
six non-zero uids in(s, c) to u1, . . . , u6 respectively, and
there can be at most six non-zero uids in(s, c). Actu-
ally, we can see that the algorithm in Figure 3 comes
from a finer partition than that given by≡OS: for exam-
ple, (u1, u1, u1) and(u2, u2, u2) are unnecessarily dis-
tinguished. This causes no harm to the correctness of the
result, and only unnecessarily increases the size of the
resulting FSA. We gave the variant shown in Figure 3
because it is simpler to present, but in practice our im-
plementation does use the coarser relation≡S .

All that remains to check is that the operating system re-
spects and behaves deterministically with respect to this
equivalence class. We verify this by manual inspection of
the kernel sources, which shows that in Linux, FreeBSD,
and Solaris the only operations that the uid-setting sys-
tem calls perform on user IDs are equality testing of two
user IDs, comparison to zero, copying one user ID to an-
other, and setting a user ID to zero. Moreover, the oper-
ating system behavior does not depend on anything else,
with one exception: Linux depends on whether theSE-
TUID capability is enabled for the process, so on Linux
we add an extra bit to each state indicating whether this
capability is enabled. Thus, our verification task amounts
to checking that user IDs are treated as an abstract data
type with only four operations (equality testing, compar-
ison to zero, and so on) and that the side effects and re-
sults of the system call do not depend on anything outside
the stateS. In our experience, verifying that the operat-
ing system satisfies these conditions is much easier than
fully understanding its behavior, as the former is an al-
most purely mechanical process.

This completes our justification for the correctness of our
method for extracting a formal model to capture the be-
havior of the operating system.

6.4 Applications

The resulting formal model has many applications. We
have already discussed in Section 5 the semantics of the
setuid system calls and pointed out pitfalls; this relied
heavily on the FSA formal model. Next, we will dis-
cuss several additional applications: verifying documen-
tation and checking conformance with informal specifi-
cations; identifying cross-platform semantic differences
that might indicate potential portability issues; detecting
inconsistency in the handling of user IDs within an OS
kernel; and checking the proper usage of the uid-setting
system calls in programs automatically.

6.4.1 Verifying Accuracy of Manual Pages

Manual pages are the primary source of information for
Unix programmers, but unfortunately they are often in-
complete or wrong. FSAs are useful in verifying the ac-
curacy of manual pages of uid-setting system calls. For
each call, if its FSA is small and its description in man-
ual pages is simple, we check if each transition in the
FSA agrees with the description by hand. Otherwise, we
build another FSA based on the description and compare
this FSA to the original FSA built by simulation. Differ-
ences between the two FSAs indicate discrepancies be-
tween the behavior of the system call and its description
in manual pages.

The following are a few examples of problematic docu-
mentation that we have found using our formal model:

• The man page ofsetuidin Redhat Linux 7.2 fails to
mention theSETUID capability, which affects the
behavior ofsetuid.

• The man page ofsetreuidin FreeBSD 4.4 says:

Unprivileged users may change the real
user ID to the effective user ID and vice-
versa; only the super-user may make
other changes.

However, this is incorrect. Swapping the real uid
and effective uid does not always succeed, such as
when ruid=100, euid=200, suid=100, contrary to



what the man page suggests. The correct descrip-
tion is “Unprivileged users may change the real user
ID to the real uid or saved uid, and change the effec-
tive uid to the real uid, effective uid, or saved uid.”

• The man page ofsetgidin Redhat Linux 7.2 says

The setgid function checks the effective
gid of the caller and if it is the superuser,
all process related group ID’s are set to
gid.

In reality, the effectiveuid is checked instead of the
effectivegid.

6.4.2 Identifying Implementation Differences

Since various Unix systems implement the uid-setting
system calls differently, it is difficult to identify their se-
mantic differences via reading kernel sources. We can
solve this problem by creating an FSA of the user ID
model in each Unix system and contrasting the FSAs.
For example, Figure 4 shows clearly that the semantics
of setuidin Solaris is different from that in FreeBSD and
Linux.

The approach can be further formalized by taking the
symmetric difference of FSAs. In particular, ifM,M ′

are two FSAs for two Unix platforms with the same state-
space, we can find portability issues as follows. Compute
the parallel compositionM ×M ′, whose states are pairs
(s, s′) with s a state fromM and s′ a state fromM ′.
Then, mark as an accepting state ofM × M ′ any pair
(s, s′) wheres 6= s′. Now any execution trace that starts
at a non-accepting state and eventually reaches an accept-
ing state indicates a sequence of system calls whose se-
mantics is not the same on both operating systems. This
indicates a potential portability issue, and all such differ-
ences can be computed via a simple reachability compu-
tation (e.g., depth-first search).

6.4.3 Detecting Inconsistency within an OS Kernel

An OS kernel maintains many invariants which both the
kernel itself and many application programs depend on.
Violation of the invariants may cause vulnerabilities in
both the OS and applications. Therefore, it is important
to detect any violation of the invariants.

The Linux kernel tries to maintain the invariant that the
fsuid is zero only if at least one of the real uid, effective

uid, or saved uid is zero. To verify this invariant, we ex-
tend the formal model of user IDs with thefsuidand au-
tomatically create an FSA of the model on Linux. From
the FSA, we discovered that the invariant does not always
hold, because the state wherefsuid = 0 and ruid 6= 0,
euid 6= 0, suid 6= 0 is reachable. For example, the call
sequence in Figure 2 will violate the invariant. The prob-
lem results from an inconsistency in the handling of the
fsuid in the uid-setting system calls. While every suc-
cessfulsetuidandsetreuidcall sets thefsuid to the ef-
fective uid, a successfulsetresuidcall will fail to do the
same if the effective uid does not change during the call.
The problem has been confirmed by the Linux commu-
nity.

6.4.4 Checking Proper Usage of Uid-setting System
Calls

The formal model is also useful in checking proper us-
age of uid-setting system calls in programs. We model
a program as an FSA, called theprogram FSA, which
represents each program point as a state and each state-
ment as a transition. We call the FSA describing the user
ID model amodel FSA. By composing the program FSA
with the model FSA, we get acomposite FSA. Each state
in the composite FSA is a pair(s, s′) of one states from
the model FSA (representing a unique combination of
the values in the real uid, effective uid, and saved uid)
and one states′ from the program FSA (representing a
program point). Thus, a reachable state(s, s′) in the
composite FSA indicates that the states in the model
FSA is reachable at the program points′. Figure 8(b)
shows the program FSA of the program in Figure 8(a).
Figure 8(c) shows the composite FSA obtained by com-
posing the model FSA in 4(a) with the program FSA in
Figure 8(b).

This method is useful for checking proper usage of uid-
setting system calls in programs, such as:

• Can a uid-setting system call fail? If any error state
in the model FSA is reachable at some program
point, it shows that a uid-setting system call may
fail there.

• Can a program fail to drop privilege? If any state
that contains a privileged user ID in the model FSA
is reachable at a program point where the program
should be unprivileged, it shows that the program
may have failed to drop privilege at an earlier pro-
gram point.



// ruid=1, euid=0, suid=0
1: printf(“drop priv”);
2: setuid(1);
3: execl(“/bin/sh”, “sh”,NULL);

(a) A program segment

Line 1
printf() setuid(1)

Line 2 Line 3

(b) Program FSA of the program in Figure 8(a)

printf() setuid(1)Line 2
R=1,E=0,S=0

Line 3
R=1,E=1,S=1

Line 1
R=1,E=0,S=0

(c) Composite FSA of the model FSA in Figure 4(a) and
the program FSA in Figure 8(a)

Figure 8: Composing a model FSA with a program FSA

• Which part of the program may run with privilege?
To answer this question, we first identify all states
that contain a privileged user ID in the model FSA.
Then, we identify all program points where any of
those states are reachable. The program may run
with privilege at these program points.

A full discussion is out of the scope of this paper, and
we refer the interested reader to a companion paper for
details [14].

6.5 Advantages

The formal model holds several advantages over trying
to understand the behavior of the kernel through man-
ual code inspection. First, our formal model makes it
easier to describe the properties of the uid-setting sys-
tem calls. While we still need to read kernel code to
determine the kernel variables that affect the uid-setting
system calls, the majority of the workload, determining
their actions, is done automatically by simulation. Sec-
ond, the formal model is reliable because it is created
from the same environment where application programs
run. The formal model has corrected several mistakes
in the user ID model that we created manually. Third,
the formal model is useful in identifying semantic differ-
ences of uid-setting system calls among Unix systems.

Fourth, the formal model is useful in detecting inconsis-
tency in an OS kernel. Finally, the formal model is use-
ful in checking proper usage of uid-setting system calls
in programs automatically.

7 Case Studies of Security Vulnerability

Misuses of uid-setting system calls have caused many se-
curity vulnerabilities, which are good lessons in learning
the proper usage of the system calls. We will analyze two
such incidents in older versions of sendmail.

Sendmail [11] is a commonly used Mail Transmission
Agent(MTA). It runs in two modes: (1) as a daemon that
listens on port 25 (SMTP), and (2) via a Mail User Agent
to submit mail to the mail queue. In the first case, all
three user IDs of the sendmail process are typically zero,
as it is run by the superuserroot in the boot process. In
the second case, however, sendmail is run by an ordinary
user. As the mail queue is not world writable, sendmail
requires privilege to access the mail queue.

7.1 Misuse of Setuid

Next we describe a vulnerability that was caused by a
misuse of setuid [12]. Sendmail 8.10.1 installed the
sendmailbinary as a setuid-root executable. When it was
executed by a non-root user, the real uid of the process
was the non-root user while both the effective uid and
saved uid were zero. This gavesendmailpermission to
write to the mail queue since its effective uid was zero.
To minimize risks in the event that an attacker takes over
sendmailand executes malicious code with root privi-
lege, sendmailpermanently dropped root privilege be-
fore doing potentially dangerous operations requested by
an user. This was done by callingsetuid(getuid()), which
sets all three user IDs to the non-root user.

POSIX specifies that if a process hasappropriate priv-
ileges, setuid(newuid)sets all three user IDs tonewuid;
otherwise,setuid(newuid)only sets the effective uid to
newuid(if newuidis equal to the real uid or saved uid).
In Linux, appropriate privilegesare carried by theSE-
TUID capability. Furthermore, after any uid-setting sys-
tem call, the Linux kernel sets or clears theSETUID
capability bit, if necessary, to establish a simple post-
condition: theSETUID capability should be set if and
only if the effective uid is zero.



ruid!=0, euid=suid=0
SETUID-capability=1

ruid=euid=suid!=0
SETUID-capability=0

A normal non-root user 
executes sendmail

sendmail calls
setuid(getuid())

sendmail executes
the rest of code 

(a) A normal execution
of sendmail by a non-root
user

ruid!=0, euid=suid=0
SETUID-capability=0

ruid=euid!=0, suid=0
SETUID-capability=0

A malicious non-root 
user executes sendmail

sendmail calls
setuid(getuid())

The malicious user
 takes over 

sendmail and executes 
setreuid(-1,0)

ruid!=0, euid=suid=0

The malicious user
executes code

with root privilege

(b) An execution of send-
mail by an attacker

Figure 9: A vulnerability in sendmail due to a misuse
of setuid. Note the failure: the programmer assumed
that setuid(getuid())would always succeed in dropping
all privilege, but by disabling theSETUIDcapability, the
attacker is able to violate that expectation.

However, prior to version 2.2.16 of Linux, there was a
bug in the kernel that made it possible for a process to
clear itsSETUIDcapability bit even when its effective
uid was zero. In this case, callingsetuid(getuid())only
modified the effective uid, and under these conditions,
sendmailwould only drop root privilege from its effec-
tive uid but not its saved uid. Consequently, any mali-
cious local user who could take oversendmail(e.g., with
a buffer overrun attack) could restore root privilege in the
effective uid by callingsetreuid(-1, 0). In other words, an
attacker could ensuresendmail’s attempt to drop all priv-
ileges would fail, thereby raising the risk of a root attack
on sendmail. Figure 9 illustrates the vulnerability.

The vulnerability was caused by the overloaded seman-
tics of setuid. Depending on whether a process has the
SETUIDcapability, setuid sets one user ID or all three
user IDs, but it returns a success code in both cases. The
vulnerability can be avoided by replacingsetuid(newuid)
with setresuid(newuid, newuid, newuid)if available, or
with setreuid(newuid, newuid)otherwise.

7.2 Interaction between User IDs and Group
IDs

Another vulnerability in Sendmail was caused by an in-
teraction between the user IDs and the group IDs [13].
To further reduce the risk from a malicious user taking
over sendmail, as of version 8.12.0 Sendmail no longer
installed sendmailas a setuid-root program. To give
sendmailpermission to write to the mail queue, the mail
queue was configured to be writable by groupsmmsp,
andsendmailwas installed as setgid-smmsp. Therefore,
whensendmailwas executed by a non-root user, the real
gid of the process was the primary group of the user, but
the effective gid and saved gid weresmmsp.

For the same reason that it permanently dropped root
privilege in previous versions, nowsendmailperma-
nently droppedsmmspgroup privilege before executing
potentially malicious directives from a user. Similar to
the use ofsetuid(getuid())to permanently drop root priv-
ilege, sendmailcalled setgid(getgid())to permanently
drop smmspgroup privilege. However, sincesendmail
no longer hadappropriate privilegesbecause its effective
uid was not zero anymore,setgid(getgid())only dropped
the privileged group IDsmmspfrom the effective gid but
left it in the saved gid. Consequently, any malicious user
who found some way to take over sendmail (e.g., by a
buffer overrun) could restore thesmmspgroup privilege
in the effective gid by callingsetgid(-1, smmsp). This is
illustrated in Figure 10.

The vulnerability was caused by an interaction between
the user IDs and group IDs since changing user IDs may
affect the property ofsetgid. To avoid the vulnerabil-
ity, we can replacesetgid(newgid)with setresgid(newgid,
newgid, newgid)if available, orsetregid(newgid, newgid)
otherwise. The vulnerability also shows that if both user
IDs and group IDs are to be modified, the modification
should follow a specific order (Section 8.1.2).

8 Guidelines

We provide guidelines on the proper usage of the uid-
setting system calls. First, we discuss general guidelines
that apply to all setuid programs. Then, we focus on ap-
plications that use the uid-setting system calls in a spe-
cific way. We propose a high-level API for these appli-
cations to manage their privileges. The API is easier to
understand and to use than the Unix API.



ruid=euid=suid!=0
rgid!=smmsp

egid=sgid=smmsp

ruid=euid=suid!=0
rgid=egid=sgid!=smmsp

(wrong assumption)
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executes sendmail

sendmail calls
setgid(getgid())

sendmail executes 
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(a) The programmer’s
mental model of an
expected execution trace

ruid=euid=suid!=0
rgid!=smmsp

egid=sgid=smmsp

ruid=euid=suid!=0
rgid=egid!=smmsp

sgid=smmsp

A user 
executes sendmail

sendmail calls
setgid(getgid())

An attacker
takes over sendmail

and executes 
setregid(-1, smmsp)

ruid=euid=suid!=0
rgid!=smmsp

egid=sgid=smmsp

The attacker 
executes code with

smmsp group privilege

(b) Real execution of send-
mail by a malicious user

Figure 10: A vulnerability in sendmail due to interac-
tion between user IDs and group IDs. The failure occurs
because the programmer has overlooked that she has al-
ready dropped root privilege and hence no longer has the
appropriate privilegesto drop all group privileges in the
setgidcall.

8.1 General Guidelines

8.1.1 Selecting an Appropriate System Call

Sincesetresuidhas a clear semantics and is able to set
each user ID individually, it should always be used if
available. Otherwise, to set only the effective uid,se-
teuid(neweuid)should be used; to set all three user IDs,
setreuid(newuid, newuid) should be used.

setuidshould be avoided because its overloaded seman-
tics and inconsistent implementation in different Unix
systems may cause confusion and security vulnerabilities
for the unwary programmer. As described in Section 5.2,
in Linux or Solaris, if the effective user ID is zero,se-
tuid(newuid)sets all three user IDs tonewuid; otherwise,
it sets only the effective user ID tonewuid. On the other
hand, in FreeBSDsetuid(newuid)sets all three user IDs

to newuidregardless of the effective user ID. We envision
the following scenarios wheresetuidmay be misused:

• If a setuid-root program temporarily drops root
privilege with seteuid(getuid())and later callsse-
tuid(getuid()) with the intention of permanently
dropping all root privileges, the program does not
get the intended behavior on Linux or Solaris, be-
cause the saved user ID remains root. (However,
the program does receive the intended behavior on
FreeBSD.)

• Also on Linux or Solaris, in a setuid-root pro-
gram, calling setuid(getuid())permanently drops
root privileges; however, in a setuid-non-root pro-
gram (e.g., a program that is setuid-Alice where Al-
ice is a non-root user), callingsetuid(getuid())will
not permanently drop Alice’s privileges, because
the saved user ID remains Alice. This is particu-
larly confusing, because the way setuid-root pro-
grams permanently drop privileges does not work
in setuid-non-root programs on Linux or Solaris.

8.1.2 Obeying the Proper Order of System Calls

The POSIX-definedappropriate privilegesaffect the ac-
tions of both system calls that set user IDs and that set
group IDs. Since oftenappropriate privilegesare car-
ried by the effective uid, a program should drop group
privileges before dropping user privileges permanently.
Otherwise, after permanently dropping user privileges,
the program may be unable to permanently drop group
privileges. For example, the program in Figure 11(a) is
able to permanently drop both user and group privileges
because it callssetgidbeforesetuid. In contrast, since
the program in Figure 11(b) callssetuidbeforesetgid, it
fails to drop group privileges permanently.

8.1.3 Verifying Proper Execution of System Calls

Since the semantics of the uid-setting system calls may
change, e.g., when the kernel changes or when an appli-
cation is ported to a different Unix system, it is impera-
tive to verify successful execution of these system calls.

Checking Return Codes The uid-setting system calls
return zero on success and non-zero on failure. A process
should check the return codes to verify the successful ex-
ecution of these calls. This is especially important when



ruid=100, euid=suid=0
rgid=200, egid=sgid=0

ruid=100, euid=suid=0
rgid=egid=sgid=200

ruid=euid=suid=100
rgid=egid=sgid=200

setgid(getgid())

setuid(getuid())

(a) A program correctly
drops both user and group
privileges permanently by
calling setgid(getgid())be-
foresetuid(getuid)

ruid=100, euid=suid=0
rgid=200, egid=sgid=0

ruid=euid=suid=100
rgid=200, egid=sgid=0

ruid=euid=suid=100
rgid=egid=200, sgid=0

setuid(getuid())

setgid(getgid())

(b) A program fails to
drop group privileges per-
manently because it calls
setuid(getuid())beforeset-
gid(getgid())

Figure 11: Proper order of dropping user and group priv-
ileges. Figure (a), on the left, shows proper usage; figure
(b) shows what can go wrong if one gets the order back-
wards.

a process permanently drops privilege, since such an ac-
tion usually precedes operations that, if executed with
privilege, may compromise the system.

Be aware that the Linux-specificsetfsuidsystem call re-
turns the previousfsuid from before the call and does not
return any error message to the caller on failure. This is
one motivation for our next guideline.

Verifying User IDs However, checking return codes
may be insufficient for uid-setting system calls. For ex-
ample, in Linux and Solaris, depending on the effective
uid, setuid(newuid)may either (1) set all three user IDs
(if the effective uid is zero), or (2) set only the effective
uid (if it is non-zero), but the system call returns the same
success code in both cases. The return code does not in-
dicate to the process which case has happened, and thus
checking return codes is not enough to guarantee suc-
cessful completion of the uid operation in some cases.
Moreover, checking the return code is infeasible for the
setfsuidcall since it does not return any error message on
failure.

Therefore, after each uid-setting system call, a program
should verify that each of its user IDs are as expected. A
process may callgetresuidto check all three user IDs if it
is available, as in Linux and FreeBSD, or use the/proc
filesystem on Solaris. Otherwise, the process may call
getuidandgeteuidto check the real uid and effective uid,
if none of these are available. In Linux, a process must

// drop privilege
setuid(getuid());

// verify the process cannot restore privilege
if (setreuid(-1, 0) == 0)

return ERROR;

Figure 12: An example of a program that verifies that
it has properly dropped root privileges. The verification
is achieved by checking that unpermitted uid-setting sys-
tem calls will fail. Note that a full implementation should
also check the return code fromsetuidand verify that all
three user IDs are as expected after the call tosetuid.

examine itsfsuid via the/proc filesystem since Linux
does not offer agetfsuidcall.

Verifying Failures Once an attacker takes control of a
process, the attacker may insert arbitrary code into the
process. Therefore, for further assurance on security,
the process should ensure that all unpermitted uid-setting
system calls will fail. For example, after dropping privi-
lege permanently, the process should verify that attempts
to restore privilege will fail. This is shown in Figure 12.

8.2 An Improved API for Privilege Manage-
ment

Although the general guidelines in Section 8.1 can help
programmers to use the uid-setting system calls more se-
curely, programmers still have to grapple with the com-
plex semantics of the uid-setting system calls and their
differences among Unix systems. The complexity is
partly due to a mismatch between the low-level seman-
tics of the system calls, which describes how to modify
the user IDs, and the high-level goals of the programmer,
which represent a policy for when the application should
run with privilege. We propose to resolve this tension by
introducing an API that is better matched to the needs of
application programmers.

8.2.1 Proposed API

In many applications, privilege management can typi-
cally be broken down into the following tasks:

• Drop privilege temporarily, in a way that allows the
privilege to be restored later.



priv

unpriv_temp

unpriv_perm

restore_priv()drop_priv_temp()
drop_priv_perm()  

Figure 13: An FSA showing the behavior of a process
when calling the functions of the new API.

• Drop privilege permanently, so that it can never be
restored.

• Restore privilege.

We propose a new API that offers the ability to perform
each of these tasks directly and easily. The API contains
three functions:

• drop priv temp(newuid): Drop privilege temporar-
ily. Move the privileged user ID from the effective
uid to the saved uid. Assignnewuid to the effective
uid.

• drop priv perm(newuid): Drop privilege perma-
nently. Assignnewuid to all the real uid, effective
uid, and saved uid.

• restorepriv: Restore privilege. Copy the privileged
user ID from the saved uid to the effective uid.

By raising the level of abstraction, we free programmers
to think more about their desired security policy and less
about the mechanism of implementing this policy. Fig-
ure 13 illustrates the action of these functions pictorially
with a simple state diagram.

8.2.2 Implementation

We implement the new API as wrapper functions to the
uid-setting system calls. The implementation usessetre-
suid if available since it has the clearest semantics and
it is able to set each of the user IDs independently, as
shown in Figure 14. Ifsetresuidor its equivalent is not
available, the implementation usesseteuidandsetreuid,
as shown in Figure 15.

int drop_priv_temp(uid_t new_uid)
{

if (setresuid(-1, new_uid, geteuid()) < 0)
return ERROR_SYSCALL;

if (geteuid() != new_uid)
return ERROR_SYSCALL;

return 0;
}

int drop_priv_perm(uid_t new_uid)
{

uid_t ruid, euid, suid;
if (setresuid(new_uid, new_uid, new_uid) < 0)

return ERROR_SYSCALL;
if (getresuid(&ruid, &euid, &suid) < 0)

return ERROR_SYSCALL;
if (ruid != new_uid || euid != new_uid ||

suid != new_uid)
return ERROR_SYSCALL;

return 0;
}

int restore_priv()
{

int ruid, euid, suid;
if (getresuid(&ruid, &euid, &suid) < 0)

return ERROR_SYSCALL;
if (setresuid(-1, suid, -1) < 0)

return ERROR_SYSCALL;
if (geteuid() != suid)

return ERROR_SYSCALL;
return 0;

}

Figure 14: A possible implementation of the high-level
API for systems withsetresuid.

To use this implementation, an application must meet the
following requirements:

• When the process starts, its effective uid contains
the privileged user ID. This is true in most circum-
stances. When a process is run by a privileged user,
all three user IDs contain the privileged user ID. If
the process is run as a privileged user, i.e., its exe-
cutable is setuid’ed to the privileged user and is run
by an unprivileged user, both the effective uid and
saved uid of the process contain the privilege user
ID.

• If the privileged user ID is not zero, then the unpriv-
ileged user ID must be stored in the real uid when
the process starts. This requirement enables the pro-
cess to replace the privileged user ID in the effective
uid with the unprivileged user ID indrop priv temp
anddrop priv perm. This is the case when a non-
root user executes an executable that is setuid’ed
to another non-root user. On the other hand, if the
privileged user ID is zero, then there is no such re-
quirement, since the process can set its user IDs to



uid_t priv_uid;

int drop_priv_temp(uid_t new_uid)
{

int old_euid = geteuid();

// copy euid to suid
if (setreuid(getuid(), old_euid) < 0)

return ERROR_SYSCALL;
// set euid as new_uid
if (seteuid(new_uid) < 0)

return ERROR_SYSCALL;
if (geteuid() != new_uid)

return ERROR_SYSCALL;
priv_uid = old_euid;
return 0;

}

int drop_priv_perm(uid_t new_uid)
{

uid_t suid;
if (setreuid(new_uid, new_uid) < 0)

return ERROR_SYSCALL;
// OS specific way of reading suid
suid = read_suid_from_proc_filesystem();
if (getuid() != new_uid ||

geteuid() != new_uid ||
suid != new_uid)

return ERROR_SYSCALL;
return 0;

}

int restore_priv()
{

if (seteuid(priv_uid) < 0)
return ERROR_SYSCALL;

if (geteuid() != priv_uid)
return ERROR_SYSCALL;

return 0;
}

Figure 15: A possible implementation of the high-level
API for systems withoutsetresuid.

arbitrary values.

• The process does not make any uid-setting system
calls that change any of the three user IDs. Such a
call may cause the process to enter a state not cov-
ered by the FSA in Figure 13, on which the high-
level API and the implementation are based.

The implementation has the following beneficial proper-
ties:

• It does not affect the real uid.

• It guarantees that all transitions in Figure 13 suc-
ceed.

• It verifies that the user IDs are as expected after each
uid-setting system call.

• It does the right thing even in cases where root is not
involved, i.e., where the privileged user ID is not the
superuser.

We can extend this basic implementation to include
stronger safeguards against programming errors or OS
inconsistency. To prevent a program from restoring a
wrong privilege, we can let the functionrestorepriv take
a parameter and check that the parameter matches the
privilege stored in the saved user ID (Figure 14) or in the
variablepriv uid (Figure 15). Another improvement is to
let the functiondrop priv permverify that an attempt to
regain privilege will fail, as described in Section 8.1.3.

8.2.3 Evaluation

To evaluate the high-level API, we replaced every uid-
setting system call in OpenSSH 2.5.2 with functions
from the new API. OpenSSH contains fifteen uid-setting
system calls in eight tasks. Of the eight tasks, four are
to drop privilege permanently, two are to drop privilege
temporarily, and two are to restore privilege. We are able
to implement all these tasks with the new API.

One known limitation of our API is that it does not ad-
dress group privileges. We leave this for future work.

9 Future Work

We plan to study how the uid-setting system calls affect
other properties of a process, such as the ability to receive
signals and to dump cores. We may also study how to
extend the formal models for multi-threaded programs.
Topics to investigate include in-kernel races and how the
user IDs are inherited during the creation of new threads
in different Unix systems.

10 Conclusion

We have studied the proper usage of the uid-setting sys-
tem calls by two approaches. First, we documented the
semantics of the uid-setting system calls in three major
Unix systems (Linux, Solaris, and FreeBSD) and identi-
fied their differences. We then showed how to formalize
this problem using formal methods, and we proposed a



new algorithm for constructing a formal model of the se-
mantics of the uid-setting system calls. Using the result-
ing formal model, we identified semantic differences of
the uid-setting system calls among Unix systems and dis-
covered inconsistency within an OS kernel. Finally, we
provided guidelines for proper usage of the uid-setting
system calls and proposed a high-level API for manag-
ing user IDs that is more comprehensible, usable, and
portable than the usual Unix API.
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