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Abstract—Fuzz testing has proven successful in finding
security vulnerabilities in large programs. However, traditional
fuzz testing tools have a well-known common drawback: they
are ineffective if most generated malformed inputs are rejected
in the early stage of program running, especially when target
programs employ checksum mechanisms to verify the integrity
of inputs. In this paper, we present TaintScope, an automatic
fuzzing system using dynamic taint analysis and symbolic
execution techniques, to tackle the above problem. TaintScope
has several novel contributions: 1) TaintScope is the first
checksum-aware fuzzing tool to the best of our knowledge. It
can identify checksum fields in input instances, accurately lo-
cate checksum-based integrity checks by using branch profiling
techniques, and bypass such checks via control flow alteration.
2) TaintScope is a directed fuzzing tool working at X86 binary
level (on both Linux and Window). Based on fine-grained
dynamic taint tracing, TaintScope identifies which bytes in a
well-formed input are used in security-sensitive operations (e.g.,
invoking system/library calls) and then focuses on modifying
such bytes. Thus, generated inputs are more likely to trigger
potential vulnerabilities. 3) TaintScope is fully automatic, from
detecting checksum, directed fuzzing, to repairing crashed
samples. It can fix checksum values in generated inputs using
combined concrete and symbolic execution techniques.

We evaluate TaintScope on a number of large real-world
applications. Experimental results show that TaintScope can
accurately locate the checksum checks in programs and dra-
matically improve the effectiveness of fuzz testing. TaintScope
has already found 27 previously unknown vulnerabilities in
several widely used applications, including Adobe Acrobat,
Google Picasa, Microsoft Paint, and ImageMagick. Most of
these severe vulnerabilities have been confirmed by Secunia
and oCERT, and assigned CVE identifiers (such as CVE-2009-
1882, CVE-2009-2688). Corresponding patches from vendors
are released or in progress based on our reports.

Keywords-fuzzing; dynamic taint analysis; symbolic execu-
tion;

I. INTRODUCTION

As a well-known software testing technique, fuzz testing

or fuzzing [51] has proven successful in finding bugs and

security vulnerabilities in large software. The idea behind

fuzzing is very simple: generating malformed inputs and

feeding them to an application; if the application crashes or

*Corresponding author

hangs, a potential bug/vulnerability is detected. A number of

severe software vulnerabilities have been revealed by fuzzing

techniques [64], [58]. For example, with the help of fuzzing

tools, “Month of Browser Bugs” [10] and “Month of Kernel

Bugs” [11] published bugs in various browsers and kernels

on a daily basis for the month of July and November in

2006.

Since exhaustive enumeration of an application’s input

space is typically infeasible, there are two main approaches

to obtain malformed inputs: data mutation and data gener-
ation [58]. Mutation-based fuzzing tools generate test cases

by randomly modifying well-formed inputs. However, most

malformed inputs from such blind modifications will be

dropped at an early stage of program running if the target

program employs a checksum mechanism to verify the

integrity of inputs. The effectiveness of these fuzzing tools

is heavily limited by checksum-based integrity checks.

Recently, symbolic execution and constraint solving based

whitebox fuzzing systems (such as KLEE [27], SAGE [43],

SmartFuzz [52], EXE [28], CUTE [62], DART [42]) can

substitute all program inputs with symbolic values, gather

input constraints on a program trace and generate new inputs

that can drive program executions along different traces.

These systems are able to provide good code coverage

and have proven to highly improve the effectiveness of

traditional fuzzing tools. However, current symbolic execu-

tion engines and constraint solvers still cannot accurately

generate and solve the constraints that describe the complete

process of complex checksum algorithms [63]. In a word,

such whitebox fuzzing systems also cannot automatically

generate inputs which satisfy the checksum-based integrity

constraints.

For generation-based fuzzing tools (such as SPIKE [18],

Peach [15], PROTOS [60]) which construct malformed input

data from predefined format specifications, the cost of gen-

erating production rules used by fuzzing tools is expensive,

especially when the format specifications are undocumented

and the source code of the application is not available.

Recently, several protocol reverse engineering techniques

[26], [47], [34], [31] are proposed to automatically extract
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input format specification (even protocol state machine) and

translate them into fuzzing specifications. However, they

are not able to reverse engineer the checksum algorithms.

Thus, the constructed input according to such reverse-

engineered protocol specification still can be rejected by

integrity checks. In addition, none of such systems explicitly

discuss how to bypass checksum checks for fuzzing.

In this paper, we present TaintScope, a checksum-aware

directed fuzzing system based on dynamic taint analysis and

symbolic execution. The key idea behind TaintScope is that

the taint propagation information during program execution

can be used to detect and bypass checksum-based integrity

checks, and to direct malformed test cases generation.

TaintScope can further fix checksum fields in malformed test

cases by using combined concrete and symbolic execution

techniques. More specifically, this paper makes the following

contributions.

First, we propose a novel approach to infer whether/where

a program checks the integrity of input instances and can

perform checksum-aware fuzzing. The high level intuition

of the approach is illustrated in Figure 1. Checksum-based

integrity checks behave like a classifier: while all well-

formed inputs pass the integrity checks, most malformed

inputs fail to pass because of integrity violations. Thus,

we assume that there are special branch predicates in the

program, corresponding to integrity checks: when the pro-

gram runs with well-formed inputs, these branch predicates

are always True/False; however, when the program runs

with malformed inputs, these branch predicates are always

False/True. By profiling program traces, TaintScope builds

four predicate sets P1, P0, P ′
1 and P ′

0, where P1/P0

contain the always-true/always-false predicates when the

program runs with well-formed inputs, and P ′
1/P ′

0 contain

the always-true/always-false predicates when the program

runs with malformed inputs, respectively. The predicates in

(P1 ∩ P ′
0) ∪ (P0 ∩ P ′

1) usually correspond to checksum

checks.

Figure 1. The intuition of locating checksum check points

Unlike existing fuzzing systems, TaintScope can enforce

the alteration of the target program’s execution trace at

located integrity check points, as if the generated test cases

did not violate integrity checks. We call this checksum-aware

fuzzing. Checksum-aware fuzzing can prevent generated test

cases from being prematurely dropped, and this feature

is helpful to trigger deep subtle errors in the rest of the

program.

Second, TaintScope is a directed fuzzing tool with fine-

grained taint analysis at byte level. In contrast to traditional

taint analysis with 0/1 taint labels [57], TaintScope marks

each input byte with a unique label (i.e., the byte’s position

in an input instance), monitors how the target application

accesses and uses the input data, and tracks the propagation

of these labels throughout the execution of the program.

Consequently, TaintScope is able to accurately identify

which input bytes can flow into security-sensitive points

(e.g., memory allocation function malloc(), string ma-

nipulation function strcpy()). Thus, given a well-formed

input instance, TaintScope does not blindly modify the

whole input, but focuses on modifying the set of bytes that

could affect the values used in security-sensitive points (e.g.,

system/library calls). Directed fuzzing has three advantages:

1) it dramatically reduces the cardinality of the mutation

space because we specially focus on modifying a small

part of the original input instance; 2) minor modification

conducted by directed fuzzing usually does not break the

syntactic structure in the original input instance; 3) the

malformed inputs generated by directed fuzzing are more

likely to expose security vulnerabilities. Our directed fuzzing

idea is motivated by BuzzFuzz [40]. However, quite different

from BuzzFuzz that requires access to an application’s

source code, TaintScope can directly work on both Linux

and Windows binary executables.

Third, TaintScope is fully automatic, from detecting

checksum, directed fuzzing, to repairing crashed samples.

TaintScope can fix checksum fields in generated test cases

using combined concrete and symbolic execution techniques.

Instead of treating all input bytes as symbolic values,

TaintScope only substitutes the checksum fields in test cases

with symbolic values (i.e., leave the majority input bytes as

concrete values), and collects trace constraints on checksum

fields. Original complex trace constraints are simplified

to simple constraints. By solving such simple constraints,

TaintScope can repair generated test cases.

Finally, we evaluate TaintScope on a number of large

real-world applications. Experimental results show that

TaintScope can accurately locate the checksum checks in

programs and dramatically improve the effectiveness of

fuzz testing. TaintScope has already found 27 previously

unknown vulnerabilities in several widely used applications,

including Adobe Acrobat, Google Picasa, and ImageMagick.

We have reported our finding and contacted corresponding

vendors. Most of these vulnerabilities have been confirmed

by Secunia and oCERT, and assigned CVE identifiers

(such as CVE-2009-1882, CVE-2009-2688). Corresponding

patches from vendors are released or in preparation based

on our reports.
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II. OVERVIEW

A. Problem Scope and Terminologies

Checksums [2] are a common way to check the integrity

of data and are widely used in network protocols (e.g.,

TCP/IP) and many file formats (e.g., ZLIB [35], PNG [23]).

There are many sophisticated checksum algorithms used in

practice, such as Adler-32, CRC (cyclic redundancy checks)

series, and MD5. In this paper, we focus on checksums that

are designed to protect against mainly accidental errors that

may have been introduced during transmission or storage,

instead of those designed to protect against intentional data

alteration such as keyed cryptographic hash algorithms. We

leave the later as our future work.

In general, the basic pattern to check the integrity of

an input instance is to recompute a new checksum of the

input instance and compare it with the checksum attached

in the input instance. A mismatch indicates a corrupted input

instance. For easy of representation, we use Cr and D to

represent raw data in the checksum field and other input data

that are protected by the checksum field in an input instance,

respectively.

Without loss of generality, we assume that the check-

sum check condition is equivalent to the condition P :

Checksum(D) == T (Cr), where Checksum() denotes

the complete process of checksum algorithms and T ()
denotes the transformation function that is used to trans-

form Cr before integrity checks. For instance, the attached

checksums are stored as octal numbers in the Tar format

[19], or stored as hexadecimal numbers in the Intel HEX

format [7]. These raw data Cr need to be converted into

proper forms before being used in integrity checks. T () is

used to describe the transformation process.

We assume that there are special branch predicates in the

program, corresponding to integrity checks P . The predicate

P is always true/false when inputting well-formed instances,

whereas the predicate is always false/true when inputting

malformed instances. One of our goals is to accurately locate

potential integrity check points in a binary program rather

than identify the checksum algorithm themselves.

Furthermore, TaintScope specially focuses on modifying

the input bytes that can affect the arguments of important

API functions, such as memory management functions,

string manipulation functions. In this paper, we refer to

such input bytes as “hot bytes”. Our another goal is to

automatically identify hot bytes in a well-formed input.

B. Motivating Example and System Overview

As a motivating example, Figure 2 shows an example

input format. This example input format presents a common

image format: MagicNum field declares the file format;

FileSize field indicates the real size of an input image;

Width and Height fields mean the width and the height

of an input image. In this format, image data are stored in

Figure 2. Example input format

1 void decode_image(FILE* fd){
2 ...
3 int length = get_length(fd);
4 int recomputed_chksum = checksum(fd, length);
5 int chksum_in_file = get_checksum(fd);

//line 6 is used to check the integrity of inputs
6 if(chksum_in_file != recomputed_chksum)
7 error();
8 int Width = get_width(input_file);
9 int Height = get_height(input_file);
10 int size = Width*Height*sizeof(int); //integer overflow
11 int* p = malloc(size);
12 ...
13 for(i=0; i<Height;i++){// read ith row to p
14 read_row(p + Width*i, i, fd); //heap overflow

Figure 3. Example Code

row-major order. Note that the format ends with a checksum

field. A four-byte checksum is calculated on the preceding

image content in the file for integrity protection.

Figure 3 shows an example code that parses inputs

from the example format. The code first recomputes a

checksum of an input file (line 4), reads the checksum

stored in the file (line 5), and then compares the two

values (line 6). If the two values mismatch, the code

raises an error and exits immediately. Next, the code reads

the Width and Height fields, then allocates memory of

size “Width*Height*sizeof(int)”. Finally, the code

reads image data row by row into the allocated buffer.

However, a specially crafted image containing large width

and height values can cause an integer overflow in the above

expression (line 10) and further lead to an insufficient mem-

ory allocation at line 11. A heap overflow will eventually

occur when the code reads image data into memory, leading

to a potential attack.

Traditional fuzzing methods such as randomly modifying

a well-formed input file are unlikely to find such integer

overflow vulnerability in Figure 3. Because a simple modi-

fication breaks the integrity of the original input, the failed

integrity check at line 6 will cause most generated test cases

to be rejected. Furthermore, even if there were no integrity
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Figure 4. TaintScope System Overview

check at line 6, traditional fuzzing methods would also be

too inefficient. In this example, only eight bytes (Width and

Height fields) in an input file are key factors to trigger the

integer overflow vulnerability; however, blind modifications

need to explore the whole input space. The probability of

exactly modifying Width and Height fields is very low.

In contrast, TaintScope leverages taint propagation in-

formation during program execution to detect checksum

checks and generate test cases, which makes triggering

vulnerabilities more likely. At a high level, TaintScope has

four phases: dynamic taint tracing, detecting checksum check
points, directed fuzzing, and repairing crashed samples,

as shown in Figure 4. We use the program in Figure 3

to illustrate the basic workflow of TaintScope. Note that

TaintScope neither depends on the source code nor on the

input format specification.

Dynamic Taint Tracing. Given a binary program P
to test, TaintScope first runs P with a well-formed input

I. TaintScope uses an execution monitor to dynamically

instrument the program P and monitor how the program

P processes the input data I. In particular, the execution

monitor records the following information: 1) which input

bytes pollute the arguments of specified API functions; and

2) which input bytes each conditional jump instruction (e.g.,

JZ, JE, JB) depends on. The former is hot bytes information

and the latter is checksum information. In addition to the

arguments of specified API functions, the execution monitor

can also be configured to monitor which input bytes can

influence the execution context of any program point.

In this example, assume that the size of the input file I is

1024 bytes and analysts are interested in the size argument

of memory allocation function malloc, the hot bytes report

will include entries like this:

0x8048d5b: invoking malloc: [0x8,0xf]
which means the instruction at 0x8048d5b calls function

malloc and the size argument depends on input bytes in

the range from 0x8 to 0xf. Similarly, assume that branch

statement line 6 in Figure 3 is compiled into a JZ instruction

at address 0x8048d4f, the checksum information report

will include entries like this:

0x8048d4f: JZ: 1024: [0x0, 0x3ff]
which means the conditional jump instruction JZ at

0x8048d4f depends on 1024 input bytes in the range from

0x0 to 0x3ff.

Detecting Checksum Check Points. In this phase,

TaintScope uses a checksum detector to locate potential

checksum check points in the program P. We present

the details of checksum detector in Section III-C. In this

example, the checksum detector identifies the conditional

jump instruction JZ at 0x8048d4f as an integrity check.

Meanwhile, the checksum detector generates a bypass rule,

“0x8048d5b: JZ: always-taken”, which means the

branch instruction JZ at 0x8048d5b needs to be always

taken. Similar to Tupni [34], TaintScope can also identify

checksum fields in each input instance.

Directed Fuzzing. In the third phase, a fuzzer module is

responsible for generating malformed test cases and feeding

them back to the target program. If the checksum detector

does not generate bypass rules, the fuzzer directly feeds

malformed test cases to the original program; otherwise,

the fuzzer feeds malformed test cases to an instrumented

program; according to the bypass rules in Bypass Info, the

fuzzer alters the execution traces at checksum check points.

In particular, all malformed test cases are constructed based

on the hot bytes information. The output of this phase is the

test cases that could cause the program to crash or consume

100% CPU.

In this example, the hot byte information directs the

fuzzer to modify input bytes in the range from 0x8 to

0xf. Before executing the conditional jump instruction JZ
at 0x8048d4f, the fuzzer sets the condition code flag ZF
in the eflags register to an opposite Boolean value. Thus,

all generated test cases also pass the checksum check and

are more likely to trigger the integer overflow vulnerability

in the program.

Repairing Crashed Samples. For the test cases that cause

the instrumented program to crash, TaintScope needs to fix

checksum fields in the test cases. Note we do not apply

checksum fixing in the previous phase for every fuzzing

test case because the fixing is relatively expensive (time-

consuming). It makes more sense to perform a delayed

repair on only a small number of malformed test cases

that actually cause the program to crash/hang. Given a

malformed test case, TaintScope only treats the checksum

value bytes as symbolic values (i.e., leave the majority input

bytes as concrete values) and collects trace constraints. After

the execution of checksum check point, TaintScope tries

to generate a new test case that can execute a different

branch. In this case, let the original complex trace condition

be Checksum(D) == T (Cr). If both the raw data in
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checksum fields Cr and other data D are symbolic val-

ues, for complex checksum algorithms such as MD5, this

constraint cannot be solved. However, in our scenario, only

Cr corresponds to symbolic values and Checksum(D) is

a runtime determinable constant value. Thus, the complex

constraint can be simplified to a simple one, which can be

solved with current solvers such as STP [39]. Finally, if the

new test case can still cause the original program to crash, a

potential vulnerability is detected. Note that this phase can

be ignored if the fuzzer directly tests the original program

(in the previous phase).

III. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we describe the detailed design and imple-

mentation of TaintScope. First, we introduce our fine-grained

dynamic taint tracing technique in Section III-A. Next, we

present the approaches to identify hot bytes and checksum

check points in Section III-B and Section III-C, respectively.

Then, we discuss our checksum-aware directed fuzzing

technique in Section III-D. We introduce the combined

concrete and symbolic execution technique for repairing

crashed samples in Section III-E. Finally, we introduce the

implementation of TaintScope system in Section III-F.

A. Fine-grained Dynamic Taint Tracing

The execution monitor module implements a fine-grained

dynamic taint analysis at byte level. Traditional taint analysis

systems such as [57] [61] specially focus on the propagation

of all untrusted data and thus mark all input data with a

single taint label. In contrast, the execution monitor assigns

each input byte a unique label and tracks the propagation of

these labels throughout the execution of the program. The

execution monitor is built on top of PIN [49], a tool for the

dynamic instrumentation of programs. The execution moni-

tor supports both Linux and Windows binary executables.

Taint Source. Analysts can specify a filename or

an IP address as a taint source. All data read

from the file or received from the IP address are

marked. To do this, the execution monitor makes

the use of PIN_AddSyscallEntryFunction and

PIN_AddSyscallExitFunction PIN APIs to inter-

cept relevant system calls. For example, for file tainting on

Linux systems, the execution monitor intercepts system calls

such as open, mmap, read, lseek, and close. When the

specified file is successfully opened, the execution monitor

records the returned file descriptor fd. Each time when the

system reads from file descriptor fd, the execution monitor

scans the input buffer, and assigns each byte in the input

buffer with its offset in the file. According to the return

value of read and lseek, the execution monitor updates

the file offset. In addition, when the file descriptor fd is

closed with close, the execution monitor does not track it

again.

Taint Propagation. Typically, there are two kinds of

dependence relationships to consider: data-flow and control-

flow dependencies. For data-flow dependencies, the execu-

tion monitor instruments data movement instructions (e.g.,

MOV, PUSH), arithmetic instructions (e.g., SUB, ADD), and

logic instructions (e.g., AND, XOR). The execution monitor

taints all values written by an instruction with the union

of all taint labels associated with values used by that in-

struction. Note that the eflags register is also considered.

For example, assume that the taint labels associated with

eax and ebx are {0x6, 0x7} and {0x8, 0x9}, respectively,

after the execution of instruction “ADD eax, ebx”, the

taint labels on eax would be {0x6, 0x7, 0x8, 0x9}; since

instruction ADD also affects the eflags register, the taint

labels on the eflags are updated to {0x6, 0x7, 0x8, 0x9}.

For another example, assume the taint label associated with

ecx is {0x100} and 0x8000000 is the base address of

an untainted array, after the execution of this instruction

“MOV eax, [0x8000000+ecx*4]”, the eax would be

associated with {0x100}. Our current execution monitor

does not consider control-flow dependencies. We leave that

as our future work.

B. Identification of Hot Bytes

Hot bytes refer to the input bytes that affect the values

used in security-sensitive operations. Based on the fine-

grained dynamic taint analysis described in Section III-A,

the execution monitor can further identify hot bytes in a

well-formed input. By default, the execution monitor checks

which input bytes can pollute the arguments of memory

allocation functions (e.g., malloc, realloc) and string

functions (e.g., strcpy, strcat). Analysts can configure

the execution monitor to check other functions, too.

The execution monitor utilizes PIN’s routine instrumenta-

tion capability to hook target functions. Before target func-

tions are executed, the execution monitor checks whether

their arguments are tainted. The taint marks associated with

the arguments clearly reveal which input bytes can affect

such arguments. The execution monitor logs such hot bytes

information to direct malformed input generation.

C. Locating Checksum Check Points and Checksum Fields

Checksums, a simple error-detection scheme, are a main

challenge that traditional fuzzing tools cannot overcome.

In general, the integrity of input data can be checked by

recomputing a new checksum and comparing it with the

checksum value stored in the data. Any modification to the

bytes protected by a checksum would break the integrity

of the original input. Thus, there must be a special branch

point (e.g., a conditional jump instruction such as JZ, JE) in

the program, where all well-formed inputs follow the same

branch whereas malformed inputs follow the other one. Our

goal is to locate such conditional jump instructions. To do

this, TaintScope works as follows:
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Identifying Potential Checksum Check Points. Since a

checksum is usually used to protect a considerable number

of contiguous bytes, the recomputed checksum value de-

pends on many input bytes. Consequently, the result of the

checksum comparison also depends on many input bytes.

For instance, the variable recomputed_cksum at line 4

in Figure 3 depends on all bytes in an input image, and thus

the result of the comparison at line 6 also depends on the

whole input file.

According to this feature, the execution monitor first

identifies some potential checksum check points in the target

program. The execution monitor instruments all conditional

jump instructions in the target program. Before the execution

of each conditional jump instruction, the execution monitor

checks whether the number of marks associated with the

eflags register exceeds a predefined threshold value. If

so, the conditional jump instruction is considered to be

a potential checksum check point. The execution monitor

records the relevant information of the instruction in the file

Checksum Info.

This step may identify many candidates, especially when

input data are also compressed or encrypted. A decom-

pressed or decrypted byte usually depends on the whole

input. However, programs usually first check the integrity

of inputs. We have found empirically that the first candidate

is most often the real checksum check point.

Refinement Procedure. In this step, the checksum de-

tector is used to reduce the number of candidate points.

Let A be the set of conditional jump instructions recorded

in Checksum Info. The checksum detector instruments all

instructions in A to capture their behavior, i.e., whether the

conditional jumps are taken or not. These branch profile

information can be used to accurately locate checksum check

points.

First, the checksum detector runs the program with some

well-formed inputs, and then collects and analyzes branch

profile data. More specifically, conditional jump instructions

that are always taken among all executions are added to set

P1, whereas conditional jump instructions that are always

not taken are added to set P0.

Next, the checksum detector runs the program with some

malformed inputs. Note that malformed inputs are generated

by modifying well-formed inputs. Similarly, the checksum

detector builds another two sets P ′
1 and P ′

0, where P ′
1 and

P ′
0 contain the always-taken and always-not-taken condi-

tional jump instructions among all executions, respectively.

A special case is that an input sample contains multiple

checksum fields and these checksums protect different parts

of the input sample. For example, a PNG format image

consists of many chunks and each chunk has a CRC

checksum. Even if we modify the bytes in the last chunk,

other chunks can still pass the checksum checks. In other

words, the real checksum check point may not be included

in P ′
1 or P ′

0. To avoid this problem, the checksum detector

can track the propagation of the modified bytes and only

count the candidates that are affected by the modified bytes.

Finally, the checksum detector computes the set (P1∩P ′
0)

∪ (P0∩P ′
1). The conditional jump instructions in (P1∩P ′

0)

∪ (P0 ∩ P ′
1) behave completely different when the target

program runs with well-formed inputs and malformed in-

puts. The checksum detector outputs such instructions as

checksum check points. Furthermore, the checksum detector

generates bypass rules in the file Bypass Info. A bypass

rule mainly consists of an instruction address, an instruction

mnemonic and an action (i.e., always-taken or always-not-

taken). These bypass rules are used in checksum-aware

fuzzing.

Checksum Field Identification. TaintScope can also

identify the checksum field in an input instance. Similar to

Tupni [34], TaintScope first identifies the trace predicates

that can affect the conditional jump instructions in (P1∩P ′
0)

∪ (P0 ∩ P ′
1), and then locates the predicates of the

form recomputed_chksum==attached_chksum,

where recomputed_chksum is a value depending

on a considerable number of input bytes and

attached_chksum is a value only derived from

a few input bytes. The input bytes that can affect

attached_chksum are considered as the checksum field.

D. Directed and Checksum-aware Fuzzing

Directed Fuzzing. The fuzzer module implements the

basic functions of a standard fuzzing tool, i.e., it generates

malformed inputs, feeds them to the target program, and

records the inputs that cause a crash or 100% CPU usage.

However, unlike traditional fuzzing tools that blindly change

parts of a well-formed input, our fuzzer specially focuses on

modifying the hot bytes in a well-formed input. Specially,

the fuzzer generates malformed test cases using attack

heuristics. For example, hot bytes that can influence memory

allocation functions are set to small, large or negative integer

values; hot bytes that flow into string functions are replaced

by malformed characters, such as %n, %p.

Directed fuzzing technique can dramatically reduce the

size of mutation space because usually only a small portion

of input data are hot bytes. Due to the similarity to well-

formed inputs, generated test cases satisfy many primitive

constraints and have a high probability to test code within

the entire program. In addition, since extreme values in gen-

erated test cases may directly affect the arguments of system

calls or other important APIs, such malformed test cases

have a high probability to trigger potential vulnerabilities.

Checksum-aware Fuzzing. If the checksum detector has

generated bypass rules, the fuzzer would send malformed

inputs to an instrumented program. According to instruction

address information in bypass rules, the fuzzer instruments

the corresponding branch instructions. To force the condi-

tional jump instructions always (not) taken, the condition

code flags (e.g., OF, CF, ZF) in the eflags register are
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set to proper values before the execution of the branch

instructions.

However, in practice, considering the overhead of instru-

mentation, analysts can directly locate the instructions in the

raw binary file and modify the binary to ensure the condi-

tional instructions always (not) taken, a classical technique

used in software cracking. Then, the fuzzer module feeds

malformed inputs to the modified program.

E. Repairing Test Cases Using Combined Concrete and
Symbolic Execution

TaintScope needs to fix checksum fields in the malformed

test cases that cannot pass checksum checks in the original

program but cause the instrumented program to crash.

Since correct checksum fields need to meet the trace

constraint Checksum(D) == T (Cr), a direct idea is to

collect the constraint by symbolic execution and solve the

constraint. However, if all input are replaced by symbolic

values, complex checksum algorithms such as MD5 will

bring a great challenge to existing solvers to solve the trace

constraint [63], [24].

To address this challenge, TaintScope only treats the

checksum fields as symbolic values and leaves the majority

input bytes as concrete values. Thus, the complex trace

constraint Checksum(D) == T (Cr) is simplified to the

simple one c == T (Cr), where c is a runtime determinable

constant value. The simplified constraint does not depend

on checksum algorithms any more. Common transformation

functions T (), such as conversion from little-endian to big-

endian, from hex/oct to decimal numbers, can usually be

handled by current constraint solver like STP [39]. Thus,

TaintScope can solve the trace constraints and correctly

update the checksum fields in malformed test cases.

Specifically, TaintScope first runs the original program

with a malformed test case and records the execution trace.

When the checksum fields are read into memory, TaintScope

specifies these memory addresses in the trace file. Then,

TaintScope offline symbolically evaluates the recorded trace,

like SAGE [43].

When replaying the execution trace, TaintScope maintains

a symbolic memory environment, which records a map

from concrete addresses/registers to symbolic expressions,

and a set of symbolic path conditions, which records the

constraints on checksum bytes. The symbolic memory en-

vironment would be initialized when checksum fields are

read into memory. Subsequently, TaintScope updates the

symbolic memory environment and the path condition set

according to the semantics of executed X86 instructions.

For the instructions whose all operands are concrete,

TaintScope simply updates the execution context. Since

only checksum fields are substituted with symbolic val-

ues, operands in most instructions are concrete. Moreover,

treating checksum fields as symbolic values does not incur

symbolic pointer (i.e., a pointer may refer to many objects)

problems. That is why our symbolic memory environment

only maps concrete memory addresses/registers (instead of

symbolic addresses) to symbolic values.

In particular, TaintScope can handle global array reads

that contain a symbolic index. TaintScope uses IDAPro [6],

a disassembler, to identify global arrays and their size.

Assume that IDAPro identifies 0x8000 is the absolute

address of a global array [41,42,43,44]; for the instruc-

tion “mov eax, [0x8000+ecx*4]” where ecx holds a

symbolic value, TaintScope would mark eax as a symbolic

value and generate a long condition:

((ecx=0)&&eax=41)||..||((ecx=3)&&eax=44).

After the execution of the checksum check point (dis-

cussed in Section III-C), TaintScope negates the last path

condition and solves the path conditions to generate a new

test case that can pass checksum checks in the original

program. Finally, if the new test case can cause the original

program to crash, a potential vulnerability is detected.

F. System Implementation

We have implemented a prototype of TaintScope fuzzing

system. TaintScope consists of four modules, the execution

monitor, the checksum detector, the fuzzer, and the replayer.

The execution monitor, our dynamic taint analysis engine, is

built on top of PIN [49]. By intercepting low-level system

calls, the execution monitor can identify taint sources. Fur-

thermore, the execution monitor makes use of instruction

instrumentation to track the propagation of taint data. By

routine instrumentation, the execution monitor is able to

check the context (e.g., arguments, registers) of specified

APIs before the execution of such APIs. The checksum

detector also utilizes PIN’s instruction instrumentation to

profile the behaviors of branch instructions.

Our fuzzer is a Python program that can mutate well-

formed inputs based on hot bytes information and feed

malformed test cases to target programs. In particular, the

fuzzer leverages the similar attack heuristics used in SPIKE

[18], i.e., hot bytes are set to extremal values and malformed

strings used by SPIKE.

The replayer, our trace-based symbolic execution module,

is responsible to record and replay execution traces, similar

to PinSEL [54]. The replayer also implements a script

running in IDAPro [6] to export statically-known global

array information, and then symbolically re-executes the

recorded execution trace. The replayer utilizes STP [39] to

build and solve path constraints.

IV. EVALUATION

In this section, we present four sets of experiments. In

Section IV-B, we evaluated the efficiency of the execution

monitor. We sent well-formed images in several formats

(e.g., PNG, JPEG, TIFF, BMP, and GIF) to three popular

applications (e.g., ImageMagick, Google Picasa, and

Adobe Acrobat) and measured the portion of hot bytes
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Category Application Version OS Category Application Version OS

Image Viewer

Google Picasa 3.1.0 Windows
Media Player

MPlayer SVN-28979 Linux
Adobe Acrobat 9.1.3 Windows Gstreamer 0.10.15 Linux
ImageMagick 6.5.2-7 Linux Winamp 5.552 Windows

Microsoft Paint 5.1 Windows
Other

libtiff 3.8.2 Linux

Web Browser
Amaya 11.1 Windows XEmacs 21.4.22 Linux
Dillo 2.1.1 Linux wxWidgets 2.8.10 Linux

Table I
AN INCOMPLETE LIST OF APPLICATIONS USED IN OUR EXPERIMENT

Executable Package Input Format Input Size (Bytes) # Hot Bytes # X86 Instrs Run Time

Display ImageMagick

TIFF
5778 18 191,759,211 2m53s
2,020 18 82,640,260 1m30s

PNG
5,149 9 19,051,746 1m54s
1,250 29 47,246,043 1m8s

JPEG
6,617 11 48,983,897 1m13s
6,934 9 48,823,905 1m11s

PicasaPhotoViewer.exe Google Picasa

GIF
3,190 14 304,993,501 1m25s
6,529 43 536,938,567 2m57s

PNG
2,730 18 712,021,776 5m16s
1,362 16 660,183,239 4m8s

BMP
3,174 8 310,909,256 1m21s
7,462 19 468,273,580 2m35s

Acrobat.exe Adobe Acrobat

BMP
1,440 6 658,370,048 4m25s
3,678 6 663,923,080 5m2s

PNG
770 21 297,492,758 3m8s

1,250 12 354,685,431 4m31s

JPEG
1,012 13 328,365,912 4m14s
2,356 4 356,136,453 4m36s

Table II
HOT BYTES IDENTIFICATION RESULTS

in well-formed inputs. In Section IV-C, we evaluated the

effectiveness of our checksum detector. We tested eight

applications, which employ different checksum algorithms,

such as CRC32, MD5, and Alder32. We applied TaintScope

to locate checksum check points in these programs. In

Section IV-C, we evaluated the accuracy of checksum field

identification and the capability of repairing checksum fields

for given test cases. In Section IV-E, we show the vulnera-

bilities we detected in several widely used applications.

A. Experiment Setup

We apply TaintScope to a large number of real-world

applications. An incomplete list of the applications is

summarized in Table I. The “OS” column in Table I

indicates the operating systems that the applications run

on. The applications include popular image viewers (e.g.,

Google Picasa, ImageMagick), multimedia players

(e.g., MPlayer, Winamp), web browsers (e.g., Amaya),

widely used libraries (e.g., Libtiff), text editors (e.g.,

XEmacs), etc.

For applications on Windows platform, our experiments

are conducted on a machine with Intel Core 2 Duo CPU

at 3.0 GHz and 3.25GB memory, running Windows XP

Professional SP3; for applications on Linux platform, our

experiments are conducted on a machine with Intel Core 2

Duo CPU at 2.4 GHz and 4.0GB memory, running Fedora

Core 10.

B. Hot Bytes Identification
In the first set of experiments, we evaluated the perfor-

mance of the execution monitor and measured the portion of

hot bytes in well-formed inputs. Specially, according to our

previous research [65], we found that many integer overflow

vulnerabilities are closely related to memory allocation

functions. In this experiment, the execution monitor was

configured to check the size arguments of memory allocation

functions (e.g., malloc, realloc). In other words, input

bytes that can flow into memory allocation functions are

considered as hot bytes.
Table II shows the results of the evaluation on three widely

used applications: ImageMagick, Google Picasa,

and Adobe Acrobat. Particularly, ImageMagick and

Google Picasa are two popular image viewers avail-

able on many platforms. In our experiments, we tested

ImageMagick on Linux and Google Picasa on Win-

dows. We also chose Adobe Acrobat because it can

convert images to PDF files.
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We input well-formed images (including PNG, TIF, JPEG,

BMP, and GIF formats) to the three applications and applied

the execution monitor to track the propagation of input data.

Note that well-formed images were obtained either from the

Internet (using Google Image Search) or our local disks.

The “Input Format” and “Input Size” columns in Table

II represent the format and size of well-formed images,

respectively. We counted the number of hot bytes in well-

formed input data, as shown in the “Hot Bytes” column. The

size of well-formed inputs is roughly in the range from 1,000

to 7,000 bytes, but the number of hot bytes is less than 50.

The reason is that memory allocations during displaying an

image usually depend on only a few fields in the image, such

as the width, length and color depth fields. We also mea-

sured the trace length and performance overhead, as shown

in the two rightmost columns. The performance overhead

is acceptable. In most cases, instrumented programs took

several minutes to display a well-formed image.

C. Checksum Check Points Identification

Another key feature of TaintScope system is that the

checksum detector module can automatically locate potential

checksum check points in programs. In the second set of

experiments, we evaluated the effectiveness of our checksum

detector.

File formats and checksum algorithms. We chose six

known file formats, as shown in the “File Format” column in

Table III. These six file formats employ different checksum

algorithms to calculate checksum values. Specifically,

• PNG, a popular image format with lossless compres-

sion, supports two main types of integrity-checking.

First, PNG images are divided into logical data

chunks, and each chunk has an associated CRC

stored with it. The integrity of an image can easily be

tested without decoding the image. Second, compressed

data streams within PNG are stored in the zlib format

[35]. Zlib format stores an Adler-32 checksum value of

uncompressed data.

• PCAP [14], a widely used format for dumping network

packet traces, is supported by many packet analyzers,

such as Tcpdump, Snort, and Wireshark. Although a

PCAP file itself does not contain checksum fields, when

parsing a PCAP file, packet analyzers need to check the

checksums in TCP/UDP packets in the PCAP file.

• CVD [3] is an acronym for ClamAV Virus Database. A

CVD file has a 512-bytes header structure, which stores

an MD5 checksum value of the whole CVD file. When

loading a CVD file, ClamAV first checks the integrity

of the CVD file.

• VCDIFF (Generic Differencing and Compression Data

Format) [46] is a general, efficient and portable data

format suitable for delta encoding. Open-vcdiff
project [13] extends the standard VCDIFF format and

Adler32 checksum is used to detect accidental corrup-

tion of data.

• Tar archive format is widely used on Unix-like sys-

tems. A tar archive file is the concatenation of one or

more files. Each file in a “tar” package is preceded by a

512-byte header record that contains a checksum value

for the whole header.

• Intel HEX [7] is a text format, with each line contain-

ing hexadecimal values encoding a sequence of data

and a checksum value of the data.

Evaluation Methodology. We tested eight applications,

as shown in the first and second columns in Table III.

These eight applications can process file formats mentioned

above. We input well-formed and malformed inputs to target

applications, respectively, and applied the execution monitor

and checksum detector to locate potential checksum check

points in target applications. Specifically,

• We input PNG images to two “closed source” image

manipulation applications, Google Picasa and

Adobe Acrobat, and applied TaintScope to locate

potential CRC check points in the two applications.

• We input PCAP files to Tcpdump and Snort. The

well-formed PCAP file used in our experiment was

obtained by capturing network traffic from our local

machine. We specified “-v tcp -r” options, which

enable Tcpdump and Snort to read TCP packets from

a saved PCAP file and perform packet integrity checks

such as verifying the IP header and TCP checksums.

• With “--info” option, sigtool in ClamAV pack-

age can verify the integrity of a given CVD file

and display detailed information about the file. The

well-formed CVD file used in our experiment is

daily.cvd in ClamAV package.

• For VCDIFF and Tar Archive formats, we tested two

applications Open-vcdiff and GNU Tar, respec-

tively. Well-formed inputs used in the two tests were

created by the two applications themselves. For exam-

ple, we first used GNU Tar to create a tar archive;

then, we applied TaintScope to locate checksum checks

when GNU Tar extracted files from the tar archive.

• For Intel HEX format, we tested GNU objcopy,

which can copy the contents of an object file to another.

In particular, GNU objcopy can translate an object

file into another object file in a different format. We

applied TaintScope to locate checksum checks when

GNU objcopy translated an Intel HEX object file into

other formats.

Experimental Results. Our checksum identification re-

sults are summarized in Table III. TaintScope needs two

steps to infer whether/where a binary program performs the

checksum checks.

In the first step, TaintScope ran the target program with

well-formed test cases and the execution monitor was used to
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Executable Package (Version) File Format Checksum Algorithm |A| |(P1 ∩ P ′
0) ∪ (P0 ∩ P ′

1) | Detected?

PicasaPhotoViewer Google Picasa (3.1)
PNG CRC32

830 1
√

Acrobat Adobe Acrobat (9.1.3) 5,805 1
√

Snort snort (2.8.4.1)
PCAP TCP/IP checksum

2 2
√

tcpdump tcpdump (4.0.0) 5 2
√

sigtool clamav (0.95.2) CVD MD5 2 1
√

vcdiff open-vcdiff (0.6) VCDIFF Adler32 1 1
√

Tar GNU Tar (1.22) Tar Archive Tar checksum 9 1
√

objcopy GNU binutils (2.17) Intel HEX Intel HEX checksum 62 1
√

Table III
CHECKSUM IDENTIFICATION RESULTS

identify potential checksum checks. The column |A| presents

the number of potential checksum checks identified by the

execution monitor. Particularly, if a conditional jump instruc-

tion depends on more than 16 input bytes, it is considered

as a potential checksum check, where the threshold 16 is

chosen empirically. For PNG format, the execution monitor

identifies a large number of candidates. The main reason

is that image data in PNG format are compressed. A byte

in decompressed data stream may depend on the entire

compressed data. All checks on decompressed data were

counted in set A.

In the second step, TaintScope ran the target program

with malformed test cases and employed branch profiling

techniques to refine the set A. Considering that programs

usually check the integrity of inputs first before further

processing them, we modified the bytes in well-formed test

cases which can affect the first few candidates in the set A
to generate malformed inputs.

The column |(P1 ∩ P ′
0) ∪ (P0 ∩ P ′

1)| presents the

number of final candidates. Manual inspection revealed these

candidates were real checksum check points. For Adobe
Acrobat, TaintScope accurately located the CRC check

in a binary file named ImageConversion.api. Due to

the integrity check failure, Adobe Acrobat refused to de-

compress image data in malformed PNG images and exited

immediately. Thus, TaintScope did not locate the Alder32

checksum points. Considering that both Adobe Acrobat
and Google Picasa are closed source applications, we

cannot provide more detailed results.

Because we specified “-v tcp” options, when parsing

a PCAP file, Tcpdump and Snort first verified the IP

header checksum; for TCP packets, Tcpdump and Snort
further verified TCP checksums. While an IP checksum

was calculated only for IP header bytes, a TCP checksum

was calculated based on the TCP packet. TaintScope accu-

rately located the two checksum check points in Tcpdump
and Snort. Similarly, TaintScope accurately identified the

checksum checks in other applications.

The time cost of this phase depends on how many test

cases we use. According to our experience, several well-

formed test cases and slightly more than ten malformed test

cases are enough to locate the checksum check points in

target programs. Since processing a test case usually needs

several minutes (shown in Table II), this phase can typically

be done in tens of minutes.

D. Checksum Fields Identification and Repair

We further evaluated the accuracy of checksum field

identification and the capability of repairing checksum fields

for malformed test cases. We tested four applications and file

formats. The results are shown in Table IV.

The third column in Table IV means the number of

checksum fields identified by TaintScope in an input in-

stance; the fourth column means the size (in bytes) of

each checksum field identified by TaintScope. For example,

TaintScope identified four 4-byte checksum fields in a PNG

image. We used 010editor [16], a hex editor with binary

templates, to parse the PNG image for verification. The

output of 010editor reveals that there are four chunks (e.g.,

IHDR, PLTE, IDAT, and IEND) in the PNG image and each

chunk has a 4-byte CRC checksum field.

TaintScope identified eight 2-byte checksum fields in the

well-formed PCAP file. For verification, we used Wireshark

[21] to parse the PCAP file: there are four TCP packets,

and each TCP packet has an IP checksum field and a TCP

checksum field.

We also manually compared other outputs of TaintScope

with published format specializations. Manual inspection

revealed that TaintScope accurately identified the number

and the size of checksum fields in each well-formed instance.

The fifth column in Table IV indicates that TaintScope

can automatically generate valid checksum fields for given

test cases. The experiments proceed as follows. First, we

deliberately altered the bytes in checksum fields in such

well-formed inputs to generate malformed ones.1 Next, we

input these malformed inputs to corresponding applications,

and used TaintScope to record and replay the execution

traces. TaintScope treated the bytes in checksum fields as

symbolic values. After symbolically re-executing the traces,

1Note here we modified checksum fields instead of regular data fields.
The reason is that we want to show TaintScope can generate correct/valid
checksums for which we have ground truth (the original ones).
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TaintScope generated new test cases. In our experiments,

these new generated test cases were identical with those

original well-formed ones, i.e., TaintScope generated correct

checksum fields.

The sixth column in Table IV shows the time (in seconds)

TaintScope took to replay recorded traces and solve path

constraints. In our experiments, fixing a given test case needs

a few minutes, a time-consuming phase.

In short, TaintScope can accurately identify checksum

fields and automatically generate valid checksum fields for

given test cases.

Executable File Format # fields |field| Repaired? Time (s)

display PNG 4 4
√

271.9
tcpdump PCAP 8 2

√
455.6

tar Tar Archive 3 8
√

572.8
objcopy Intel HEX 4 2

√
327.1

Table IV
CHECKSUM FIELDS IDENTIFICATION AND FIX RESULTS

E. Fuzzing Results

As a fuzzing system, TaintScope has already detected 27

severe vulnerabilities in widely used applications and li-

braries, such as Microsoft Paint, Adobe Acrobat,

Google Picasa, ImageMagick, and Libtiff. Table

V summarizes the experimental results. The “#Vulns” col-

umn shows the number of vulnerabilities in corresponding

applications and the “Checksum-aware” column indicates

whether the vulnerabilities are detected by checksum-aware

fuzzing or not.

We manually analyzed the causes of most vulnerabilities

and identified five vulnerability types, including buffer over-

flow, integer overflow, double free, null pointer dereference,

and infinite loop. According to our vulnerability reports,

Secunia [17] and oCERT [12] have confirmed and published

security advisories for most of these vulnerabilities and

vendors have also released corresponding patches. The “Ad-

visory” column shows the advisory identifier information.

CVE-xxxxs represent CVE (Common Vulnerabilities and

Exposures) identifiers and SAxxxxs are security advisories

from Secunia.

The rightmost column shows the Secunia’s severity rating

for the vulnerabilities. “High” is typically used for remotely

exploitable vulnerabilities and “Moderate” is typically used

for vulnerabilities that require user interaction. Considering

that some vulnerabilities are still in the process of being

fixed and/or may be easily exploitable, we do not provide

detailed information about these vulnerabilities at this time.

Adobe Acrobat can create PDF files from images.

TaintScope constructed images (in two different formats)

which can cause Adobe Acrobat to crash or consume

100% CPU. According to our report and the crashing

test case, Secunia has confirmed the memory corruption

vulnerability and contacted the vendor. The vendor asked

Secunia to postpone the publication of the advisory until

a fix is available. We have also confirmed the infinite

loop in a binary file named ImageConversion.api and

already sent the PoC image to Adobe PSIRT (Adobe Product

Security Incident Response Team). Adobe has published

a security bulletin for the two vulnerabilities and released

patches [1].

Microsoft Paint has been included in all versions of

Microsoft Windows. TaintScope discovered an integer over-

flow in gdiplus.dll which causes an erroneous memory allo-

cation in Paint program when Paint opened a malformed

JPEG image. Successful exploitation may allow execution of

arbitrary code. Microsoft has published a security bulletin

MS10-005 [9] according to our report.

TaintScope also discovered an integer overflow and an

infinite loop in Google Picasa. We first sent the infinite

loop information to Google Security Team, however, after

the initial contact, we have not heard back from the Google

for months. Recently, we found the infinite loop issue has

been fixed in its new version. The integer overflow occurs in

PicasaPhotoViewer.exe when processing JPEG files, which

finally causes a heap buffer overflow.

509 wxPNGHandler::LoadFile(wxImage *image,
...//ignore the CRC checks
575 for (i = 0; i < height; i++){
577 if ((lines[i]=(unsigned char*)malloc(width*4))

== NULL){
579 for ( unsigned int n = 0; n < i; n++ )
580 free( lines[n] ); //first time free()
581 goto error;
...
621 error:
...
630 if ( lines )
631 {
632 for ( unsigned int n = 0; n < height; n++ )
633 free( lines[n] ); //second time free()

Figure 5. A double free vulnerability in wxPNGHandler::LoadFile() in
wxWidgets 2.8.10

Many vulnerabilities in Table V were detected by our

checksum-aware fuzzing techniques, i.e., TaintScope iden-

tified and bypassed checksum checks in binary programs,

performed directed fuzzing on the instrumented program,

and fixed the checksum fields in malformed test cases that

caused instrumented programs to crash.

As an example, we present the double free vulnerabil-

ity [22] in wxWidgets, a popular open source cross-

platform GUI toolkit. The double free vulnerability can

be exploited to potentially execute arbitrary code via

a specially crafted PNG file. A basic functionality of

wxWidgets is to load images in a variety of formats.

Specifically, the “wxPNGHandler::LoadFile()” func-

tion in wxWidgets is responsible for loading an image

in the PNG format. This function first checks the CRC

checksum values in a PNG image, and then processes the
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Package Vuln-Type # Vulns Checksum-aware? Advisory Severity Rating

Microsoft Paint Memory Corruption 1 N CVE-2010-0028 Moderate

Google Picasa
Infinite loop 1

N
pending N/A

Integer Overflow 1 SA38435 Moderate

Adobe Acrobat
Infinite loop 1 N CVE-2009-2995 Extremely critical
Memory Corruption 1 N CVE-2009-2989 Extremely critical

ImageMagick Integer Overflow 1 N CVE-2009-1882 Moderate
CamlImage Integer Overflow 3 Y CVE-2009-2660 Moderate
LibTIFF Integer Overflow 2 N CVE-2009-2347 Moderate

wxWidgets
Buffer Overflow 2 N

CVE-2009-2369 Moderate
Double Free 1 Y

IrfanView Integer Overflow 1 N CVE-2009-2118 High
GStreamer Integer Overflow 1 Y CVE-2009-1932 Moderate
Dillo Integer Overflow 1 Y CVE-2009-2294 High

XEmacs
Integer Overflow 3 Y CVE-2009-2688 Moderate
Null Dereference 1 N N/A N/A

MPlayer Null Dereference 2 N N/A N/A
PDFlib-lite Integer Overflow 1 Y SA35180 Moderate
Amaya Integer Overflow 2 Y SA34531 High
Winamp Buffer Overflow 1 N SA35126 High
Total 27

Table V
VULNERABILITIES DETECTED BY TAINTSCOPE

image data row by row. Figure 5 shows the source code

snippet of the function. Note that lines[n] may be freed

twice at lines 580 and 633 if the function malloc at line

577 returns a NULL pointer.

In our experiments, TaintScope accurately located the

CRC checksum check points in wxWidgets and the check-

sum fields in PNG images. Meanwhile, TaintScope identified

the hot bytes in well-formed PNG images which can affect

the variable “width” used in line 577. In fact, the variable

“width” corresponds to the width field in a PNG image.

At the fuzzing phase, TaintScope modified the hot bytes

to some extremal values and altered the execution flows

at the checksum check points. Several malformed test

cases triggered the double free vulnerability in the function

wxPNGHandler::LoadFile().

At the phase of repairing test cases, TaintScope first

recorded the execution trace with a malformed PNG image,

and re-executed the trace using symbolic execution. By solv-

ing the trace constraints, TaintScope successfully generated

a valid checksum value for the malformed PNG image.

The new PNG image can pass initial checksum checks in

wxWidgets and trigger the double-free vulnerability.

Since the width field in a PNG image is protected by

checksum values, we believe the vulnerability cannot be

detected by random modification.

For more details on the published vulnerabilities in Table

V, we refer the readers to Secunia [17]. For instance, Secunia

has developed exploits and PoC code for the vulnerabilities

in Gstreamer [5] and Winamp [20] (only available for

certain types of vendors and governments).

In summary, our experiments show that:

• Only a small portion of input data are hot bytes. Thus,

directed fuzzing can dramatically reduce the mutation

space.

• TaintScope can accurately locate the checksum check

points in programs and the checksum fields in input

instances.

• TaintScope can automatically generate valid checksum

fields for malformed test cases.

• By checksum-aware directed fuzzing, TaintScope has

successfully detected a number of serious real-world

vulnerabilities.

V. DISCUSSION

In this section, we discuss the limitations in the current

implementation of TaintScope system.

First, TaintScope currently cannot deal with secure in-

tegrity check schemes, such as keyed cryptographic hash

algorithms or digital signature, which are designed to pro-

tect against intentional data alteration. Although TaintScope

can locate and bypass such checks at the checksum-aware

fuzzing phase, it is impossible for TaintScope system to au-

tomatically generate test cases with valid digital signatures.

From software testing point of view, some vulnerabilities

could be hidden behind such complex application defenses

(e.g., digital signatures). We suggest the software developers

disable such defense mechanisms at testing phase. We leave

the full study of this problem as our future work.

Second, the effectiveness of TaintScope system may be

limited when all input data are encrypted. After data decryp-

tion, the complex data dependency relationships will heavily

influence hot bytes detection and checksum identification. A
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mitigation strategy is to configure TaintScope to track the

decrypted data only. Recent research such as ReFormat [66]

and Dispatcher [25] already shows some promising results to

locate encryption/decryption routines. Such techniques could

be combined with TaintScope to detect the vulnerabilities

when the target program processes the decrypted data.

Third, to infer whether/where a program performs check-

sum checks, TaintScope relies on both well-formed inputs

and malformed inputs. The quality of these inputs also

affects the results of checksum check point identifications. In

general, target programs (or other third-party programs) are

able to produce well-formed samples. Hence, TaintScope ob-

tains malformed inputs by modifying such well-formed sam-

ples. Considering that programs usually check the integrity

of inputs first before further processing them, TaintScope

first identifies some potential checksum check points (see

Section III-C), and then modifies the bytes in well-formed

samples which can affect these potential checksum check

points.

Due to the complexity of the x86 instruction set, the

current execution monitor in TaintScope system does not

instrument all kinds of x86 instructions. Floating-point

instructions and some infrequently used x86 instructions

such as movdqa are not hooked. In addition, the execu-

tion monitor also ignores the control flow dependencies.

However, previous study [30] reveals that tracking control

flow dependencies may make too many noises. Extending

TaintScope to track control flow propagation (similar to [37]

and DYTAN [29]) and improving data flow propagation are

parts of our future work.

VI. RELATED WORK

Traditional Fuzzing. Fuzzing was first proposed by

Miller et al. [51]. The simple tool in [51] just gener-

ated streams of random characters and sent them to target

programs, but it was able to crash 25-33% of the utility

programs on UNIX system. Since then, a wide range of

fuzzing tools have been developed. Sutton et al. [64] pre-

sented a recent overview of fuzzing techniques and tools.

Traditionally, there are two main ways to get malformed

inputs: data generation and data mutation [58]. The former

(e.g., Spike [18], Peach [15], SNOOZE [38]) generates

malformed inputs based on predefined specifications and the

later (e.g., FileFuzz [4]) mutates well-formed inputs. How-

ever, the common drawback of traditional fuzzing techniques

is that most malformed inputs are prematurely dropped. To

improve the effectiveness of fuzzing tools, the following two

categories of new techniques are proposed.

Symbolic-execution-based white-box fuzzing. This tech-

nique has been widely implemented in numerous tools,

such as CUTE [62], DART [42], SAGE [43], SmartFuzz

[52], EXE [28], and KLEE [27]. In general, based on

code instrumentation or program tracing, these tools replace

concrete input data with symbolic values, collect and solve

the constraints on execution traces and guide input error

detection and generation. When testing applications with

highly-structured inputs, such as compilers and interpreters,

Godefroid et al. [41] and Majumdar et al. [50] proposed a

variation technique which employs input symbolic grammar

specifications. These tools have proven to highly improve the

effectiveness of traditional fuzzing tools. They successfully

detected serious bugs in GNU coreutils [27], large shipped

Windows applications [43], [41], and Linux file systems

[28].

With zero knowledge of the checksum algorithm, auto-

matically generating test cases with correct checksum fields

is a great challenge. For simple checksum algorithms such as

integer addition, existing symbolic execution systems such

as Replayer [56] are able to automatically generate correct

checksums. However, as shown in [56], the checksum com-

putation significantly increases the complexity of the col-

lected symbolic formula. Furthermore, previous studies [63]

[24] have revealed that current symbolic execution engines

and constraint solvers cannot accurately generate and solve

the constraints that describe the complete process of complex

checksum algorithms. Newsome et al. [56] also proposed

a reasonable scheme to deal with complex checksum al-

gorithms, i.e., iteratively constraining some of the input

variables to have the concrete values and then simplifying

and solving the trace constraints. Instead, TaintScope directly
leaves all bytes concrete except those in the checksum

fields, which significantly reduces the complexity of the

trace constraints.

Taint-analysis-based directed fuzzing. The closest work

to ours is BuzzFuzz [40]. BuzzFuzz is a directed dy-

namic taint-based white-box fuzzing tool. To track taint

information, BuzzFuzz needs to instrument an application’s

source code. The instrumented application is responsible

for identifying input data that can influence the values at

system calls. However, modern applications make extensive

use of third-party libraries. BuzzFuzz cannot instrument such

libraries if source code is unavailable, leading to the loss

of taint information. In contrast, TaintScope directly works

on binary executables and can monitor the execution of

all libraries. In addition, TaintScope can bypass checksum

checks in programs.

Flayer [36] is a taint tracing tool with the ability to redirect

the execution flows through the modification of conditional

jump instructions. Flayer is based upon functionality from

Memcheck [55] and marks input data only with 0/1 label.

Thus, Flayer cannot accurately track the impact of input

data on an application’s execution. Execution flow alteration

is also used in analyzing malware behavior, e.g., exploring

multiple execution paths [53], and forcing sampled execution

to identify various kernel rootkit behaviors [67].

Corpus Distillation [59] is a feedback-driven fuzzing

system that uses a code coverage heuristic to select and

mutate input samples. In particular, to overcome checksum
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problems, Corpus Distillation designed the sub-instruction

profiling method, i.e., comparison instructions (such as im-

mediate comparison and rep cmps) are broken into bit-

sized chunks and the coverage score of these instructions

depends on the “depth” of comparison. Based on the sub-

instruction profiling, Corpus Distillation is able to generate

correct CRC checksums in PNG files without the require-

ment of constraint solving. However, due to the lack of fine-

grained taint tracking and checksum field identification, to

pass the checksum checks, Corpus Distillation has to mutate

all bits in an input sample until reaches checksum fields,

which may heavily limit its efficiency.

Moreover, Corpus Distillation and TaintScope can benefit

from each other. While TaintScope’s checksum check points

locating and bypassing techniques can be used in Corpus

Distillation to improve the sub-instruction profiling method,

the code-coverage-based input sample selection and muta-

tion technique in Corpus Distillation can also be used in the

fuzzing phase of TaintScope system.

Many protocol reverser engineering tools (such as Prospex

[31], Tupin [34], AutoFormat [47], Polyglot [26], Discoverer

[33], FFE/x86 [44]) can be used to guide fuzzing tests.

These tools can extract format specifications for input data

by analyzing network traffic [33], monitoring the execution

of a program while it processes input data [47], [48], [34],

[26], [68], or analyzing binary executables directly [44]. The

extracted protocol specifications can be further translated

into fuzzing specifications. However, none of these systems

explicitly discussed how to bypass checksum checks.

In addition, Kang et al. [45] proposed a trace matching

algorithm to locate the divergence point between two similar

traces. This algorithm could also potentially be applied to

locate checksum check points in programs.

Finally, there are a significant amount of vulnerability

detection studies based on static analysis, instead of dynamic

fuzzing. We refer the readers to [8] for further references. In

particular, [65] and [32] are two binary analysis tools which

can identify integer overflow vulnerabilities or insecure uses

of sensitive C library calls in binary executables. While

TaintScope is mainly a dynamic fuzzing tool, it could also

benefit from the advances in this line of work. For example,

TaintScope uses similar heuristics in [65] to specially mon-

itor the size arguments of memory allocation functions and

has discovered many integer overflow bugs.

VII. CONCLUSIONS

In this paper, we present TaintScope, a checksum-aware

directed fuzzing system. Based on fine-grained dynamic taint

tracking and branch profiling, TaintScope can monitor the

impact of input data on an application’s execution, identify

the input data that can affect the context of security-sensitive

operations, and locate checksum-based integrity checks in

programs. TaintScope can dramatically reduce the mutation

space and bypass checksum checks by execution flow al-

teration. Furthermore, TaintScope can automatically fix the

checksum fields in malformed test cases using combined

concrete and symbolic execution techniques.

We applied TaintScope to a number of large real-world

applications. Experimental results show that TaintScope

can accurately locate the checksum checks in programs

and dramatically improve the effectiveness of fuzz testing.

TaintScope has already identified 27 previously unknown

vulnerabilities in several widely used applications, includ-

ing Microsoft Paint, Adobe Acrobat, Google
Picasa, and ImageMagick. Most of these vulnerabilities

have been confirmed by Secunia and oCERT, and have been

assigned CVE identifiers (such as CVE-2009-1882, CVE-

2009-2688, CVE-2009-2347, and CVE-2009-2369). Corre-

sponding patches from vendors are released or in progress

based on our reports.
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