
Practical Verification of WPA-TKIP Vulnerabilities

Mathy Vanhoef
iMinds-DistriNet

KU Leuven
Mathy.Vanhoef@cs.kuleuven.be

Frank Piessens
iMinds-DistriNet

KU Leuven
Frank.Piessens@cs.kuleuven.be

ABSTRACT
We describe three attacks on the Wi-Fi Protected Access
Temporal Key Integrity Protocol (WPA-TKIP). The first
attack is a Denial of Service attack that can be executed by
injecting only two frames every minute. The second attack
demonstrates how fragmentation of 802.11 frames can be
used to inject an arbitrary amount of packets, and we show
that this can be used to perform a portscan on any client.
The third attack enables an attacker to reset the internal
state of the Michael algorithm. We show that this can be
used to efficiently decrypt arbitrary packets sent towards
a client. We also report on implementation vulnerabilities
discovered in some wireless devices. Finally we demonstrate
that our attacks can be executed in realistic environments.

Categories and Subject Descriptors
E.3 [Data Encryption]: Code breaking; C.2.0 [Computer-
Communication Networks]: General—Security and pro-
tection; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—Wireless communication

General Terms
Security, Experimentation, Verification

Keywords
802.11; WPA; TKIP; DoS; fragmentation; decryption; driver
vulnerabilities

1. INTRODUCTION
Modern wireless networks are based on the IEEE 802.11

set of standards. These networks have gained popularity
over the years and are nowadays widely used in different sce-
narios, ranging from personal use to high-profile commercial
use. Because of the nature of wireless transmission special
care must be taken to preserve the privacy and security of
wireless networks. The original IEEE 802.11 standard sup-
ported a basic security algorithm called Wired Equivalent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIA CCS’13, May 8–10, 2013, Hangzhou, China.
Copyright 2013 ACM 978-1-4503-1767-2/13/05 ...$15.00.

Privacy (WEP). Unfortunately WEP suffers from major de-
sign flaws and is considered completely broken [8, 19, 4].

An improvement of WEP is the Temporal Key Integrity
Protocol (TKIP). Created as an intermediate protocol to
the more secure CCMP, it was designed to run on exist-
ing WEP hardware [14, §11.4.1]. This affected many of the
design decisions [14, 6]. Most notably it still uses WEP en-
capsulation and relies on a weak Message Integrity Check
(MIC) algorithm called Michael [6]. Because the Michael
algorithm provides inadequate security [20, 13, 22] counter-
measures were added. TKIP and its countermeasures are
explained in detail in Sect. 2.

Surprisingly, TKIP is still supported by a large number of
networks. In Section 6.1 we report on an experiment where
we collected information about wireless network usage in two
Belgian municipalities and found that 71% of encrypted net-
works support TKIP. Furthermore, 19% of networks using
encryption only allow TKIP.

In this paper we present a novel Denial of Service (DoS)
attack on TKIP. Moreover, we take two ideas suggested in
a paper by Beck [1] and significantly improve on them. In
contrast with the paper of Beck, our improvements are also
implemented and tested in practice. The first idea applies
the known fragmentation attack on WEP [4] to TKIP. This
allows an attacker to send an arbitrary amount of packets
to a client. As a proof of concept we implemented a port
scanner. The second idea is to construct a prefix that resets
the internal state of the Michael algorithm. We will show
that this enables us to efficiently decrypt arbitrary packets
sent towards a client. We also report on several vulnerabil-
ities found in the implementation of some wireless adapters
and drivers. All attacks are designed against WiFi networks
operating in infrastructure mode, and are tested when au-
thentication is done using a passphrase and when using a
personal username and password.

We hope that the publication of these novel attacks will
motivate people to disable TKIP.

The remainder of this paper is organised as follows. Sec-
tion 2 describes the details of the TKIP protocol. In Sec-
tion 3 we explain the Denial of Service (DoS) attack. Sec-
tion 4 discusses our fragmentation and portscan attack. In
Section 5 the Michael state reset and decryption attack is
explained. Section 6 investigates whether TKIP is still sup-
ported in practice and discusses experimental evaluation of
our attacks. Finally, we summarise related work in Sect. 7
and conclude in Sect. 8.

Unauthenticated
Unassociated

Authenticated
Unassociated

Authenticated
Associated

DeauthenticationAuthentication

(Re)association Disassociation

D
e
a
u
t
h
e
n
t
i
c
a
t
i
o
n

Figure 1: States a client can be in when connecting
to a wireless network.

2. TEMPORAL KEY INTEGRITY PROTO-
COL (TKIP)

This section describes the relevant parts of the IEEE 802.11
standard with a focus on the TKIP specification [14, §11.4.2].
We will also explain one of the first attacks on TKIP, called
the Beck and Tews attack.

2.1 Connecting
A client connects to a wireless network by first authenti-

cating and then associating with the Access Point. A state
diagram of this process is shown in Fig. 1. There are two
authentication methods. The first one is called Shared Key
authentication and was based on WEP. Unfortunately this
method is inherently insecure. Nowadays only the second
method is used, called Open System authentication. As the
name implies it imposes no real authentication. It is es-
sentially just a formality, and if TKIP or CCMP is used
actual authentication will happen at a later stage. Once au-
thenticated, the client sends an association request to the
AP. This request includes the secure authentication and en-
cryption protocol it wants to use. If the AP supports the
requested protocols the association is successful, and the AP
informs the client that the association has completed.

Once authenticated and associated, a 4-way handshake
is performed when using TKIP. The handshake negotiates
the keys used by TKIP and is defined using IEEE 802.1X
EAPOL-Key frames. This results in a 512-bit pairwise tran-
sient key (PTK) that is shared between the AP and client.
From the PTK a 128-bit temporal encryption key (TK)
is derived, as well as two 64-bit Message Integrity Check
(MIC) keys: one for AP to client communication and one
for client to AP communication. These keys are renewed
after a user defined interval, commonly called the rekeying
timeout. Most APs by default use a timeout of 1 hour. Af-
ter a key has been negotiated, the client and AP can send
encrypted data frames to each other.

The client or AP can end the connection at any time by
sending a disassociation or deauthentication message. The
older versions of the 802.11 standard left these messages
unprotected. This means an attacker can forge them and
forcibly close the connection between an AP and client.

6 6 1 3 var
Destination Source Priority Reserved Payload

Figure 2: Input data given to the Michael algorithm.
Destination and source represent MAC addresses. If
the QoS extension is not used, priority is set to zero.
Numbers denote the size of the field in bytes, where
var defines a variable-length field.

8 var 8 4

802.11 header TSC Data MIC ICV

←− unencrypted −→ ←− encrypted −→

Figure 3: Simplified format of an unfragmented
TKIP frame.

Continuously injecting such forged deauthentication pack-
ets causes a DoS attack [18]. This attack is well known and
is called the deauthentication attack. It can be prevented
by enabling protected management frames, a feature intro-
duced in the IEEE 802.11w amendment [14, §4.5.4.9].

2.2 Sender
When sending a TKIP frame first the MIC value of the

MAC Service Data Unit (MSDU) is calculated. The purpose
of the MIC is to protect both the integrity and authentic-
ity of the message. Recall that the MSDU is essentially the
complete data packet that needs to be transmitted, which is
fragmented into smaller MAC Protocol Data Units (MPDU)
fragments if it is too big to be sent at once. The MIC is cal-
culated over the MSDU by the Michael algorithm. Michael
is a keyed hash function taking two inputs: the input data
to calculate the MIC of and a secret key. The input data
given to the Michael algorithm is shown in Fig. 2. For cal-
culating the MIC a different secret key is used for AP to
client communication than is used for client to AP commu-
nication. Both MIC keys are derived from the PTK. The
calculated MIC value is 8 bytes long. However, the Michael
algorithm is not sufficiently secure. In particular it is pos-
sible to efficiently retrieve the MIC key given the data and
calculated MIC value [20]. The designers realized this and
included countermeasures in an attempt to mitigate poten-
tial attacks. These countermeasures are essential to our at-
tacks and are discussed in detail in Sect. 2.3.

The MSDU concatenated with the MIC is fragmented into
MAC Protocol Data Units (MPDUs) if necessary. At most
16 fragments (MPDUs) are supported. Each MPDU then
undergoes WEP encapsulation. This is done so TKIP can
be implemented on old WEP hardware. WEP encapsula-
tion appends an Integrity Check Value (ICV) to the MPDU,
which is simply a 32 bit CRC computed over the given data.
Then it encrypts the packet using the RC4 stream cipher.
The key used for encryption is called the WEP seed and
is calculated by a mixing function that combines the tem-
poral key (TK), transmitter MAC address, and the TKIP
Sequence Counter (TSC). Figure 3 illustrates the final lay-
out of an unfragmented TKIP frame.

Finally the resulting link-layer frame is constructed by
adding the appropriate 802.11 headers. This includes the
TKIP Sequence Counter (TSC), which is a replay counter
that increases every time a MPDU frame is sent successfully.

In Fig. 3 the TSC is given a size of 8 bytes, but in reality
the TSC is only 6 bytes long. The remaining bits of the
field are used for other purposes or are reserved. To prevent
replay attacks the receiver drops frames that are not received
in order. That is, the counter must always be increasing
though gaps are allowed.

2.3 Receiver
When receiving a TKIP frame the client or AP first checks

if the TSC is in order. If not, the frame is silently dropped.
It then proceeds by checking if the ICV is correct. If not,
the frame is also silently dropped. Once all MPDU’s are re-
ceived they are reassembled into the original MSDU and its
MIC value is verified. If it is correct the frame is accepted
and the receiver updates its TSC replay counter, otherwise
the TKIP countermeasures kick in. These countermeasures
were added to detect active attacks against the weak Michael
algorithm [14, §11.4.2.4.1]. One class of such active attacks
involves injecting multiple forged packets in the hope at least
one of them has a valid MIC. In case such a packet is found
the attacker learns the MIC key for the particular communi-
cation direction, as the MIC key can be derived when given
the plaintext data and calculated MIC value.

The countermeasures are as follows [14, §11.4.2.4]:

• When a client receives a MSDU with an invalid MIC
value it will send a MIC failure report to the AP.

• An AP receiving an invalid MIC value does not broad-
cast a MIC failure report but only logs the failure.

• If the AP detects two MIC failures within one minute
all TKIP clients connected to the AP will be deauthen-
ticated and the AP will not receive or transmit any
TKIP-encrypted data frames for one minute. Once
this minute is passed clients can reassociate with the
AP and negotiate a new PTK.

2.4 Quality of Service Extension
Quality of Service (QoS) enhancements for wireless traffic

were first defined in the IEEE 802.11e amendment. Most
modern APs support this amendment [17]. It defines 8 dif-
ferent channels, each having their own QoS needs. A channel
is defined by its Traffic Identifier (TID) and is internally rep-
resented by 4 bits, making some devices actually support 16
different channels. For the implementation of our attacks we
assume only 2 QoS channels exist, though devices support-
ing more channels are also susceptible to our attacks. Tests
showed that our assumption holds in practice. Additionally
we note that by default most traffic is sent over the first QoS
channel.

Essential for us is that each QoS channel has a separate
TSC [14, §11.4.2.6]. This means that we can capture a
packet transmitted on one QoS channel and replay it on
another QoS channel having a lower TSC value. This en-
ables an attacker to pass the TSC check, though he still has
to pass the ICV and MIC checks in order to forge a message.

2.5 Beck and Tews Attack
One of the first known attacks on TKIP was discovered

by Beck and Tews [20]. It was a variation of the chopchop
attack on WEP [10] and works by decrypting a packet one
byte at the time. Because this attack is used as the basis
for the fragmentation and Michael reset attack it will be
explained in detail.

First we will explain the chopchop attack when applied to
a TKIP packet. It begins by taking an encrypted packet and
removing the last byte. Let C denote the obtained short-
ened encrypted packet. With high probability the ICV of
C is invalid. However, it can be corrected if one knows the
plaintext value of the removed byte. Correcting the ICV of
the unencrypted shortened message can be represented by
M ′ = M ⊕D, where M is the unencrypted shortened mes-
sage, D is the correction being applied, ⊕ denotes the XOR
operator, and M ′ is the unencrypted shortened message with
a valid CRC. It has been proven that D only depends on
the plaintext value of the removed byte [10]. Interestingly
we can apply this modification directly on C. Letting K de-
note the keystream used to encrypt the packet we get that
C = M ⊕K. We can now make the following derivation:

C′ = M ′ ⊕K = (M ⊕D)⊕K (1)

= (M ⊕K)⊕D (2)

= C ⊕D (3)

The second equation follows from the associativity of the
XOR operator. We see that C′ is the encrypted shortened
packet with a valid ICV, and that it can be obtained by di-
rectly applying the modification to the encrypted shortened
packet C.

This technique can be used to decrypt TKIP packets sent
towards the client as follows. An attacker tries all 28 possi-
ble values of the removed byte. For each guess the modifi-
cation D is applied and the resulting packet is injected with
a different priority y. Assuming that QoS channel y has a
lower TSC it will pass the TSC check, and the client will
decrypt the packet. Then the ICV is verified. If the guess
of the attacker was wrong the ICV is invalid and packet will
silently be dropped (without generating a MIC failure). On
the other hand, if the guess was correct, the ICV will be
valid. However, with high probability the MIC value of the
shortened packet will be wrong. As a result the client sends
a MIC failure report. Thus a correct guess can be detected
by listening for the corresponding MIC failure. Note that
an AP isn’t vulnerable to the attack because it never sends
MIC failure reports. To avoid triggering the TKIP counter-
measures at most one byte can be decrypted each minute.

Because we must wait one minute after decrypting a byte,
it is infeasible to decrypt all bytes using this method. In-
stead the Beck and Tews attack targets an ARP reply packet
and decrypts only the ICV and the MIC value. This takes
on average 12 to 15 minutes. The remaining content of the
packet is guessed. A particular guess can be verified by
checking if the calculated ICV of the predicted packet equals
the decrypted ICV. If they match, the guess is very likely
correct. Once the ARP reply has been decrypted we can
use the inverse Michael algorithm to calculate the MIC key
used for AP to client communication [20]. Combined with
the keystream of the decrypted ARP reply, an attacker can
now forge 3 to 7 packets having a length smaller or equal to
the ARP reply. The precise number of packets that can be
forged depends on the number of supported QoS channels.

3. DENIAL OF SERVICE
This section describes a novel attack we discovered. When

closely inspecting the QoS extension to TKIP we notice that
the keystream is independent of the priority (i.e., QoS chan-
nel) used to transmit the frame. On the other hand the

calculated MIC value does depend on the priority of the
MSDU. Say that we capture a packet sent with priority x
and replay it with a different priority y. Assuming QoS
channel y has a lower TSC it will pass the TSC check, and
the receiver will use the correct keystream to decrypt the
packet. As a result it will also pass the ICV check. How-
ever, the changed priority will cause the receiver to expect
a different MIC value. Hence a MIC failure occurs. Re-
playing this packet a second time will trigger a second MIC
failure. After these two MIC failures the AP will shut down
all TKIP traffic for 1 minute. Repeating this process every
minute will prevent any TKIP protected communication, ef-
fectively causing a DoS. If the network does not use QoS we
can forge the QoS header when replaying the packet. As
discovered by Morii and Todo, most clients will not check
whether the network is actually using QoS and simply ac-
cept the packet [17]. Therefore the only requirement is that
one or more clients support the QoS extension, which is true
for most modern wireless adapters [17].

To implement the attack we had to patch the compat-
wireless drivers of Linux. The original driver modified the
QoS header when in monitor mode, which interfered with
our attack. Monitor mode is a feature supported by some
wireless adapters and drivers allowing one to capture all
wireless traffic. It also enables injection of arbitrary 802.11
frames. Our tool monitors the traffic of a network and shows
whether it supports TKIP or QoS. Additionally it shows a
list of connected clients and basic statistics such as the ci-
pher suite it is using, number of MIC failures, number of
association failures, etc. When a vulnerable TKIP packet is
captured its priority is changed and the packet is replayed.
If the network isn’t using QoS our tool will forge the QoS
header. We show in Sect. 6 that our implementation was
found to be very reliable.

Our attack appears to be one of the more effective DoS at-
tacks that can be launched against a networking using TKIP.
The simplicity of the attack not only makes it easy to im-
plement and debug, it also assures it is applicable in many
real world environments. In Section 7 a thorough compari-
son is given to currently known DoS attacks. Disabling the
TKIP countermeasures prevents the attack. However, most
APs do not provide this option, and with good reason. As
mentioned in Sect. 2.3 the countermeasures were included to
detect active attacks against the weak Michael algorithm [6].

Another option to prevent the attack is to make the key-
stream dependent on the priority. This entails a change in
the protocol, meaning all devices implementing TKIP would
have to be updated. Though preventing the attack, such a
modification does not appear feasible in practice.

4. MORE AND BIGGER PACKETS
The Beck and Tews attack allows forging 3 to 7 packets of

at most 28 bytes [20]. Our goal is twofold: we want to inject
both more and bigger packets. In this section we assume the
Beck and Tews attack has already been executed, meaning
we have obtained the MIC key for AP to client communica-
tion. Our technique is similar to the fragmentation attack
on WEP [4] and an improvement of a suggested attack by
Beck [1]. To the best of our knowledge, this is the first time
such an attack on TKIP has been implemented and proved
to be possible.

4.1 Exploiting Fragmentation
Since we know the MIC key, sending additional packets

only requires obtaining new keystreams. Recall that each
TSC corresponds to a different keystream. Because RC4
is used, XORing an encrypted packet with its correspond-
ing unencrypted packet unveils the keystream used during
encryption. Hence, finding new keystreams reduces to pre-
dicting the content of encrypted packets.

All 802.11 packets start with a LLC and SNAP header of
8 bytes. If we know whether it is an ARP, IP, or EAPOL
packet, this header can be predicted. Fortunately we can
identify ARP and EAPOL packets based on their length,
and can consider everything else to be IP. The first byte of
an IP packet consists of the version and the header length,
which is generally equal to 0x45. The second byte contain-
ing the Differentiated Services Field can be predicting based
on the priority of the 802.11 frame [18]. Finally the next 2
bytes, representing the length of the IP packet, can be de-
rived from the length of the 802.11 frame. As a result we
can predict the first 4 bytes of an IP packet. Predicting
the first 14 bytes of ARP packets is also possible. These
bytes consist of the hardware type and size, protocol type
and size, request type, and finally the MAC address of the
sender. All these fields can be predicted in an IPv4 network.
Because EAPOL packets are rarely transmitted we simply
ignore them. Our predictions can then be XORed with the
encrypted packets, revealing the first 12 bytes or more of the
keystream.

These short keystreams are combined using fragmentation
at the 802.11 layer. As mentioned in Sect. 2.2 the 802.11
protocol allows a frame to be fragmented into at most 16
MPDUs. Each MPDU must have a unique TSC value and
is encrypted with the keystream corresponding to that TSC.
All fragments must include an ICV, though the MIC value
is calculated over the complete MSDU and can be spread
over multiple MPDUs. Using fragmentation to combine the
keystreams we can inject packets with 112 bytes of payload.
Assuming there is enough traffic on the network, we can
inject an arbitrary amount of packets. Compared to the
Beck and Tews attack this is a significant improvement.

4.2 Implementation: Performing a Portscan
Implementing the fragmentation attack required patching

the compat-wireless drivers of Linux. The original driver
failed to correctly inject MPDUs, which caused the attack
to fail. Using our patched driver we successfully tested the
fragmentation attack against several devices, and found that
our heuristics to predict the first bytes of packets were very
accurate (see Sect. 6). To reduce packet loss we also detect
whether the client acknowledged receiving the MPDU, oth-
erwise the MPDU is retransmitted. As a proof of concept we
implemented a port scanner. This requires injecting a large
amount of packets and is thus ideal to test our fragmentation
attack.

The port scanner is given a file containing the ports to scan
and works by injecting TCP SYN request to each port. The
SYN packets do not contain any options, assuring there is
enough keystream to inject them. The encrypted TCP SYN-
ACK reply is detected by its length. In practice most packets
are larger than a SYN-ACK packet, meaning it has a distinc-
tive short length. After scanning a port a TCP RST packet
is always sent, even if no SYN-ACK was detected. This is
done to prevent the client from retransmitting a potentially

undetected SYN-ACK packet. Note that if the replies of the
client can be sent to an IP under our control, we essentially
have bidirectional communication and can connect to open
ports.

The attack can be mitigated by preventing the Beck and
Tews attack. This means disabling the client from send-
ing MIC failure reports, or using a short rekeying time of 2
minutes or less [20].

5. DECRYPTING ARBITRARY PACKETS
In this section we describe a state reset attack on the

Michael algorithm and we show how it can be used to de-
crypt arbitrary packets sent towards the client.

5.1 The Michael Algorithm
The state of the Michael algorithm is defined by two 32-

bit words (L,R) called left and right. To calculate the MIC
value of an 802.11 packet the state is first initialised to the
MIC key. Then the data shown in Fig. 2 is processed, which
is padded so that its length is a multiple of 4 bytes. Fi-
nally the calculation is finalised and resulting MIC value is
outputted. All data is processed in 32-bit words by a block
function.

The block function B(L,R) is an unkeyed 4-round Feistel-
type construction, taking as input a Michael state and re-
turning a new state [14, §11.4.2.3.3]. When processing an
input word M the next state is given by B(L⊕M,R). We
will let L′ stand for L ⊕M . The block function can be in-
verted [22], and its inverse is denoted by B−1. Note that we
can predictably influence L at the start of the block function
using M . For convenience the notation B((L,R),M) is used
to represent B(L ⊕M,R), denoting the new internal state
after processing M .

5.2 Michael State Reset
If the Michael state ever returns to the initial state, all

data processed so far has no influence on the MIC value.
This idea can be used to construct a prefix packet which
resets the state, allowing us to append a packet whose MIC
value is calculated only over the appended data. As sug-
gested by Beck [1] this could be done by appending two
magic words to the prefix. These so-called magic words are
ordinary 32-bits data words, but chosen in such a way so
they reset the internal state of the Michael algorithm. Us-
ing them an attacker can append any encrypted packet to
the prefix without invalidating the MIC value of the com-
plete packet. Unfortunately Beck didn’t provide a thorough
theoretical analysis. We generalise the problem to finding a
list of magic words that will transform a start state (Ls, Rs)
to an end state (Le, Re).

We could try to use just one magic word M1 to reset the
state. In that case B(Ls ⊕M1, Rs) must return (Le, Re).
Assuming that processing a random word M using the block
function results in a random state, a guess for M1 can be
modelled as a Bernoulli trial with a success probability of
2−64. Since we can try at most 232 values for M , finding a
solution reduces to having the first success after 232 trails.
This follows a geometric distribution. We get

Pr[X ≤ 232] = 1−
(
1− 2−64)232 ≈ 2, 328 · 10−10 (4)

where X follows a geometric distribution with a success
probability of 2−64. Such a low chance of finding a solu-
tion is unusable.

A better option is to use two magic words, denoted by
M1 and M2. This gives us one intermediate state (Li, Ri) to
work with. We begin by calculating B−1(Le, Re) = (L′i, Ri).
Note that we cannot calculate Li because M2 is still un-
known. Nevertheless, this teaches us the required value for
Ri. Then we brute force the first magic word M1. For each
possible value we apply the block function. If we obtain
the required value for Ri we have found a valid intermedi-
ate state (Li, Ri), since using the guessed value for M1 and
setting M2 to Li ⊕ L′i results in a solution:

B(B((Ls, Rs),M1),M2) = B(Li ⊕M2, Ri) (5)

= B(L′i, Ri) (6)

= (Le, Re) (7)

The first equation is trivial. The second equation follows
from our choice of M2. Finally, the third equation follows
from the calculation B−1(Le, Re) = (L′i, Ri).

A solution is found if the guess for M1 results in the re-
quired value for Ri, which has a probability of 2−32. Similar
to the previous case, the probability of finding a solution
can be modelled by a geometric distribution:

Pr[Y ≤ 232] = 1−
(
1− 2−32)232 = 0, 6321 . . . (8)

where Y follows a geometric distribution with a success
probability of 2−32. This implies that roughly 27% of the
time 232 calculations are performed yet no solution is found.
As an experiment we ran 50000 runs where random Michael
states had to be connecting using two magic words. In 31518
runs a solution was found, resulting in a success probability
of 63,036%. This closely matches our analyses. On an 3,10
GHz Intel Core i5-2400 it took on average 11,14 seconds to
find a solution, with a standard deviation of 6,33 seconds.

Another strategy is to use three magic words M1, M2,
and M3. This gives us two intermediate states (Li1, Ri1)
and (Li2, Ri2) to work with. Again we start by calculating
B−1(Le, Re) = (L′i2, Ri2). Next we take 216 random values
for the first magic word and compute the list of resulting
intermediate states (Li1, Ri1). We then try to brute-force
the second magic word by applying the reverse Michael al-
gorithm to the state (L′i2, Ri2). If the resulting value for
Ri1 is in the list of earlier calculated states we have found
a solution. Let Li1 be the value accompanying Ri1, then
the magic words M1, M2 = Li1 ⊕ L′i1, and M3 = Li2 ⊕ L′i2
provide a solution:

B(B(B((Ls, Rs),M1),M2),M3)

= B(B(Li1 ⊕M2, Ri1),M3)
(9)

= B(Li2 ⊕M3, Ri2) (10)

= (Le, Re) (11)

The first equation is trivial. The second and third follow
from our choice of M2 and M3, and the usage of the reverse
block function to calculate L′i1 and L′i2.

The probability that the result of a guess for M2 is in the
list is 2−16. The probability of finding a solution can again
be modelled as a geometric distribution. We get

Pr[Z ≤ 232] = 1−
(
1− 2−16)232 ≈ 1− 7, 2 · 10−28463 (12)

where Z follows a geometric distribution with a success prob-
ability of p = 2−16. Practically this shows that a solu-
tion will always be found. The average number of required

guesses for the second word is E[Z] = 1/p = 216. As an ex-
periment we ran 50000 runs where random states had to be
connecting using three magic words. In all runs a solution
was found. It took on average 65814 = 216.017... guesses for
M2 until a solution was found, with a standard deviation
of 66407 guesses. On our 3,10 GHz Intel Core i5-2400 this
corresponded to an average running time of 2,96 millisec-
onds. Though requiring more magic words, these results are
significantly better than the previous two cases.

5.3 Decryption Attack
Our goal is to decrypt arbitrary packets sent towards the

client. We will accomplish this by appending the targeted
packet to a specially crafted prefix. The prefix will simu-
late the behaviour of a ping request, making the client echo
back the appended data. We construct the prefix such that
the reply is send to an IP under our control, meaning we
will receive the plaintext content of the targeted packet, ef-
fectively decrypting it. To assure that the MIC value of
the constructed packet is correct we will apply the Michael
state reset attack to the ping-like prefix. This allows us to
append the targeted packet without invalidating the MIC
value. The resulting frame is sent to the client using the
fragmentation attack.

Contrary to the suggestion by Beck [1] we cannot use an
ICMP ping request as the prefix. This is because it includes
a checksum calculated over the header and the data section.
But since we do not know the plaintext data of the full
packet, we cannot calculate a correct checksum. Instead we
will construct a UDP prefix, where specifying a checksum is
optional. Sending a UDP packet to a closed port results in
an ICMP destination unreachable reply containing the first 8
bytes of the UDP packet. However, on Windows, Linux, and
Android the ICMP unreachable reply contains a full copy of
the original UDP packet. So when targeting these operating
systems the client will reply with the complete content of our
constructed packet. In particular this includes the plaintext
content of the targeted packet. Even large packets can be
quickly decrypted using this method.

Again we created a proof of concept tool in Linux. It lis-
tens for packets sent towards the client. Once a vulnerable
packet has been captured, the UDP prefix is constructed
and the Michael state reset attack is applied. The resulting
UDP prefix is transmitted using the fragmentation attack,
followed by the targeted packet (which is marked as the fi-
nal fragment of the MSDU). In practice this means the final
fragment will usually be bigger than all previous fragments.
Though this is not allowed by the 802.11 specification, nearly
all devices will accept the packet (see Sect. 6). The ICMP
unreachable reply sent by the client will include the pre-
fix, magic bytes, and the unencrypted data of the targeted
packet. Among other things, this allows an attacker to de-
crypt a TCP packet, learn the sequence number, and hijack
the TCP stream to inject arbitrary data [12]. As a con-
sequence, malicious data could be injected when the client
opens a website. Again the attack can be mitigated by pre-
venting the Beck and Tews attack.

6. EXPERIMENTS
In this section we begin by investigating whether TKIP is

still supported in practice. Then we evaluate how much de-
vices adhere to the relevant aspects of the 802.11 standard,
we report on implementation vulnerabilities discovered in

Table 1: Number of WiFi networks supporting the
given encryption schemes for several regions. Note
that one network can support multiple schemes.

Region Open WEP TKIP CCMP #Networks

Leuven 381 618 3307 3143 5023
Heverlee 121 288 1212 1149 1886

some wireless devices, and we discuss how our findings im-
pact the attacks. Finally our attacks are tested in realistic
settings.

6.1 Networks Supporting TKIP
Some new routers (for instance the Belkin N300 router)

do not support TKIP anymore, in accordance with the se-
curity roadmap of the WiFi Alliance. The WiFi Alliance
tests products and hands out certifications if they conform
to certain standards. Their new roadmap specifies that, as
of 2011, new APs are no longer allowed to support a TKIP
only option [7]. Even mixed mode, which simultaneously
allows TKIP and CCMP in the same network, is no longer a
requirement. Finally, in 2014 TKIP is disallowed completely.
Based on this one would think that TKIP is no longer widely
supported. Surprisingly, we found the opposite to be true.

To investigate whether TKIP is still supported in practice
we surveyed wireless networks in two Belgian municipalities
(Leuven and Heverlee). Detecting networks was done using
passive scanning, consisting of monitoring wireless traffic for
beacon frames. These frames contain all information neces-
sary to connect to a wireless network. In particular it in-
cludes the name of the network, the MAC address of the AP,
and the encryption schemes supported by the network. Dur-
ing an initial tests we found that active scanning detected
few additional networks (less than 6%), so in an attempt to
prolong battery life only passive scanning was used.

Several trips, of around an hour long, were made on foot
while scanning for networks. The raw capture was written
to file and later analysed for beacon frames using a custom
tool. This approach allowed us to make improvements to our
tool after collecting the raw captures. We uniquely identi-
fied networks by their name. This is necessary because one
network can be advertised by multiple APs. However we
also encountered several APs advertising a network named
after a vendor or product. These are default network names
used by a particular device and do not represent the same
network. Therefore we treated each of these APs as a unique
network. Similarly there were several APs advertising a net-
work with an empty name. These APs were also treated as
an unique network.

In total we detected 6803 unique networks. The num-
ber of networks supporting a particular encryption scheme
is shown in Table 1. Note that a handful of networks were
present both in Leuven and Heverlee. We found that 93%
of the networks used encryption, and that 66% supported
TKIP. When considering only encrypted networks, 71% of
them supported TKIP. Additionally, 19% of networks using
encryption only allow TKIP. We believe the reason so many
networks still support TKIP is because most routers, when
configured to use WPA2, by default use mixed mode (allow-
ing both TKIP and CCMP). We even observed that WEP
is still used by 14% of encrypted networks.

Table 2: Results of various tests on different wireless adapters. For laptop and USB adapters, L and W
denote it only works on Linux or Windows, respectively. Yes means it works on both, no means it works on
neither. Open Source router firmware was tested on the Asus RT-N10.

DoS
Fragmentation

Replay Unenc.
diff. size eff. frag. skip TSC any MIC

Laptop and USB: Intel 4965AG yes yes no L no no no
Belkin F7D1102AZ yes yes yes yes W yes L
Belkin F5D7053 yes L L L L yes yes
Alfa AWUS036h yes yes yes yes W W W
Ralink WA-U150BB yes yes yes yes L yes W

Mobile Devices: iPod MC086LL yes yes no yes no no no
iPad MC980NF yes yes no yes no no no

Access Points: Linksys WAG320N yes yes yes yes no no no
WRT54G 4.21.5 yes yes yes yes no no no
Scarlet VDSL Box yes yes no no yes no yes
Cisco Aironet 1130 AG yes yes yes yes no no no
Asus RT-N10 1.0.2.4 yes yes yes yes no no no
Tomato 1.28 yes yes yes yes no yes no
DD-WRT v24-sp2 yes yes yes yes no no no

6.2 Adherence to the 802.11 Specification
The wireless adapters in Table 2 were tested for imple-

mentation details impacting our attacks. While doing this
we encountered several vulnerabilities present in some wire-
less devices, and decided to test for their presence on all
devices. Wireless routers and mobile devices were tested us-
ing their default configurations, with open source wireless
router firmware was tested on the Asus RT-N10. Laptops
and USB wireless adapters were tested on Linux using the
compat-wireless 3.6.2-1-snp drivers, and on Windows using
the default installed drivers.

For the DoS attack to work a client must send a MIC fail-
ure report when an invalid MIC has been detected, and the
AP must shut down the network after two MIC failures. We
found that all wireless adapters, in all configurations, imple-
ment this properly. As a result our DoS attack is applicable
to all tested devices (see Table 2 column DoS). Additionally
we tested the DoS on a network not using QoS, making our
tool forge the QoS header. Again all adapters were vulner-
able to the attack, confirming results by Todo et al. [21].

Fragmentation support has been tested for several prop-
erties. We found that the Belkin F5D7053 adapter on Win-
dows incorrectly implemented fragmentation. Sending a frag-
ment to this adapter always resulted in a MIC failure, though
it worked fine under Linux. All other devices supported frag-
mentation.

An important property of fragmentation is whether the
last fragment is allowed to be bigger than the previous frag-
ments. Strictly speaking this is not allowed in the 802.11
standard [14, §9.5] yet we rely on this during the decryption
attack. We found that all devices supporting fragmentation
permitted this behaviour (see Table 2 column diff. size).

As mentioned in Sect. 2.3 the receiver should update its
replay counter after reassembling the MSDU. This leaves
open the possibility to send each fragment of an MSDU us-
ing the same TSC, keystream, and priority. If allowed, an
attacker is then able to inject 16 fragments using only one
keystream. In Table 2 column eff. frag. we see that this
technique is indeed possible on several devices.

Finally we tested if fragments can be sent without us-

ing a sequential replay counter, i.e., whether we can skip
TSC values. The 802.11 standard permits this behaviour
for TKIP [14, §11.4.2.6], though some devices only accepted
sequential TSC (see Table 2 column skip TSC).

Surprisingly we also discovered critical implementation
flaws in some devices, particularly in wireless USB adapters.
Several do not drop packets with an already used TSC, al-
lowing an attacker to replay packets (see Table 2 column
Replay). Another flaw is that certain devices do not ver-
ify the MIC value of a fragmented TKIP packet (see Ta-
ble 2 column any MIC). This removes the requirement of
first having to execute the Beck and Tews attack to obtain
the MIC key. After all, if the MIC value is not verified we
do not have to calculate it, meaning there is no reason to
know the MIC key. On Windows the Ralink WA-U150BB
drops fragmented packets with an incorrect MIC, but does
not transmit a MIC failure. As mentioned in Sect. 3, drop-
ping the packet but not sending a MIC failure can open the
door for novel attacks on the MIC key.

More worrisome, we also encountered wireless adapters
that accepted unencrypted packets while connected to an
encrypted network (see Table 2 column Unenc.). In partic-
ular the vulnerability is present in the Windows drivers for
the AWUS036h, a device popular for its wide reception and
high transmission power. Another device susceptible to the
attack was the Scarlet VDSL Box. This is a router that is
handed out by the Belgium ISP Scarlet when a customer
buys a VDSL internet connection. The reason this case is
interesting is because the vulnerability has a higher impact
when present on APs. An attacker could abuse the flaw to
easily inject arbitrary traffic into the network, but also to
send packets to the internet using the public IP of the vic-
tim. It might be an interesting future research direction to
test for additional implementation flaws on a wider array of
devices.

6.3 Verifying Our Attacks
According to the 802.11 specification, the TKIP counter-

measures must disable only TKIP traffic for one minute [14,
§11.4.2.4]. However, most of the APs we tested disabled all

Table 3: Impact of our DoS attack on several Ac-
cess Points. The term Both denotes that TKIP and
CCMP traffic was disabled. Open source router
firmware was tested on the Asus RT-N10.

Access Point
Protocols Disabled
WPA1 WPA2

Linksys WAG320N Both Both
WRT54G 4.21.5 TKIP Both
Scarlet VDSL Box Both TKIP
Cisco Aironet 1130 AG Both Both
Asus RT-N10 1.0.2.4 Both TKIP
Tomato 1.28 Both Both
DD-WRT v24-sp2 Both Both

wireless traffic, including CCMP protected traffic in mixed
mode. When targeting these devices one single TKIP client
allows an attacker to take down the complete wireless net-
work. More precisely, the behaviour of an AP depends on
whether WPA1 or WPA2 is being used (see Table 3). Prac-
tically the difference between WPA1 and WPA2 is mainly
between supported encryption schemes: WPA1 mandates
TKIP support and optionally allows CCMP, while the re-
verse is true for WPA2. For example, the WRT54G only
supports TKIP when using WPA1, while the Belkin N300
only supports WPA2 with CCMP.

For the fragmentation, portscan, and decryption attack
to work we need to be able to accurately predict the first
12 bytes of encrypted packets. To test our prediction al-
gorithm we monitored TKIP traffic generated by visiting
several websites for 20 minutes. In total 36643 data pack-
ets were captured, of whom 36642 were predicted correctly.
The single miss was an EAPOL packet, which we purposely
ignored. Further, we weren’t able to capture all packets as
an attacker, meaning the keystreams corresponding to cer-
tain TSCs remained unknown. In total 5680 packets were
not captured, consisting of 13% of all traffic.

The fragmentation and portscan attack has been tested
against Windows, Linux, iOS, and Android. When con-
nected to a networking using TKIP, all were found to be
vulnerable. Additionally we tested the attacks under two au-
thentication mechanisms: the first being a shared passphrase
and the second being a personal login and password verified
using PEAP-MSCHAP v2. In both situations the attacks
were successful. These tests clearly demonstrate the relia-
bility of the attacks.

For the decryption attack we found that, when connected
to a network using TKIP, Windows, Linux, and Android
were vulnerable. Mac OS X and iOS only include the first
8 bytes of the UDP packet in the ICMP unreachable reply,
meaning the targeted packet is never included. Neverthe-
less, we did receive ICMP unreachable replies from all oper-
ating systems, meaning the Michael reset attack worked in
all cases. Installing a firewall which blocks the ICMP un-
reachable replies prevents the decryption attack, though the
Michael reset attack itself will remain possible.

7. RELATED WORK
Several DoS attacks exist on wireless networks. Arguably

the most well-known attack consists of forging deauthenti-
cation frames to either the client or AP [2]. This is possible
because the deauthentication message is not protected us-

ing any keying material. Continuously sending them will
result in a DoS attack. An advantage of our attack is that
it requires replaying only two frames each minute to discon-
nect every client that is using TKIP. Hence our attack is
stealthier and requires less power to execute. Furthermore,
nowadays the deauthentication attack can be prevented by
enabling protected management frames [14, §4.5.4.9]. Com-
pared to the DoS attack of Glass and Muthukkumarasamy [9]
our attack is easier to execute, since their attack requires
a man-in-the-middle position. Another advantage is that
our attack can be used to easily verify whether the client
sends MIC failure reports, and thus to see if it is possible
to perform the Beck and Tews attack [17]. The Beck and
Tews attack could also be changed to a DoS attack. Once
the first MIC failure has been detected, the corresponding
packet could be injected a second time. However, on average
128 packets have to be injected before a MIC failure is trig-
gered. This makes the attack easier to detect. It also isn’t
as easy to implement compared to our DoS attack, making
it more difficult to execute in practice.

Könings et al. found DoS vulnerabilities at the physical
and MAC layer of 802.11, some halting traffic for one minute
with minimal packet injection [15]. Contrary to our DoS,
their attacks do not simultaneously disconnect all clients
connected to a network. Bicakci and Tavli give a survey on
DoS attacks at the physical and MAC layer. The attacks
they discuss require injecting a large amount of frames [3].

One of the first attacks on TKIP was found by Beck
and Tews and decrypts an ARP reply packet. As a re-
sult the MIC key for AP to client communication can be
obtained [20] and a few small packets can be injected. It
only works if the QoS extension is enabled and takes 12–
15 minutes to execute. Halvorson et al. improved the at-
tack, allowing larger packets to be injected [11]. However
their technique does not allow injection of more packets, and
takes longer to execute compared to our fragmentation at-
tack. Morii and Todo came up with a modification removing
the requirement that the AP must have enabled QoS [17].
They found that even if QoS was not used, clients will still
accept and process a QoS frame. This allows an attacker to
forge the QoS header if not present. In another paper Todo
et al. managed to reduce the execution time of the Beck and
Tews attack to 8–9 minutes [21].

The Michael algorithm was designed by Ferguson [6]. It
was quickly revealed to be invertible by Wool [22]. Based
on this Wool suggested a related message attack on TKIP.
Huang et al. showed that Michael is not collision free and
suggested a packet forgery attack [13].

Beck suggested the use of two magic words to reset the
Michael state [1]. Unfortunately, no thorough theoretical
analysis was provided, and no implementation in a practical
setting was given. Based on the fragmentation attack on
WEP by Bittau et al. [4], Beck also suggested using the
fragmentation attack on TKIP, though no implementation
was made to verify his ideas.

Wireless drivers have been tested before for vulnerabili-
ties [5]. Most of the techniques focus on fuzzing with the aim
of finding code injection attacks. However, only a limited
amount of research has been done to find logical implemen-
tation flaws. In particular we found no previous work testing
for replay attacks, seeing if it is possible to inject plaintext
packets into an encrypted network, or testing whether the
MIC of fragmented TKIP packets is verified.

Moen et al. have analysed the key scheduling algorithm in
TKIP [16]. They found that, given less than 10 RC4 packet
keys, it is possible to recover the temporal key (TK) with a
time complexity of O(2105) compared to a brute force attack
with complexity O(2128).

8. CONCLUSION
TKIP was designed as an intermediary solution to mit-

igate the existing flaws of WEP. We found that TKIP is
still supported by a large number of networks. Further, we
showed that TKIP fails to provide sufficient security, by de-
scribing and implementing several new attacks. In addition,
during our experiments, we identified several critical im-
plementation vulnerabilities in several wireless devices. We
conjecture that a more substantial test of these implemen-
tations will reveal more vulnerabilities.

Specifying a short rekeying interval prevents the fragmen-
tation and decryption attack, unfortunately this does not
prevent our DoS attack. To secure a wireless network it is
strongly advised to only support the more secure CCMP.

9. ACKNOWLEDGEMENTS
The authors would like to thank the anonymous reviewers

and the shepherd for their valuable feedback.
This research is partially funded by the Research Fund

KU Leuven, and by the EU FP7 project NESSoS. With the
financial support from the Prevention of and Fight against
Crime Programme of the European Union (B-CCENTRE).
Mathy Vanhoef holds a Ph. D. fellowship of the Research
Foundation - Flanders (FWO).

10. REFERENCES
[1] M. Beck. Enhanced TKIP michael attacks. Retrieved 4

Februari, 2013, from http://download.aircrack-ng.

org/wiki-files/doc/enhanced_tkip_michael.pdf.

[2] J. Bellardo and S. Savage. 802.11 denial-of-service
attacks: real vulnerabilities and practical solutions. In
Proceedigns of the USENIX Security Symposium, 2003.

[3] K. Bicakci and B. Tavli. Denial-of-service attacks and
countermeasures in IEEE 802.11 wireless networks,
2009.

[4] A. Bittau, M. Handley, and J. Lackey. The final nail
in WEP’s coffin. In IEEE Symposium on Security and
Privacy, pages 386–400, 2006.

[5] L. Butti and J. Tinnés. Discovering and exploiting
802.11 wireless driver vulnerabilities. Journal in
Computer Virology, 4(1):25–37, 2008.

[6] N. Ferguson. Michael: an improved MIC for 802.11
WEP. IEEE doc. 802.11-2/020r0, Jan. 2002.

[7] G. Fleishman. Say goodbye to WEP and TKIP.
Retrieved 26 November, 2012, from
http://bit.ly/cSFSvj, 2010.

[8] S. R. Fluhrer, I. Mantin, and A. Shamir. Weaknesses
in the key scheduling algorithm of RC4. In Selected
Areas in Cryptography, pages 1–24, 2001.

[9] S. M. Glass and V. Muthukkumarasamy. A study of
the TKIP cryptographic dos attack. In 15th
International Conference on Networks. IEEE, 2007.

[10] M. Guennoun, A. Lbekkouri, A. Benamrane,
M. Ben-Tahir, and K. El-Khatib. Wireless networks
security: Proof of chopchop attack. In WOWMOM,
pages 1–4, 2008.

[11] F. M. Halvorsen, O. Haugen, M. Eian, and S. F.
Mjølsnes. An improved attack on TKIP. In 14th
Nordic Conference on Secure IT Systems, NordSec
’09, 2009.

[12] B. Harris and R. Hunt. Review: TCP/IP security
threats and attack methods. Computer
Communications, 22(10):885–897, 1999.

[13] J. Huang, J. Seberry, W. Susilo, and M. W. Bunder.
Security analysis of michael: The IEEE 802.11i
message integrity code. In EUC Workshops, pages
423–432, 2005.

[14] IEEE Std 802.11-2012 (Rev. of IEEE Std 802.11-2007).
Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications, 2012.

[15] B. Könings, F. Schaub, F. Kargl, and S. Dietzel.
Channel switch and quiet attack: New DoS attacks
exploiting the 802.11 standard. In LCN, 2009.

[16] V. Moen, H. Raddum, and K. J. Hole. Weaknesses in
the temporal key hash of WPA. Mobile Computing
and Communications Review, 8(2):76–83, 2004.

[17] M. Morii and Y. Todo. Cryptanalysis for RC4 and
breaking WEP/WPA-TKIP. IEICE Transactions,
94-D(11), 2011.

[18] S. Park, K. Kim, D. Kim, S. Choi, and S. Hong.
Collaborative QoS architecture between DiffServ and
802.11e wireless LAN. In Vehicular Technology
Conference, 2003.

[19] A. Stubblefield, J. Ioannidis, and A. D. Rubin. A key
recovery attack on the 802.11b wired equivalent
privacy protocol (wep). ACM Trans. Inf. Syst. Secur.,
7(2), 2004.

[20] E. Tews and M. Beck. Practical attacks against WEP
and WPA. In Proceedings of the second ACM
conference on Wireless network security, WiSec ’09,
2009.

[21] Y. Todo, Y. Ozawa, T. Ohigashi, and M. Morii.
Falsification attacks against WPA-TKIP in a realistic
environment. IEICE Transactions, 95-D(2), 2012.

[22] A. Wool. A note on the fragility of the Michael
message integrity code. IEEE Transactions on
Wireless Communications, 3(5):1459–1462, 2004.

