
Introduction
The Xbox is a gaming console, which has been

introduced by Microsoft Corporation in late 2001
and competed with the Sony Playstation 2 and the
Nintendo GameCube. Microsoft wanted to prevent
the Xbox from being used with copied games, un-
official applications and alternative operating sys-
tems, and therefore designed and implemented a
security system for this purpose.

This article is about the security system of the
Xbox and the mistakes Microsoft made. It will not
explain basic concepts like buffer exploits, and it
will not explain how to construct an effective secu-
rity system, but it will explain how not to do it: This
article is about how easy it is to make terrible mis-
takes and how easily people seem to overestimate
their skills. So this article is also about how to avoid
the most common mistakes.

For every security concept, this article will first
explain the design from Microsoft's perspective, and
then describe the hackers' efforts to break the secu-
rity. If the reader finds the mistakes in the design,
this proves that Microsoft has weak developers. If,
on the other hand, the reader doesn't find the mis-
takes, this proves that constructing a security system
is indeed hard.

The Xbox Hardware
Because Microsoft had a very tight time frame for

the development of the Xbox, they used off-the-
shelf PC hardware and their Windows and DirectX
technologies as the basis of the console. The Xbox
consists of a Pentium III Celeron mobile 733 MHz
CPU, 64 MB of RAM, a GeForce 3 MX with TV
out, a 10 GB IDE hard disk, an IDE DVD drive,
Fast Ethernet, as well as USB for the gamepads. It
runs a simplified Windows 2000 kernel, and the
games include adapted versions of Win32, libc and
DirectX statically linked to them.

Although this sounds a lot more like a PC than, for
example, a GameCube with its PowerPC processor,
custom optical drive and custom gamepad connec-

tors, it is important to point out that, from a hard-
ware point of view, the Xbox shares all properties of
a PC: It has LPC, PCI and AGP busses, it has IDE
drives, it has a Northbridge and a Southbridge, and
it includes all the legacy PC features such as the
“PIC” interrupt controller, the “PIT” timer and the
A20 gate. nVidia sold a slightly modified South-
bridge and a Northbridge with a another graphics
core embedded for the PC market as the “nForce”
chipset between 2001 and 2002.

Motivation for the Security System
The Xbox being a PC, it should be trivial to install

Linux on it in order to have a cheap and, for that
time, powerful PC. Even today, a small and silent
733 MHz PC with TV connectivity for 149 USD/
EUR is still attractive. But this is not the only thing
Microsoft wanted to prevent. There are three uses
that should not have been possible:
•Linux: The hardware is subsidized and money is

gained with the games, therefore people should not
be able to buy an Xbox without the intent to buy
any games. Microsoft apparently feels that allow-
ing the Xbox to be used as a (Linux) computer
would be too expensive for them.

•Homebrew/Unlicensed: Microsoft wants the
software monopoly on the Xbox platform. Nobody
should be able to publish unlicensed software,
because Microsoft wants to gain money with the
games to amortize the hardware losses, and be-
cause they do not want anyone to release non-
Internet Explorer browsers and non-Windows Me-
dia Player multimedia software.

•Copies: Obviously it is important to Microsoft that
it is not possible to run copied games on the Xbox.
Microsoft decided to design a single security sys-

tem that was supposed to make Linux, homebrew/
unlicensed software and copies impossible. The idea
to accomplish this was by simply locking out all
software that is either not on the intended (original)
medium or not by Microsoft.

17 Mistakes Microsoft Made in the
Xbox Security System

Michael Steil <mist@c64.org>
Xbox Linux Project http://www.xbox-linux.org/

On the one hand, this idea makes the security sys-
tem easier and there are less possible points off at-
tack. But on the other hand, 3 times more attackers
have a single security system to hack: Although
Open Source and Linux people, homebrew develop-
ers, game companies as well as crackers have little
common interests, they could unite in this case and
jointly hack the Xbox security system.

Of the three consoles of its generation, Xbox,
Playstation 2 and GameCube, the Xbox is the one
whose security system has been compromised first,
the one that is now easiest to modify for a hobbyist,
the one with the most security system workarounds,
and the one with the most powerful hacks. This may
be, because the Xbox security is the weakest one of
the three, but also because Open Source people,
homebrew people and crackers attacked the Xbox,
while the Open Source people did not attack the
Playstation 2, as Linux had been officially supported
by Sony, so the total number of hackers was lower,
buying them time.

Idea of the Security System
In order to allow only licensed and authentic code

to run, it is necessary to build a TCPA/Palladium-
like chain of trust, which reaches from system boot
to the actual execution of the game. The first link is
from the CPU to the code in ROM, which includes
the Windows kernel, and the second link is from the
kernel to the game.

There are several reasons that the operating system
is contained in ROM (256 KB) instead of being
stored on hard disk, like on a PC. First, it allows a
faster startup, as the kernel can initialize while the
hard disk is spinning up, furthermore, there is one
link less in the chain of trust, and in case verifica-
tion of the kernel gets compromised, it is harder to
overwrite a ROM chip than modify data on a hard
disk.

Startup Security
When turned on, x86-compatible CPUs start at the

address 0xFFFFFFF0 in the address space, which is
usually flash memory. For the Xbox, this is obvi-
ously no good idea, as flash memory can be

• replaced, by removing the chip, fitting a socket
and inserting a replacement chip.

• overridden, by adding another flash memory chip
to the LPC bus. This override functionality is neces-
sary, because during manufacturing, an empty flash
memory chip gets soldered onto the board, an over-
ride LPC ROM chip gets connected to the board and
the system boots from the external ROM, which
then programs the internal flash memory. This pro-

cedure is significantly cheaper than preprogram-
ming the flash memory chips.

• reprogrammed, because flash memory can be
written to many times. It would be possible to use
ROM instead of flash memory, but ROM is more
expensive than flash memory.

Thus, the machine must not start from flash mem-
ory.

Microsoft's Perspective
It would be possible to make two of the attacks

impossible, by using ROM chips instead of flash.
There would be no way to reprogram them, and it
would be possible to disable the LPC override func-
tionality in the chipset, because it is not needed for
the manufacturing process any more.

The Hidden ROM
There is a solution between flash memory and

ROM that combines advantages of both these ap-
proaches. This trick is rather old and had already
been used in previous gaming consoles like the
Nintendo 64: Use a tiny non-replaceable startup
ROM, and put the bulk of the firmware data (i.e. the
Windows kernel) into flash memory. The “internal”
ROM checks whether the contents of the flash
memory are authentic, and if yes, it passes execu-
tion to it.

This way, there will be another link in the chain of
trust, but the ROM code can be trusted (if it is non-
replaceable), and if, in addition, it is non-accessible,
an attacker may not even have a clue how verifica-
tion works.

Location of the ROM
But where can this ROM be put? It cannot be a

separate chip, as it would be replaceable. It would
have to be included into another chip. The CPU
would be ideal, as the ROM contents would not
travel over any visible bus, but then it would be
impossible to use cheap off-the-shelf Celerons.
Including it in any other chip would make it non-
replaceable, but data would travel over a bus. It
seems to be a good compromise to store the ROM
data in the Southbridge (”MCPX”), as it is con-
nected via the very fast HyperTransport bus, so it is
very hard to sniff. A former Microsoft employee
confirmed that the developers tought that nobody
was able to sniff HyperTransport.

Verification Algorithm
This secret ROM stored in the Southbridge must

verify the Windows kernel in the external flash
memory before executing it. One idea would be to
checksum (hash) the flash contents using an algo-

rithm like MD5 or SHA-1, but this would mean that
the hash of the kernel has to be stored in the secret
ROM as well, which would make it imposible to
ship updated versions of the kernel in future Xboxes
without also updating the ROM contents - which
would be very expensive.

A digital signature algorithm like RSA would be
better: It would be possible to update the kernel
without changing the ROM, but an RSA imple-
mentation takes up a lot of space, and embedded
ROM in the Southbridge is expensive. It would be
ideal if the algorithm fit in only 512 bytes, which is
impossible for RSA.

Second Bootloader (”2bl”)
A solution for this problem is again to introduce

another link in the chain of trust: The ROM only
hashes a small loader (”2bl”, “second bootloader”)
in flash memory, which can never be changed. It is
then the job of this loader to verify the rest of flash,
and as the second loader can be any size, there are
no restrictions.

So the final chain of trust looks like this: The CPU
boots from the secret ROM embedded into the
Southbridge, which cannot be changed. The secret
ROM verifies the second bootloader in flash mem-
ory using a hash algorithm, and if it is authentic,
runs it. The second bootloader checks the kernel,
and if authentic, runs it.

Now the second bootloader and the Windows ker-
nel would be stored in flash memory in plain text,
which is a bad idea: An attacker can immediately
see how the second bootloader verifies the integrity
of the kernel, and even analyze the complex kernel
for possible exploits. Encrypting all the flash con-
tents will not solve possible vulnerability problems,
but it will buy us time until the decryption of the
flash contents is understood by hackers.

The decryption key would have to be stored in the
secret ROM, and the 2bl verification code would
also have to decrypt the flash contents into RAM
while reading it.

RAM Initialization
Decrypting flash memory contents into RAM is a

challenge if we are living inside the first few hun-
dred bytes of code after the machine has started up:
At this point, RAM might not be stable yet. The
reason for this is that Microsoft bought cheap RAM
chips; they just took everything Samsung could give
them to lower the price, even faulty ones, i.e. chips
that will be unstable when clocked at the highest
frequencies specified.

The Xbox is supposed to find out the highest clock
speed the RAM chips can go and run them at this
frequency - this is the reason why some games don't

run as smoothly on some Xboxes as on others. So
the startup code in the secret ROM has to do a
memory test, and if it fails, clock down the RAM,
do another memory test, and if it fails again, clock
down again, and so on, until the test succeeds or the
RAM cannot be clocked down any further.

The problem now is that it is impossible to do
complex RAM initialization, data decryption and
hashing in 512 bytes. This code would need at least
2 KB, which would be significantly more expensive,
if embedded into the Southbridge.

We could put the RAM initialization code, which
is the biggest part of what the startup code needs to
do, into flash memory, and call it from the secret
ROM, but this would kill security, as an attacker
could easily see the unencrypted code in flash,
modify it and have the control of the machine right
at the startup.

The developers at Microsoft had a brilliant idea
how to solve this problem: They designed an inter-
preter for a virtual machine that can read and write
memory, access the PCI config space, do “AND”
and “OR” calculations, jump conditionally etc. The
instruction code has one byte instructions and two
32 bit operands, it can use immediate values as well
as an accumulator.

The interpreter for the virtual machine is stored in
the secret ROM, and its code (”xcodes”) is stored in
flash memory. This code does the memory initiali-
zation (plus extra hardware initialization, which
would not be necessary). This program cannot be
encrypted, as there is again no space for it in the
secret ROM, but as the virtual machine is unknown
to the hacker, encryption should not be that impor-
tant. It also cannot be hashed, as this would make it
impossible to change the xcodes for later revisions
of the Xbox hardware. Therefore we have to make
sure that, if the hacker knows how the virtual ma-
chine works, it is impossible to do anything mali-
cious with the xcodes.

The Virtual Machine
There are several ways an attacker could exploit

the xcodes, which are by definition untrusted, be-
cause they reside in “external” flash memory. Mi-
crosoft included some code to make sure there were
no possible exploits.

Read the Secret ROM
The xcodes can read memory and access I/O ports.

This way an attacker could place xcodes into flash
memory that dump the secret ROM, which must be
mapped into the address space somewhere, to a
slow bus, like the LPC or the I2C bus, or write it
into CMOS or the EEPROM, so that we can read it
later.

The xcode interpreter has to make sure that the
xcodes cannot read the secret ROM, which is lo-
cated at the upper 512 bytes of the address space.
The simplest way to accomplish this is to mask the
address when reading from memory:
 and ebx, 0FFFFFFFh; clear upper 4 bits
 mov edi, [ebx] ; read from memory
 jmp next_instruction

This way, the xcodes can only ready from the
lower 256 MB, which is no problem, as there are
only 64 MB of RAM, and memory mapped I/O can
be mapped into this region using PCI config cycles.

Turn off the Secret ROM
The xcodes may also not turn off the secret ROM,

or else the CPU, while executing the xcode inter-
preter, would “fall down” from the secret ROM into
the underlying flash ROM, which is also mapped to
the top end of the address space. The turn off func-
tionality is important: As soon as the second boot-
loader takes over, the secret ROM has to be turned
off, or else an attack against a game, which makes it
possible to run arbitrary code, could dump the secret
ROM, making additional attacks against it possible.

The secret ROM can be turned off by writing a
value with bit #1 set to the PCI config space of de-
vice 0:1:0, register 0x80. So the xcode interpreter
always clears this bit in case there is a write to this
PCI config space register:
 cmp ebx, 80000880h ; MCPX disable?
 jnz short not_mcpx_disable; no
 and ecx, not 2 ; clear bit 1
not_mcpx_disable:
 mov eax, ebx
 mov dx, 0CF8h
 out dx, eax ; PCI configuration address
 add dl, 4
 mov eax, ecx
 out dx, eax ; PCI configuration data
 jmp short next_instruction

Encryption and Hashing
For the decryption of the second bootloader, Mi-

crosoft chose the RC4 algorithm, which is pretty
small, as it fits into 150 bytes. It uses a 16 bytes key,
which is also stored in the secret ROM. Microsoft's
engineers also chose to use RC4 as a hash, so that
no additional algorithm had to be implemented for
this. Differential decryption algorithms feed the
decrypted data into the generator of the decryption
key stream, so if the encrypted code is changed at
one byte, all the following bytes will decrypted in-
correctly, up to the last bytes. This way, it is possi-
ble to only test the last few bytes. If they have been
decrypted correctly, then the encrypted code has

been authentic. (If you are getting suspicious now -
read on!)

In practice, the secret ROM in the Xbox compares
the last decrypted 32 bit value with the constant of
0x7854794A. If it is incorrect, the Xbox has to
panic.

Panic Code
So far, the code in the secret ROM does this:

• Enter protected mode, and set up segment de-
scriptors, so that we have access to the complete
flat 32 bit address space.

• Interpret the xcodes.
• Decrypt and hash the second bootloader, store it in

RAM
• If the hash is correct, jump to the decrypted second

bootloader in RAM, else panic.
There is another possible attack here: A hacker

could deliberately make the hash fail. If the Xbox
then halts and flashes its lights to indicate an error,
the attacker can attach a device to dump the secret
ROM after the CPU has shut down and the bus is
idle. Although HyperTransport is fast, it would be a
lot easier to attach a device that actively requests the
data from the Southbridge than sniffing it when the
CPU requests it.

One solution would be not to halt but to shut down
the Xbox in case of a problem. The support chips
have this functionality. But incorrect flash memory
does not necessarily mean that there has been an
attack, it could also be a malfunction, and the ma-
chine should use the LED to blink an error code.

So we should leave the Xbox running, but just turn
off the secret ROM, so that it cannot be read any
more. But there is a problem: We have to do this
inside the secret ROM. So if we disable the ROM,
we cannot have the “hlt” instruction after that, be-
cause the CPU will “fall down” into flash memory -
where an attacker could put code. On the other
hand, if we halt the CPU, we cannot turn off the
secret ROM afterwards.

We cannot put the disable and halt code into RAM
and jump there, because RAM might not be stable,
and might even have been tampered with by an at-
tacker (e.g. by turning off the memory controller
using the xcodes) so that the secret ROM does not
get turned off. We cannot put the disable and halt
code into flash either, as again, an attacker could
simply put arbitrary code to circumvent the com-
plete system there.

The Microsoft engineers used yet another brilliant
trick: They jump to the very end of the address
space (which is covered by the secret ROM) and
turn off the secret ROM in the very last instruction

inside the address space. This is a simplified version
of the idea:
 FFFFFFF1 mov eax, 80000880h
 FFFFFFF6 mov dx, 0CF8h
 FFFFFFF9 out dx, eax
 FFFFFFFB add dl, 4
 FFFFFFFC mov al, 2
 FFFFFFFE out dx, al

After the last instruction, the program counter
(EIP) will overflow to 00000000, which, according
to the CPU documentation, causes an exception, and
as there is no exception handler set up, it causes a
double fault, which will effectively halt the ma-
chine.

The Hacker Perspective
So much for the theory. The design looked pretty

good, although the trade off between cost and secu-
rity as it has been decided, might give some people
headaches. Let us now have a look at the Xbox from
the hackers' point of view.

It has been well known that the Xbox chipset is a
modified version of nVidia's nForce chipset, so we
knew that it was standard IDE, USB, there was an
internal PCI bus and so on. Two hackers from Great
Britain, Luke and Andy, checked the hard disk and
found out that it uses a custom partitioning scheme,
a FAT-like filesystem, that there is no kernel on the
hard disk, but there is the Xbox Dashboard on the
fourth partition, the main program that gets exe-
cuted if there is no game in the DVD drive, which
allows changing settings, playing audio CDs and
managing savegames.

Extracting the Secret ROM
Andrew “bunnie” Huang, then a PhD student at the

MIT, disassembled his Xbox, saw the flash memory,
de-soldered it, extracted the contents, put it on his
website and got a phone call from one of Micro-
soft's lawyers.

The flash memory image was obviously encrypted,
but there was x86 binary code in the upper 512
bytes! Obviously, there should be no code in the
upper 512 bytes, as this gets overridden by the se-
cret ROM, which contains the actual machine setup
and flash decryption code.

Bunnie found out that this code was an interpreter
for tables in flash memory, plus a decryption func-
tion that looked like RC4. He rewrote the crypto
code in C and tried it on the data - but the resulting
data was random, obviously something was wrong.
The interpreter didn't make much sense either. The
code used opcodes that were unknown to the inter-
preter.

In order to find out what was wrong, bunnie re-
wrote the top of flash with his own code, and later
even completely erased the upper 512 bytes, but the
Xbox still booted! So it was obvious to him that this
region gets overridden by some internal code. As it
turned out later, the code in the upper 512 bytes of
the flash image was a very old version of the secret
ROM code, which had been unintentionally linked
to the image by the build tools. It seems like nobody
had looked at the resulting image at the end, before
they shipped the consoles. This mistake was very
close to a fatal one, and Microsoft was lucky that
they didn't link the actual version of the secret
ROM.

But it didn't make that much of a difference, as
bunnie sniffed the busses, and eventually dumped
the complete secret ROM, including the RC4 key
from HyperTransport, using a custom built sniffer -
after all, he was working on his PhD degree about
high performance computing, and he could use the
excellent resources of the MIT hardware lab.

When he published his findings, other people
found out quite quickly that the validity check did
nothing at all: The combination of decryption and
hash with a cypher that feeds back the decrypted
data into the key stream is a good idea, but unfortu-
nately, RC4 is no such cypher. It decrypts bytes in-
dependently, so if one byte is wrong, all the fol-
lowing bytes will still be decrypted correctly. So
checking the last four bytes has no effect: There is
no hash.

It turned out that the cypher used in the old version
of the secret ROM as found in flash memory used
the RC5 cypher. In contrast to RC4, RC5 does feed
the decrypted stream back into the key stream. So
they seem to have replaced RC5 with RC4 without
understanding that RC4 cannot be used as a hash.
Bunnie's theory why they abandoned RC5 is that
RC5 was still a work in progress, and that Microsoft
wasn't supposed to have it, so they went for the
closest relative - RC4.

Modchips
Now that the encryption key was known and there

was effectively no hash over the second bootloader,
it was possible to patch this code: People added
code to the second bootloader to patch the kernel
after decryption (and decompression) to accept ex-
ecutables even if on the wrong media (DVD-R in-
stead of original) or if the RSA signature of the ex-
ecutables was broken (i.e. unsigned homebrew
software).

Modchips appeared: Some of them had a complete
replacement flash memory chip on them, others only
patches a few bytes and passed most reads down to
the original flash chip. All these modchips had to be

soldered in parallel to the original flash chip, using
31 wires.

Now other people found out that, if the flash chip
is completely missing, the Xbox wants to read from
a (non-existant) ROM chip connected to the (serial)
LPC bus. This is of course because of the manufac-
turing process: As it has been explained before, the
flash chip gets programmed in-system, the first time
they are turned on, using an external LPC ROM
chip. Modchip makers soon developed chips that
only needed 9 wires and connected to the LPC bus.
It was enough to ground the data line D0 to make
the Xbox think that flash memory is empty.

Lots of these “cheapermods” appeared, as they
only consisted of a single serial flash memory chip.
They could be installed within minutes, especially
after some companies started shipping chips that
used pogo pins, so that no soldering was required.

Some groups wrote applications like boot menus
that made it possible to copy games to hard disk and
run them from there. Patched Xbox kernels ap-
peared that supported bigger hard disks. Making the
Xbox run copies from DVD-R or hard disk as well
as homebrew applications written with the official
Xbox SDK was now easy.

Backdoors
The Xbox Linux Project was working on two ways

to start Linux: Either run the Linux kernel from a
CD/DVD as if it was a game, or run it directly from
flash memory, or from HD/DVD using a Linux
bootloader in flash memory, so that the Xbox be-
haved like a PC. For the latter, Xbox Linux was
working on a replacement firmware.

It would have been no problem to write a replace-
ment firmware that took over execution instead of
the second bootloader, as it was possible to com-
pletely replace this second bootloader, as well as
encrypt it, using the well-known key from the secret
ROM. But the firmware developers felt very uncom-
fortable with the idea of using this secret key in
their GPL code. Other hackers felt the same, and
thus were looking for bugs and backdoors in the
secret ROM code, in order to find a way to be able
to implement a replacement firmware without hav-
ing to deal with encryption.

The Visor Backdoor
A hacker named visor, who never revealed his real

name, wondered whether the rollover to 00000000
in case of an incorrect 2bl “hash” really caused a
double fault and halted the CPU. He used the
xcodes to write the assembly instruction for “jmp
0xFFFF0000” to the memory location 00000000 in
RAM and changed the last four bytes in 2bl, in or-
der to make the secret ROM run the panic code. The

Xbox happily continued executing code at
00000000 and took the jump into flash.

When appending these instructions to the existing
xcodes, he could make sure that RAM had been
properly initialized and was thus stable. So there
was no need to encrypt the Xbox Linux bootloader
firmware with the secret key any more. It was
enough to add the memory write instruction to the
end of the xcodes and make sure that 2bl decryption
fails - which will automatically happen, if the firm-
ware replacement does not contain the 2bl code.

Now why is there no double fault? Hackers from
the Xbox Linux team checked with AMD employ-
ees and they explained that AMD CPUs do throw an
exception in case of EIP overflows, but Intel CPUs
don't.

The reason that Intel CPUs don't is because of...
1970s stuff. Execution on x86 CPUs starts at the top
of the address space (minus 16 bytes), but some
computer makers wanted to have their ROM at the
bottom of the address space, i.e. at 0, so Intel im-
plemented the instruction with the encoding
0xFFFF, which is what you get when reading from
addresses not connected to any chip, as a No-
Operation (”nop”) and made the CPU throw no ex-
ception in case of the address space wraparound.
This way, the CPU would “nop” its way up to the
top, and finally execute the code at 0.

AMD did not implement this behavior, as it had
not been necessary any more by the time AMD en-
tered the x86 market with it own designs, and be-
cause they felt that this behavior was a security risk
and fixing it would not mean a significant incom-
patibility.

But why did Microsoft do it wrong? This can be
explained with the history of the Xbox: AMD of-
fered to design and manufacture both the CPU and
the motherboard (including the chipset), and nVidia
was contracted to contribute the graphics hardware.
The first developer systems, even outside of Micro-
soft, were Athlon-based, but then Intel came in and
offered their chips for less money, as well as the
complementary redesign of the existing AMD
chipset to work with their CPU. Consequently,
nVidia licensed the AMD chipset so that the AMD
name vanished. This also means, that nVidia nForce
chipset is essentially AMD technology, closely re-
lated to the AMD-760 chipset.

So when Microsoft switched from AMD to Intel,
they apparently forgot to test their security code
again with the new hardware, or to read the Intel
datasheets.

The MIST Hack
Soon after the visor hack, another vulnerability

was found in the secret ROM code, attacking the

code that checks whether an xcode wants to disable
the secret ROM. Let us look at this code again:
 cmp ebx, 80000880h ; MCPX disable?
 jnz short not_mcpx_disable; no
 and ecx, not 2 ; clear bit 1
not_mcpx_disable:
 mov eax, ebx
 mov dx, 0CF8h
 out dx, eax ; PCI configuration address
 add dl, 4
 mov eax, ecx
 out dx, eax ; PCI configuration data
 jmp short next_instruction

The PCI config address is stored in the EBX reg-
ister in the beginning. This address has to be sent to
I/O port 0x0CF8, and the 32 bit data has to be sent
to I/O port 0x0CFC. The address is encoded like
this:
 0-7 reg
 8-10 func
 11-15 device
 16-23 bus
 24-30 reserved
 31 always 1

The attack is pretty obvoius: there are seven re-
served bits in the address, and the code tests for a
single exact value. What happens if we write to an
alias of the same address, by using an address with
only some of the bits 24 to 30 changed? While the
instruction
 POKEPCI(80000880h, 2)

will be caught, the instruction
 POKEPCI(C0000880h, 2)

will not be caught - and works just as well, be-
cause the PCI bus controller just ignores the unused
bits.

This instruction disables the secret ROM, that is,
the interpreter disables itself when sending the value
to port 0x0CFC, and the CPU falls down to flash
memory. We can put a “landing zone” into flash, by
filling all of the top 512 bytes with “nop” instruc-
tions, and putting a jump to the beginning of flash
into the last instruction, so that we do not have to
care where exactly the CPU lands after falling
down, and we are independent of possibly hard to
reproduce caching effects.

It is hard to find a good reason for this bug other
than carelessness. It might be attributed to not
reading the documentation closely enough, as well
as not looking at it from the perspective of a hacker
well enough. After all, this code had been written
with a specific attack in mind - but the code made
hacking easier, by giving hackers a hint how to at-
tack.

Another PCI Config Space Attack
There is a second sequence of xcode instructions

that can disable the secret ROM just as well, which
are not caught by the interpreter: The interpreter
supports writing bytes to I/O ports, so it is possible
to put together the code to disable the secret ROM
using 8 bit I/O writes:
 OUTB(0xcf8), 0x80
 OUTB(0xcf9), 0x08
 OUTB(0xcfa), 0x00
 OUTB(0xcfb), 0x80
 OUTB(0xcfc), 0x02

This hack has been unreleased until now. It has
been found not long after the MIST hack, but kept
secret, in case Microsoft fixed the MIST bug. In the
meantime, they have implemented a fix that makes
all hacks impossible that are based on turning off
the secret ROM. This will be described in detail
later.

More Ideas
There have been more ideas, but few of them have

been pursued, as long as other existing backdoor
existed. One possible idea is to base a hack on
caching...

Startup Security, Take Two
When bunnie hacked the secret ROM, Microsoft

reacted by updating the ROM. Thousands of already
manufactured Southbridges were trashed, new ones
made. The hacker community called these Xboxes
“version 1.1” machines.

Microsoft's Perspective
Microsoft had now understood that RC4 cannot be

used as a hash, so they implemented an additional
hash algorithm, which was to be executed after de-
cryption. As there were only few bytes left, the hash
algorithm had to be tiny - so the “Tiny Encryption
Algorithm” (”TEA”) was used. Every encryption
algorithm can be changed to be used as a hash, and
TEA seemed to be a good choice, as it is really
small. While they were at it, they also changed the
RC4 key in the secret ROM, so that hackers would
not be able to decrypt 2bl and the kernel without
dumping the new secret ROM.

The Hacker Perspective
The extraction of the secret ROM was done by

members of the Xbox Linux Project this time, only
days after they got their hands on the new 1.1 boxes,
and only two weeks after they first appeared.

The A20 Hack
To date, Microsoft does not know how the Xbox

Linux Project did it. But since there will most
probably be no future revisions of the Xbox, as the
Xbox 360 has already taken over, we can release
this now.

Let us start with some PC history. The 8086/8088,
the first CPU in the x86 line, was supposed to be as
closely compatible to the 8080, which was very
successful on the CP/M market. The memory model
therefore was similar to the 8080, which could ac-
cess only 64 KB, by dividing memory into 64 KB
blocks. Intel decided that the 8086/8088 could have
a maximum of 1 MB of RAM, which would have
meant 16 “segments” of 64 KB each. But instead of
doing it this way, they decided to let the 64 KB
segments overlap, and have 65536 of these seg-
ments, starting every 16 bytes.

An address was therefore specified by a segment
and an offset. The segment would be multiplied by
16, and the offset would be added, to result in the
effective address. As an example, 0x0040:0x006C
would be 0x40*0x10+0x6C=0x46C. An interesting
side effect of this method is that it is possible to
have addresses above 1 MB: The segment 0xFFFF
starts at the effective address 0xFFFF0, so it should
only contain 16 bytes instead of 64 KB. So the ad-
dress 0xFFFF:0x0010 would be at 1 MB, and
0xFFFF:0xFFFF would be at 1 MB plus roughly 64
KB.

The 8086/8088 could not address more than 1 MB,
because it only had 20 address lines, so addresses
above 0xFFFF:0x000F were wrapped around to the
lower 64 KB. But this behavior was different on the
286, which had 24 address lines: It was actually
possible to access roughly 64 KB more using this
trick, which was later abused by MS-DOS as “high
memory”.

Unfortunately there were some 8086/8088 appli-
cation that broke, because they required the wrap-
around for some reason. It wasn't Intel who found
that out, but IBM, when they designed the IBM AT,
and it was too late to modify the behavior of the
286, so they fixed it themselves, by introducing the
A20 Gate (”A20#”). An unused I/O pin in the key-
board controller was attached to the 20th address
line, so that software could pull down address line
20 to 0, thus emulating the 8086/8088 behaviour.

This feature was later moved into the CPUs, and
all Pentiums and Athlons have it - and so does the
Xbox. If A20# is triggered, bit 20 of all addresses
will be 0. So, for example, an address of 1 MB will
be 0 MB, and if the CPU wants to access the top of
RAM, it will actually access memory that is 1 MB
lower than the top.

Keeping this in mind, the attack on the Xbox is
pretty straightforward: If we connect the CPU's
A20# pin to GND, the Xbox will not start from
FFFFFFF0, but from FFEFFFF0 - this is not cov-
ered by the secret ROM, but is ordinary flash mem-
ory, because flash is mirrored over the upper 16
MB. So by only connecting a single pin, the secret
ROM is completely bypassed.

What is cool about this, is that the secret ROM is
still turned on. So we could easily dump the secret
ROM trough one of the low speed busses (we used
the I2C bus), by placing a small dump application
into flash memory.

The TEA Hash
After reading Bruce Schneier's book on crypto, we

learned that TEA was a really bad choice as a hash.
The book says that TEA must never be used as a
hash, because it is insecure if used this way. If you
flip both bit 16 and 31 of a 32 bit word, the hash
will be the same. We could easily patch a jump in
the second bootloader so that it would not be recog-
nized. This modified jump lead us directly into flash
memory.

But why did they make this mistake? Obviously
the designers knew nothing about crypto - again! -
and just added code without understanding it and
without even reading the most basic books on the
topic. A possible explanation why they chose TEA
would be that they might have searched the internet
for a “tiny” encryption algorithm - and got TEA.

Visor Backdoor and MIST Hack
The Visor Backdoor was still present, so again, for

the replacement Linux firmware, the Xbox Linux
developers did not have to exploit the crypto code,
but could simply use this backdoor. Microsoft obvi-
ously released the updated secret ROM much too
quickly, just after bunnie dumped it and people saw
that RC4 was no hash, but before the visor backdoor
had been discovered.

The MIST hack had been discovered after the visor
bug - but it no longer worked on the Xbox 1.1. Not
because they fixed the comparison - they didn't -,
but because they changed the address logic: If you
accessed the upper 512 bytes of the address space,
and the secret ROM was turned off, the Xbox would
just crash, thus making all “fall down” hacks impos-
sible. This way they closed both possible attacks,
writing to an alias, and using 5 OUTB instructions.

Microsoft obviously discovered the turnoff vulner-
ability themselves, closing at least one backdoor,
but keeping another one open, and not really closing
a second one. It was too expensive to trash the 1.1
Southbridge chips again for yet another update, so
Microsoft still uses these chips in today's Xboxes.

Today
In later revisions of the Xbox, Microsoft removed

some pins of the LPC bus, making modchip design
harder, but they could not remove the LPC bus alto-
gether, because they needed it during the manufac-
turing process.

In the latest revision of the Xbox hardware (v1.6),
they finally switched from flash memory to real
ROM - and even integrated the ROM with the video
encoder. The LPC bus is not needed for manufac-
turing any more, as the ROM chips are already pre-
programmed. So now it is impossible to replace or
to overwrite the kernel image, and because of the
missing LPC bus, it also seems impossible to attach
a ROM override.

But modchips are still possible. The obvious LPC
pins are gone now, but the bus is still there. If you
find the LPC pins on the board, you can attach a
ROM override just as before, the modchips are only
a bit harder to install. This is because the South-
bridge still has the LPC override functionality, since
they did not make a new revision of it - as so often,
obviously for monetary reasons.

Xbox Kernel Security
Let us have a look at the chain of trust again:

• The CPU starts execution of code stored in the
secret ROM.

• The secret ROM decrypts and verifies the second
bootloader.

• The second bootloader decrypts and verifies the
Windows kernel.

• The Windows kernel checks the allowed media
bits and the RSA signature of the game.
This last link is a complete software thing, so all

the attacks have been pretty much standard. Some
people tried to brute force the RSA key used for the
game signature - no joke! But what is more likely,
successfully brute forcing RSA 2048, or finding a
bug in Microsoft's security code? After the experi-
ence with the first links of the chain of trust, the
Xbox Linux Project focused on finding bugs in the
software.

We found no bug in the RSA implementation. It is
taken straight out of Windows 2000 and looks pretty
good. But there are always implicit additional links
in the chain of trust: All code reads data, and data
can cause security risks if handled incorrectly.

Game Exploits
What data do games load? Graphics data, audio

data, video data... - but we cannot alter them, be-
cause it is not easily possible to create authentic

Xbox DVDs, and the Xbox won't boot originals
from DVD-R etc.

But most games can load savegames, and these can
easily be changed: The Xbox memory units are
more or less standard USB storage devices (”USB
sticks”), so it is possible to use most USB sticks
with the Xbox, and just store hacked savegames on
them.

Plenty of Xbox games had buffer vulnerabilities in
their savegame handlers. It was often as easy as ex-
tending the length of strings like the name of the
player, and the game would overwrite its stack with
our data and eventually jump to the code we em-
bedded in the savegame.

The procedure for the user was then to simply
copy a hacked savegame from a USB stick onto the
Xbox hard disk, run the game and load the save-
game. But after a buffer exploit, we would normally
only be in user mode - not on the Xbox, as all Xbox
games run in kernel mode. The reason for this is
probably a slight speed advantage, or, less likely, a
simpler environment for the game, but Microsoft
tried to make the environment as similar to the
Windows/DirectX environment as possible, so user
mode would have actually made the environment
“simpler” for many Windows/DirectX developers.

Now that we have full control of the machine, we
can overwrite the flash memory chip. It is write
protected by default, but disabling the write protec-
tion is as easy as soldering a single bridge on the
motherboard. After all, this bridge has to be closed
temporarily during manufacturing when program-
ming flash memory for the first time. Using this
hack, it is possible, only with a USB stick, one of
several games (007 Agent Under Fire, MechAssault,
Splinter Cell, ...) and a soldering iron, to perma-
nently modify the Xbox, just as if a modchip was
installed. Because early Xboxes had a 1 MB flash
chip, although only 256 KB had been used, it was
even possible to install several ROM images in flash
and attach a switch.

But the Xbox Linux Project did not blindly release
this hack. The first savegame proof of concept ex-
ploit had been finished in January 2003. After that, a
lot of energy was invested in finding out a way to
free the Xbox for homebrew development and
Linux, but not allowing game copies. Microsoft was
contacted, but without any success. They just ig-
nored the problem.

Finally in July, the hack was released, with heavy
obfuscation, and lockout code for non-Linux use. It
was obvious that this would only slow down the
“hacking of the hack”, so eventually, people would
be able to use this vulnerability for copied games,
but since Microsoft showed no interest in finding a
solution, there was no other option than full disclo-

sure. The suggestion of the Xbox Linux Project
would have been to work together with Microsoft to
silently close the security holes and, in return, work
on a method to let homebrew and Linux run on the
Xbox.

Dashboard Exploits
The problem with the savegame hack was that, if

you didn't want to overwrite the flash memory chip,
you had to insert the game and load the savegame
every time you wanted to run unsigned code. But
having full control of the machine using the save-
game exploit also meant we could access the hard
disk without opening the Xbox. This way, it became
interesting to closely examine the hard disk contents
for vulnerabilities.

The Dashboard is the main program on hard disk,
executed every time the Xbox is started without a
game in the DVD drive. The dashboard may even
be the very reason the Xbox ships with a hard disk:
While the settings menu and savegame management
on the Nintendo GameCube fit well into 2 MB of
ROM, the Xbox Dashboard, which is roughly com-
parable in its functionality, occupies more than 100
MB. So the original idea why to include a hard disk
might have been initiated by the inability to com-
press the Dashboard into typical ROM sizes - and
they might have decided to make the best out of it,
and find additional uses for the hard disk.

The dashboard loads its data files, like audio and
graphics, from hard disk. With the savegame ex-
ploit, we can now alter the hard disk contents, even
without opening the Xbox. Of course the dashboard
executable is signed and can therefore not be al-
tered, and all data files are hashed, with the hashes
stored inside the dashboard executable. Well, all
files, except for two: the font files.

Consequently, there was an integer vulnerability in
the font handling routines, so that we could run our
own code by replacing the font files. Combined with
the savegame exploit, it was as easy as transferring
the savegame and loading it, which would run a
script that modifies the fonts.

Now every time the Xbox is turned on, the Dash-
board crashes because of the faulty fonts and runs
our code embedded in these files. Our code reloads
the Dashboard with the original fonts, hacks it, and
runs it. Hacking the Dashboard meant two things:
Modifying one menu entry to read “XBOX
LINUX” instead of “XBOX LIVE” and running the
Linux bootloader instead of the Xbox Live setup
executable, and modifying the kernel to accept both
applications signed with Microsoft's RSA key as
well as those signed with our RSA key, from hard
disk and from CD/DVD. We called this “MechIn-

staller”, as it was based on the “MechAssault” save-
game exploit.

Only accepting code either signed by the original
key or by our key, keeping our key secret, and using
heavy obfuscation again, meant that nobody could
easily abuse this solution for copied games.

This hack shows several things: Hackers have
phantasy, the combination of flaws can lead to fully
compromising the security system, powerful privi-
leged code should be bug-free and security code
should really catch all cases.

Oh, and there is another vulnerability, and integer
vulnerability in the audio player code. The attack
was developed independently of the font attack, but
was inferior because it would have required the user
to enter the audio player every time to run Linux.

Microsoft's Fixes
The history of Microsoft's reactions to the font

vulnerability is the perfect lesson of how to do it
wrong.
1. After MechInstaller had been released, Microsoft

fixed the buffer vulnerability in the Dashboard
and distributed this new version over the Xbox
Live network and shipped it with new Xboxes.

2. For the hackers, this was no major problem: It
was possible to downgrade the Dashboard of a
new Xbox to the vulnerable version. Just run
Linux using a savegame exploit, and “dd” the old
image. Some people felt downgrading on new
Xboxes was not piracy, because after all, Micro-
soft upgraded Xbox Live users' hard disks to the
new version without asking.

3. As the next step, Microsoft blacklisted the old
Dashboard in the new kernel. It was impossible
to just “dd” an old Dashboard image onto newer
Xboxes.

4. Still no major problem for hackers: The second
executable on the hard disk, “xonlinedash”,
which is used for Xbox Live configuration, had
the same bug, so it was possible to copy the old
“xonlinedash” and to rename it to “xboxdash” to
make it crash because of the faulty fonts.

5. Microsoft consequently blacklisted the vulnerable
version of “xonlinedash”.

6. Again, no major problem for hackers: All Xbox
Live games come with the “dashupdate” applica-
tion, which adds Xbox Live functionality to the
Dashboard for the first Xboxes which came with-
out it. This update application has the same font
bug, and it can be run from hard disk. So it is
possible to copy the file from any Xbox Live
game DVD, rename it to “xboxdash” and let it
crash.

7. Microsoft could not blacklist this one. Xbox Live
enabled games run the update application every
time they start, making sure the Xbox has the
Xbox Live functionality. Blacklisting “dashup-
date” would break these games.

We won.

The Mistakes that Have
Been Made

Microsoft obviously made a lot of mistakes. But it
would be too easy to just attribute all these to stupid
engineers. There have been good (and different)
reasons for most of these mistakes, and one can
learn a lot from them.

There are 17 kinds of mistakes they made, several
of which have been made more than once. I will
group the 17 mistake types into three categories:
Design mistakes, implementation mistakes and pad
policy decisions.

Design
#1: Security vs. Money

Be very careful with tradeoffs between security
and money. There are rarely sensible compromises.
Keep in mind that the very reason for the security
system is to make more money, or to prevent money
losses. Security systems cannot be “a little better” or
“a little worse”. Either they are effective - or they
are not. By saving money on the security system,
you may easily make it not effective at all, not only
wasting the money spent on the security system, but
also making losses because it is not effective.

Microsoft made many compromises.
• In-system programming of flash memory is

cheaper than preprogramming, but an attacker can
also override the firmware with an LPC ROM.

• Buying all of Samsung's RAM chips is cheaper
than only buying those within the specs, but it
made RAM initialization more complex, using up
space that could otherwise be used for better secu-
rity code.

• They chose to put the secret ROM into the South-
bridge instead of the CPU, because the South-
bridge was a custom component anyway and hav-
ing a custom CPU would have been a lot more
expensive, but keys travel over a visible bus if the
secret ROM is outside the CPU.

• They saved money choosing not to update the
Southbridge a second time, which would have
fixed the TEA hash and removed the visor back-
door. This would have made modchips virtually
impossible.

#2: Security vs. Speed
Don't trade security for speed. Although it may be

true that the product in question must be as fast as
possible in order to be able to compete with similar
products on the market, remember that in IT, com-
puters aren't slower or faster by some percentage -
but but factors! Besides, you might lose more
money because of a security system that does not
work than because of a product that is 10 percent
slower than it could be.

Most probably for added speed (one address space,
no TLB misses), Microsoft chose to run all code in
kernel mode, even games that interacted with un-
trusted data that came from the outside. This made it
possible to have complete control of the machine
once a game crashed because of a prepared save-
game, including complete control of the hard disk
and the possibility of booting another operating
system.

#3: Combinations of Weaknesses
Be aware of the fact that a combination of security

flaws can lead to a successful attack. Don't think
that a possible security hole (or “only” a security
risk) cannot be exploited because there are so many
barriers in front of it. Attackers might break all the
other barriers that block the vulnerability, and fixing
that one hole would have stopped them.

MechInstaller is a great example for that. It was
only possible because of the combination of several
security weaknesses:
• The boot process was vulnerable, so we could use

a modified kernel to analyze games.
• Some games are not careful enough with save-

games, so that we can run our own code.
• Games run in kernel mode, so we have full control

of the hardware.
• The Dashboard does not verify the integrity of the

font files.
• The Dashboard has a vulnerability in the font code.

If any of these weaknesses had not been there, then
MechInstaller would not have been possible. Also
note that hackers have enough fantasy to find out
these combinations.

#4: Hackers' Resources
Understand that hackers may have excellent re-

sources. Hobbyists may use resources from work or
from university, and professional attackers can also
be very well-equipped. It is a big mistake to under-
estimate them. So never think you are safe because
it would be too much work or too expensive to ex-
ploit a weakness. If it is a weakness, it will eventu-
ally be exploited. Also understand that hackers may

have excellent human resources. Not only in num-
ber, but also in qualifications.

Microsoft put the secret ROM into the Southbridge
instead of the CPU, which meant that the secret key
would travel over a visible bus. This is the very fast
HyperTransport bus, which, at that time, could not
be sniffed using logic analyzers any mortal could
afford. But with help of the resources of the MIT
and using all of his expertise, bunnie could build his
own hardware that could sniff the bus.

#5: Barriers and Obstacles
Don't make anything “harder for hackers”. Instead

make it “impossible for hackers”, or, if it cannot be
made impossible, don't care about it. Because of the
potential great number and excellent qualifications
of hackers, no obstacle will have any effect or slow
down hacking significantly. But instead, in security
design, you might make mistake #3, because you
think you are safe as there are so many obstacles in
the hackers' way. Use the resources you would in-
vest into building obstacles into building or
strengthening barriers instead - possibly at a differ-
ent location.

Microsoft built obstacles into the system at many
different locations.
• Savegames will only be accepted if they are

signed, but the private key is of course stored in-
side the game, so this is no barrier. Instead, they
should have made sure the games contain no buffer
vulnerabilities in their savegame handlers.

• The hard disk is secured with an ATA password,
different for every Xbox and stored on an EE-
PROM inside the Xbox, but an attacker can just
“hotswap” an unlocked hard disk from a running
Xbox to a running PC. Instead, they should have
put that energy into verifying whether the Dash-
board really hashes all data it reads from the hard
disk.

• The 512 bytes of security startup code were em-
bedded in a custom chip to make it hard to sniff.
Instead, they should have made sure that there are
no bugs in that security code.

#6: Hacker Groups
Don't use one security system for different pur-

poses, or else attackers with very different goals
will jointly attack it, being a lot more effective.
Instead, try to find out who your enemies really are
and what they want, and design your security sys-
tem so that every group gets as much of what they
want so that it does not hurt you.

There were three possible goals for Xbox hackers:
Run Linux and use it as a computer, run homebrew
software like media players and emulators, and run

copies Although there were some overlaps between
Linux and homebrew people, as well as between
homebrew people and people interested in copies,
these were essentially three very different groups.
Because they were all locked out by the same pro-
tection, they worked together, either explicitly, or
implicitly, by using the results of each other. No
Linux hackers ever attacked the Playstation. When
you are fair, people don't fight you.

#7: Security by Obscurity
Security by obscurity does not work. Well-proven

algorithms like SHA-1 and RSA work (of course
given your implementation is well-proven as well).

Microsoft hid the secret ROM, the Windows ker-
nel, the game DVD contents (no way to read them
on a standard DVD drive) and the hard disk con-
tents using different methods. None had any effect.
Also see #5.

#8: Fixes
When your security system has been broken, don't

release quick fixes, for two reasons: Your fixes may
be flawed and may not actually correct the problem,
and even worse holes may be found not much later,
which you must fix again - and ship yet another ver-
sion. Instead, every time a security vulnerability is
found, audit your complete security system and
search for similar bugs, as well as other bugs in the
same part of the system, based on the knowledge
you gained from the successful hack.

Microsoft failed to correct the hash problem in the
second version of the secret ROM, and didn't fix the
visor vulnerability, which was found just weeks
later. After trashing thousands of already manufac-
tured v1.0 Southbridge chips, which was very ex-
pensive, they decided not to update the Southbridge
a second time. Another example is the dashboard
odyssey: Instead of blacklisting the vulnerable ex-
ecutables at a time, they released three updates,
none of which was effective.

Implementation
#9: Data Sheets

Know everything about the components you use.
Do read data sheets. Be very careful with compo-
nents that have legacy functionality.

Microsoft did not notice the A20# legacy function-
ality as a security risk. It seems that they did not
completely analyze the functionality of the Pentium
III Celeron, or else they should have noticed. They
also apparently did not read the Pentium program-
mers' manual, or else they would have noticed that
Intel CPUs do not panic on a FFFFFFFF/00000000
wraparound.

#10: Literature
Read (at least!) standard literature. If you are

dealing with cryptography, this means you have to
read at last Schneier's “Applied Cryptography”.

Microsoft's engineers did not know that TEA must
not be used as a hash, and that RC4 does not feed
the decrypted stream back into the key stream.

#11: Pros
Get experienced professionals to work on your

security system, both on the design and the imple-
mentation. If it's a money issue, see #1.

Looking at mistakes #9 and #10, it seems very
probable that at least some of Microsoft's engineers
had no prior experience with cryptography or the
design of a security system. We also know that peo-
ple on an internship were working on Xbox security.

#12: Completeness
Check whether your security code catches all

cases. If it does not, you did not only waste time
implementing all of it, but you may also give hints
to hackers: If there are many checks at one point of
the code, it looks a lot like code that is relevant for
security and an attacker can check whether all cases
are caught.

Microsoft made this mistake twice: The xcode
interpreter tests for the secret ROM turnoff code,
and doesn't catch all cases. And the Dashboard
hashes all files it is going to read, except for two.
This gave us the ideas where to attack.

#13: Leftovers
Look at the final product from the perspective of a

hacker. Hexdump and disassemble your final builds.
There could be leftovers!

The Xbox flash memory image contained an old
version of the secret ROM, giving us not only hints
about the contents of the actual secret ROM, but
also an insight into what Microsoft planned and why
some mistakes have been made.

#14: Final Test
Test your security system when you have the final

parts and with the final software components in
place. Changing something may very well open
holes somewhere else. When you change some-
thing, rethink the complete system, and check all
assumptions that you made.

The visor hack was only possible because Micro-
soft failed to adapt their security system, designed
for the AMD CPU, to the Intel CPU. The “hash” in
the secret ROM had no effect because they changed
RC5 to RC4 without thinking about the implica-
tions.

Policies
#15: Source

Keep your source safe. Find engineers you can
trust.

The complete Xbox source code has leaked, in-
cluding the kernel and libraries source. Groups in-
terested in copies could easily modify it to support
running games from hard disk, support for hard
disks bigger than 137 GB, custom boot logos etc.
This had been previously done by patching the bi-
nary.

#16: Many People
Have many good people have a look at both your

design and your implementation. Keeping your
source code safe means having engineers you can
trust, and not letting none of your engineers see the
source code. As stated at #7, your system should not
rely on the source code being safe. Unless you did
#7 completely wrong, a bug in the security system is
typically a lot worse than a leak of the source code.

It seems a lot like very few people have actually
seen the Xbox security code.

#17: Talk
Know your enemy - and talk to them. They are not

terrorists that you are not supposed to negotiate
with. Their intent is not to harm you but to reach
their goals. Working on their goals on their own
might harm you indirectly, because the hackers may
not care about the same things as you do. Seek the
contact to hackers, know what they are doing and
have them inform you about a vulnerability before
publishing it. Make them know your position and
why they should respect it, but also respect their
position. Offer them to loosen the security system
for what they want in exchange for the non-
disclosure of their findings.

Microsoft refused to talk about the savegame and
font vulnerabilities. If we had been bad hackers, we
could have released both of them as-is, immediately
making it possible to run copies on Xboxes without
the use of a modchip. Instead, we sought contact to
Microsoft: We would have preferred to see a back-
door for Linux in the Xbox security system, instead
of a solution based on our findings that would allow
running copies. But as they refused to talk, we were
forced to release the exploits, and they were lucky
we heavily obfuscated our solutions so in order to
slow down people interested in using it for copies.

Conclusion
The security system of the Xbox has been a com-

plete failure.

